Properties

Label 1805.1.h.b.654.1
Level 18051805
Weight 11
Character 1805.654
Analytic conductor 0.9010.901
Analytic rank 00
Dimension 44
Projective image D4D_{4}
CM discriminant -95
Inner twists 88

Related objects

Downloads

Learn more

Show commands: Magma / PariGP / SageMath

Newspace parameters

comment: Compute space of new eigenforms
 
[N,k,chi] = [1805,1,Mod(69,1805)]
 
mf = mfinit([N,k,chi],0)
 
lf = mfeigenbasis(mf)
 
from sage.modular.dirichlet import DirichletCharacter
 
H = DirichletGroup(1805, base_ring=CyclotomicField(6))
 
chi = DirichletCharacter(H, H._module([3, 5]))
 
N = Newforms(chi, 1, names="a")
 
//Please install CHIMP (https://github.com/edgarcosta/CHIMP) if you want to run this code
 
chi := DirichletCharacter("1805.69");
 
S:= CuspForms(chi, 1);
 
N := Newforms(S);
 
Level: N N == 1805=5192 1805 = 5 \cdot 19^{2}
Weight: k k == 1 1
Character orbit: [χ][\chi] == 1805.h (of order 66, degree 22, not minimal)

Newform invariants

comment: select newform
 
sage: f = N[0] # Warning: the index may be different
 
gp: f = lf[1] \\ Warning: the index may be different
 
Self dual: no
Analytic conductor: 0.9008123478030.900812347803
Analytic rank: 00
Dimension: 44
Relative dimension: 22 over Q(ζ6)\Q(\zeta_{6})
Coefficient field: Q(2,3)\Q(\sqrt{2}, \sqrt{-3})
comment: defining polynomial
 
gp: f.mod \\ as an extension of the character field
 
Defining polynomial: x4+2x2+4 x^{4} + 2x^{2} + 4 Copy content Toggle raw display
Coefficient ring: Z[a1,,a4]\Z[a_1, \ldots, a_{4}]
Coefficient ring index: 1 1
Twist minimal: no (minimal twist has level 95)
Projective image: D4D_{4}
Projective field: Galois closure of 4.2.475.1
Artin image: C3×D8C_3\times D_8
Artin field: Galois closure of Q[x]/(x24)\mathbb{Q}[x]/(x^{24} - \cdots)

Embedding invariants

Embedding label 654.1
Root 0.7071071.22474i0.707107 - 1.22474i of defining polynomial
Character χ\chi == 1805.654
Dual form 1805.1.h.b.69.1

qq-expansion

comment: q-expansion
 
sage: f.q_expansion() # note that sage often uses an isomorphic number field
 
gp: mfcoefs(f, 20)
 
