gp: [N,k,chi] = [1800,4,Mod(1,1800)]
mf = mfinit([N,k,chi],0)
lf = mfeigenbasis(mf)
sage: from sage.modular.dirichlet import DirichletCharacter
H = DirichletGroup(1800, base_ring=CyclotomicField(2))
chi = DirichletCharacter(H, H._module([0, 0, 0, 0]))
N = Newforms(chi, 4, names="a")
magma: //Please install CHIMP (https://github.com/edgarcosta/CHIMP) if you want to run this code
chi := DirichletCharacter("1800.1");
S:= CuspForms(chi, 4);
N := Newforms(S);
Newform invariants
sage: traces = [1,0,0,0,0,0,-10,0,0,0,46,0,34,0,0,0,66]
f = next(g for g in N if [g.coefficient(i+1).trace() for i in range(17)] == traces)
gp: f = lf[1] \\ Warning: the index may be different
sage: f.q_expansion() # note that sage often uses an isomorphic number field
gp: mfcoefs(f, 20)
For each embedding ι m \iota_m ι m of the coefficient field, the values ι m ( a n ) \iota_m(a_n) ι m ( a n ) are shown below.
For more information on an embedded modular form you can click on its label.
gp: mfembed(f)
Refresh table
p p p
Sign
2 2 2
+ 1 +1 + 1
3 3 3
− 1 -1 − 1
5 5 5
− 1 -1 − 1
This newform does not admit any (nontrivial ) inner twists .
This newform subspace can be constructed as the intersection of the kernels of the following linear operators acting on S 4 n e w ( Γ 0 ( 1800 ) ) S_{4}^{\mathrm{new}}(\Gamma_0(1800)) S 4 n e w ( Γ 0 ( 1 8 0 0 ) ) :
T 7 + 10 T_{7} + 10 T 7 + 1 0
T7 + 10
T 11 − 46 T_{11} - 46 T 1 1 − 4 6
T11 - 46
T 17 − 66 T_{17} - 66 T 1 7 − 6 6
T17 - 66
p p p
F p ( T ) F_p(T) F p ( T )
2 2 2
T T T
T
3 3 3
T T T
T
5 5 5
T T T
T
7 7 7
T + 10 T + 10 T + 1 0
T + 10
11 11 1 1
T − 46 T - 46 T − 4 6
T - 46
13 13 1 3
T − 34 T - 34 T − 3 4
T - 34
17 17 1 7
T − 66 T - 66 T − 6 6
T - 66
19 19 1 9
T − 104 T - 104 T − 1 0 4
T - 104
23 23 2 3
T − 164 T - 164 T − 1 6 4
T - 164
29 29 2 9
T + 224 T + 224 T + 2 2 4
T + 224
31 31 3 1
T + 72 T + 72 T + 7 2
T + 72
37 37 3 7
T − 22 T - 22 T − 2 2
T - 22
41 41 4 1
T + 194 T + 194 T + 1 9 4
T + 194
43 43 4 3
T + 108 T + 108 T + 1 0 8
T + 108
47 47 4 7
T + 480 T + 480 T + 4 8 0
T + 480
53 53 5 3
T − 286 T - 286 T − 2 8 6
T - 286
59 59 5 9
T + 426 T + 426 T + 4 2 6
T + 426
61 61 6 1
T − 698 T - 698 T − 6 9 8
T - 698
67 67 6 7
T + 328 T + 328 T + 3 2 8
T + 328
71 71 7 1
T + 188 T + 188 T + 1 8 8
T + 188
73 73 7 3
T − 740 T - 740 T − 7 4 0
T - 740
79 79 7 9
T − 1168 T - 1168 T − 1 1 6 8
T - 1168
83 83 8 3
T − 412 T - 412 T − 4 1 2
T - 412
89 89 8 9
T + 1206 T + 1206 T + 1 2 0 6
T + 1206
97 97 9 7
T − 1384 T - 1384 T − 1 3 8 4
T - 1384
show more
show less