Properties

Label 1800.4.a.z
Level 18001800
Weight 44
Character orbit 1800.a
Self dual yes
Analytic conductor 106.203106.203
Analytic rank 00
Dimension 11
CM no
Inner twists 11

Related objects

Downloads

Learn more

Show commands: Magma / PariGP / SageMath

Newspace parameters

comment: Compute space of new eigenforms
 
[N,k,chi] = [1800,4,Mod(1,1800)]
 
mf = mfinit([N,k,chi],0)
 
lf = mfeigenbasis(mf)
 
from sage.modular.dirichlet import DirichletCharacter
 
H = DirichletGroup(1800, base_ring=CyclotomicField(2))
 
chi = DirichletCharacter(H, H._module([0, 0, 0, 0]))
 
N = Newforms(chi, 4, names="a")
 
//Please install CHIMP (https://github.com/edgarcosta/CHIMP) if you want to run this code
 
chi := DirichletCharacter("1800.1");
 
S:= CuspForms(chi, 4);
 
N := Newforms(S);
 
Level: N N == 1800=233252 1800 = 2^{3} \cdot 3^{2} \cdot 5^{2}
Weight: k k == 4 4
Character orbit: [χ][\chi] == 1800.a (trivial)

Newform invariants

comment: select newform
 
sage: f = N[0] # Warning: the index may be different
 
gp: f = lf[1] \\ Warning: the index may be different
 
Self dual: yes
Analytic conductor: 106.203438010106.203438010
Analytic rank: 00
Dimension: 11
Coefficient field: Q\mathbb{Q}
Coefficient ring: Z\mathbb{Z}
Coefficient ring index: 1 1
Twist minimal: no (minimal twist has level 72)
Fricke sign: +1+1
Sato-Tate group: SU(2)\mathrm{SU}(2)

qq-expansion

comment: q-expansion
 
sage: f.q_expansion() # note that sage often uses an isomorphic number field
 
gp: mfcoefs(f, 20)
 
f(q)f(q) == q+12q764q1158q13+32q17136q19128q23+144q29+20q31+18q37+288q41+200q43+384q47199q49+496q53+128q59458q61+206q97+O(q100) q + 12 q^{7} - 64 q^{11} - 58 q^{13} + 32 q^{17} - 136 q^{19} - 128 q^{23} + 144 q^{29} + 20 q^{31} + 18 q^{37} + 288 q^{41} + 200 q^{43} + 384 q^{47} - 199 q^{49} + 496 q^{53} + 128 q^{59} - 458 q^{61}+ \cdots - 206 q^{97}+O(q^{100}) Copy content Toggle raw display

Embeddings

For each embedding ιm\iota_m of the coefficient field, the values ιm(an)\iota_m(a_n) are shown below.

For more information on an embedded modular form you can click on its label.

comment: embeddings in the coefficient field
 
gp: mfembed(f)
 
Label   ιm(ν)\iota_m(\nu) a2 a_{2} a3 a_{3} a4 a_{4} a5 a_{5} a6 a_{6} a7 a_{7} a8 a_{8} a9 a_{9} a10 a_{10}
1.1
0
0 0 0 0 0 12.0000 0 0 0
nn: e.g. 2-40 or 990-1000
Significant digits:
Format:

Atkin-Lehner signs

p p Sign
22 +1 +1
33 +1 +1
55 +1 +1

Inner twists

This newform does not admit any (nontrivial) inner twists.

Twists

       By twisting character orbit
Char Parity Ord Mult Type Twist Min Dim
1.a even 1 1 trivial 1800.4.a.z 1
3.b odd 2 1 1800.4.a.ba 1
5.b even 2 1 72.4.a.a 1
5.c odd 4 2 1800.4.f.b 2
15.d odd 2 1 72.4.a.d yes 1
15.e even 4 2 1800.4.f.x 2
20.d odd 2 1 144.4.a.a 1
40.e odd 2 1 576.4.a.x 1
40.f even 2 1 576.4.a.w 1
45.h odd 6 2 648.4.i.a 2
45.j even 6 2 648.4.i.l 2
60.h even 2 1 144.4.a.f 1
120.i odd 2 1 576.4.a.c 1
120.m even 2 1 576.4.a.d 1
    
        By twisted newform orbit
Twist Min Dim Char Parity Ord Mult Type
72.4.a.a 1 5.b even 2 1
72.4.a.d yes 1 15.d odd 2 1
144.4.a.a 1 20.d odd 2 1
144.4.a.f 1 60.h even 2 1
576.4.a.c 1 120.i odd 2 1
576.4.a.d 1 120.m even 2 1
576.4.a.w 1 40.f even 2 1
576.4.a.x 1 40.e odd 2 1
648.4.i.a 2 45.h odd 6 2
648.4.i.l 2 45.j even 6 2
1800.4.a.z 1 1.a even 1 1 trivial
1800.4.a.ba 1 3.b odd 2 1
1800.4.f.b 2 5.c odd 4 2
1800.4.f.x 2 15.e even 4 2

Hecke kernels

This newform subspace can be constructed as the intersection of the kernels of the following linear operators acting on S4new(Γ0(1800))S_{4}^{\mathrm{new}}(\Gamma_0(1800)):

T712 T_{7} - 12 Copy content Toggle raw display
T11+64 T_{11} + 64 Copy content Toggle raw display
T1732 T_{17} - 32 Copy content Toggle raw display

Hecke characteristic polynomials

pp Fp(T)F_p(T)
22 T T Copy content Toggle raw display
33 T T Copy content Toggle raw display
55 T T Copy content Toggle raw display
77 T12 T - 12 Copy content Toggle raw display
1111 T+64 T + 64 Copy content Toggle raw display
1313 T+58 T + 58 Copy content Toggle raw display
1717 T32 T - 32 Copy content Toggle raw display
1919 T+136 T + 136 Copy content Toggle raw display
2323 T+128 T + 128 Copy content Toggle raw display
2929 T144 T - 144 Copy content Toggle raw display
3131 T20 T - 20 Copy content Toggle raw display
3737 T18 T - 18 Copy content Toggle raw display
4141 T288 T - 288 Copy content Toggle raw display
4343 T200 T - 200 Copy content Toggle raw display
4747 T384 T - 384 Copy content Toggle raw display
5353 T496 T - 496 Copy content Toggle raw display
5959 T128 T - 128 Copy content Toggle raw display
6161 T+458 T + 458 Copy content Toggle raw display
6767 T496 T - 496 Copy content Toggle raw display
7171 T+512 T + 512 Copy content Toggle raw display
7373 T602 T - 602 Copy content Toggle raw display
7979 T1108 T - 1108 Copy content Toggle raw display
8383 T704 T - 704 Copy content Toggle raw display
8989 T960 T - 960 Copy content Toggle raw display
9797 T+206 T + 206 Copy content Toggle raw display
show more
show less