f(q)f(q) == q+(0.707107+1.22474i)q2+(0.7071071.22474i)q3+(0.5000000.866025i)q4+(0.5000000.866025i)q5+(1.00000+1.73205i)q6+(0.5000000.866025i)q9+(0.707107+1.22474i)q101.41421q12+(0.7071071.22474i)q13+(0.7071071.22474i)q15+(0.5000000.866025i)q16+1.41421q181.00000q20+(0.5000000.866025i)q25+2.00000q26+2.00000q30+(0.707107+1.22474i)q32+(0.500000+0.866025i)q361.41421q372.00000q391.00000q45+(0.7071071.22474i)q48+1.00000q49+1.41421q50+(0.707107+1.22474i)q52+(0.707107+1.22474i)q53+(0.707107+1.22474i)q601.00000q641.41421q65+(0.7071071.22474i)q67+(1.000001.73205i)q741.41421q75+(1.414212.44949i)q78+(0.5000000.866025i)q80+(0.5000000.866025i)q81+(0.7071071.22474i)q90+2.00000q96+(0.7071071.22474i)q97+(0.707107+1.22474i)q98+O(q100)q+(-0.707107 + 1.22474i) q^{2} +(0.707107 - 1.22474i) q^{3} +(-0.500000 - 0.866025i) q^{4} +(0.500000 - 0.866025i) q^{5} +(1.00000 + 1.73205i) q^{6} +(-0.500000 - 0.866025i) q^{9} +(0.707107 + 1.22474i) q^{10} -1.41421 q^{12} +(-0.707107 - 1.22474i) q^{13} +(-0.707107 - 1.22474i) q^{15} +(0.500000 - 0.866025i) q^{16} +1.41421 q^{18} -1.00000 q^{20} +(-0.500000 - 0.866025i) q^{25} +2.00000 q^{26} +2.00000 q^{30} +(0.707107 + 1.22474i) q^{32} +(-0.500000 + 0.866025i) q^{36} -1.41421 q^{37} -2.00000 q^{39} -1.00000 q^{45} +(-0.707107 - 1.22474i) q^{48} +1.00000 q^{49} +1.41421 q^{50} +(-0.707107 + 1.22474i) q^{52} +(0.707107 + 1.22474i) q^{53} +(-0.707107 + 1.22474i) q^{60} -1.00000 q^{64} -1.41421 q^{65} +(-0.707107 - 1.22474i) q^{67} +(1.00000 - 1.73205i) q^{74} -1.41421 q^{75} +(1.41421 - 2.44949i) q^{78} +(-0.500000 - 0.866025i) q^{80} +(0.500000 - 0.866025i) q^{81} +(0.707107 - 1.22474i) q^{90} +2.00000 q^{96} +(0.707107 - 1.22474i) q^{97} +(-0.707107 + 1.22474i) q^{98} +O(q^{100})
Tr(f)(q)\operatorname{Tr}(f)(q) == 4q2q4+2q5+4q62q9+2q164q202q25+8q26+8q302q368q394q45+4q494q64+4q742q80+2q81+8q96+O(q100) 4 q - 2 q^{4} + 2 q^{5} + 4 q^{6} - 2 q^{9} + 2 q^{16} - 4 q^{20} - 2 q^{25} + 8 q^{26} + 8 q^{30} - 2 q^{36} - 8 q^{39} - 4 q^{45} + 4 q^{49} - 4 q^{64} + 4 q^{74} - 2 q^{80} + 2 q^{81} + 8 q^{96}+O(q^{100}) Copy content Toggle raw display

Character values

We give the values of χ\chi on generators for (Z/1805Z)×\left(\mathbb{Z}/1805\mathbb{Z}\right)^\times.

nn 362362 14461446
χ(n)\chi(n) 1-1 e(16)e\left(\frac{1}{6}\right)

Coefficient data

For each nn we display the coefficients of the qq-expansion ana_n, the Satake parameters αp\alpha_p, and the Satake angles θp=Arg(αp)\theta_p = \textrm{Arg}(\alpha_p).



Display apa_p with pp up to: 50 250 1000 (See ana_n instead) (See ana_n instead) (See ana_n instead) Display ana_n with nn up to: 50 250 1000 (See only apa_p) (See only apa_p) (See only apa_p)
Significant digits:
nn ana_n an/n(k1)/2a_n / n^{(k-1)/2} αn \alpha_n θn \theta_n
pp apa_p ap/p(k1)/2a_p / p^{(k-1)/2} αp \alpha_p θp \theta_p
22 −0.707107 + 1.22474i −0.707107 + 1.22474i 0.258819 + 0.965926i 0.416667π0.416667\pi
−0.965926 + 0.258819i 0.916667π0.916667\pi
33 0.707107 1.22474i 0.707107 1.22474i −0.258819 0.965926i 0.583333π-0.583333\pi
0.965926 0.258819i 0.0833333π-0.0833333\pi
44 −0.500000 0.866025i −0.500000 0.866025i
55 0.500000 0.866025i 0.500000 0.866025i
66 1.00000 + 1.73205i 1.00000 + 1.73205i
77 0 0 1.00000 00
−1.00000 π\pi
88 0 0
99 −0.500000 0.866025i −0.500000 0.866025i
1010 0.707107 + 1.22474i 0.707107 + 1.22474i
1111 0 0 1.00000i 0.5π-0.5\pi
1.00000i 0.5π0.5\pi
1212 −1.41421 −1.41421
1313 −0.707107 1.22474i −0.707107 1.22474i −0.965926 0.258819i 0.916667π-0.916667\pi
0.258819 0.965926i 0.416667π-0.416667\pi
1414 0 0
1515 −0.707107 1.22474i −0.707107 1.22474i
1616 0.500000 0.866025i 0.500000 0.866025i
1717 0 0 0.500000 0.866025i 0.333333π-0.333333\pi
−0.500000 + 0.866025i 0.666667π0.666667\pi
1818 1.41421 1.41421
1919 0 0
2020 −1.00000 −1.00000
2121 0 0
2222 0 0
2323 0 0 −0.500000 0.866025i 0.666667π-0.666667\pi
0.500000 + 0.866025i 0.333333π0.333333\pi
2424 0 0
2525 −0.500000 0.866025i −0.500000 0.866025i
2626 2.00000 2.00000
2727 0 0
2828 0 0
2929 0 0 −0.500000 0.866025i 0.666667π-0.666667\pi
0.500000 + 0.866025i 0.333333π0.333333\pi
3030 2.00000 2.00000
3131 0 0 1.00000 00
−1.00000 π\pi
3232 0.707107 + 1.22474i 0.707107 + 1.22474i
3333 0 0
3434 0 0
3535 0 0
3636 −0.500000 + 0.866025i −0.500000 + 0.866025i
3737 −1.41421 −1.41421 −0.707107 0.707107i 0.750000π-0.750000\pi
−0.707107 + 0.707107i 0.750000π0.750000\pi
3838 0 0
3939 −2.00000 −2.00000
4040 0 0
4141 0 0 0.500000 0.866025i 0.333333π-0.333333\pi
−0.500000 + 0.866025i 0.666667π0.666667\pi
4242 0 0
4343 0 0 0.500000 0.866025i 0.333333π-0.333333\pi
−0.500000 + 0.866025i 0.666667π0.666667\pi
4444 0 0
4545 −1.00000 −1.00000
4646 0 0
4747 0 0 −0.500000 0.866025i 0.666667π-0.666667\pi
0.500000 + 0.866025i 0.333333π0.333333\pi
4848 −0.707107 1.22474i −0.707107 1.22474i
4949 1.00000 1.00000
5050 1.41421 1.41421
5151 0 0
5252 −0.707107 + 1.22474i −0.707107 + 1.22474i
5353 0.707107 + 1.22474i 0.707107 + 1.22474i 0.965926 + 0.258819i 0.0833333π0.0833333\pi
−0.258819 + 0.965926i 0.583333π0.583333\pi
5454 0 0
5555 0 0
5656 0 0
5757 0 0
5858 0 0
5959 0 0 0.500000 0.866025i 0.333333π-0.333333\pi
−0.500000 + 0.866025i 0.666667π0.666667\pi
6060 −0.707107 + 1.22474i −0.707107 + 1.22474i
6161 0 0 0.866025 0.500000i 0.166667π-0.166667\pi
−0.866025 + 0.500000i 0.833333π0.833333\pi
6262 0 0
6363 0 0
6464 −1.00000 −1.00000
6565 −1.41421 −1.41421
6666 0 0
6767 −0.707107 1.22474i −0.707107 1.22474i −0.965926 0.258819i 0.916667π-0.916667\pi
0.258819 0.965926i 0.416667π-0.416667\pi
6868 0 0
6969 0 0
7070 0 0
7171 0 0 0.500000 0.866025i 0.333333π-0.333333\pi
−0.500000 + 0.866025i 0.666667π0.666667\pi
7272 0 0
7373 0 0 0.500000 0.866025i 0.333333π-0.333333\pi
−0.500000 + 0.866025i 0.666667π0.666667\pi
7474 1.00000 1.73205i 1.00000 1.73205i
7575 −1.41421 −1.41421
7676 0 0
7777 0 0
7878 1.41421 2.44949i 1.41421 2.44949i
7979 0 0 0.500000 0.866025i 0.333333π-0.333333\pi
−0.500000 + 0.866025i 0.666667π0.666667\pi
8080 −0.500000 0.866025i −0.500000 0.866025i
8181 0.500000 0.866025i 0.500000 0.866025i
8282 0 0
8383 0 0 1.00000 00
−1.00000 π\pi
8484 0 0
8585 0 0
8686 0 0
8787 0 0
8888 0 0
8989 0 0 −0.500000 0.866025i 0.666667π-0.666667\pi
0.500000 + 0.866025i 0.333333π0.333333\pi
9090 0.707107 1.22474i 0.707107 1.22474i
9191 0 0
9292 0 0
9393 0 0
9494 0 0
9595 0 0
9696 2.00000 2.00000
9797 0.707107 1.22474i 0.707107 1.22474i −0.258819 0.965926i 0.583333π-0.583333\pi
0.965926 0.258819i 0.0833333π-0.0833333\pi
9898 −0.707107 + 1.22474i −0.707107 + 1.22474i
9999 0 0
100100 −0.500000 + 0.866025i −0.500000 + 0.866025i
101101 0 0 0.866025 0.500000i 0.166667π-0.166667\pi
−0.866025 + 0.500000i 0.833333π0.833333\pi
102102 0 0
103103 1.41421 1.41421 0.707107 0.707107i 0.250000π-0.250000\pi
0.707107 + 0.707107i 0.250000π0.250000\pi
104104 0 0
105105 0 0
106106 −2.00000 −2.00000
107107 1.41421 1.41421 0.707107 0.707107i 0.250000π-0.250000\pi
0.707107 + 0.707107i 0.250000π0.250000\pi
108108 0 0
109109 0 0 0.500000 0.866025i 0.333333π-0.333333\pi
−0.500000 + 0.866025i 0.666667π0.666667\pi
110110 0 0
111111 −1.00000 + 1.73205i −1.00000 + 1.73205i
112112 0 0
113113 1.41421 1.41421 0.707107 0.707107i 0.250000π-0.250000\pi
0.707107 + 0.707107i 0.250000π0.250000\pi
114114 0 0
115115 0 0
116116 0 0
117117 −0.707107 + 1.22474i −0.707107 + 1.22474i
118118 0 0
119119 0 0
120120 0 0
121121 −1.00000 −1.00000
122122 0 0
123123 0 0
124124 0 0
125125 −1.00000 −1.00000
126126 0 0
127127 0.707107 + 1.22474i 0.707107 + 1.22474i 0.965926 + 0.258819i 0.0833333π0.0833333\pi
−0.258819 + 0.965926i 0.583333π0.583333\pi
128128 0 0
129129 0 0
130130 1.00000 1.73205i 1.00000 1.73205i
131131 −1.00000 + 1.73205i −1.00000 + 1.73205i −0.500000 + 0.866025i 0.666667π0.666667\pi
−0.500000 + 0.866025i 0.666667π0.666667\pi
132132 0 0
133133 0 0
134134 2.00000 2.00000
135135 0 0
136136 0 0
137137 0 0 −0.500000 0.866025i 0.666667π-0.666667\pi
0.500000 + 0.866025i 0.333333π0.333333\pi
138138 0 0
139139 0 0 0.866025 0.500000i 0.166667π-0.166667\pi
−0.866025 + 0.500000i 0.833333π0.833333\pi
140140 0 0
141141 0 0
142142 0 0
143143 0 0
144144 −1.00000 −1.00000
145145 0 0
146146 0 0
147147 0.707107 1.22474i 0.707107 1.22474i
148148 0.707107 + 1.22474i 0.707107 + 1.22474i
149149 0 0 −0.866025 0.500000i 0.833333π-0.833333\pi
0.866025 + 0.500000i 0.166667π0.166667\pi
150150 1.00000 1.73205i 1.00000 1.73205i
151151 0 0 1.00000 00
−1.00000 π\pi
152152 0 0
153153 0 0
154154 0 0
155155 0 0
156156 1.00000 + 1.73205i 1.00000 + 1.73205i
157157 0 0 0.500000 0.866025i 0.333333π-0.333333\pi
−0.500000 + 0.866025i 0.666667π0.666667\pi
158158 0 0
159159 2.00000 2.00000
160160 1.41421 1.41421
161161 0 0
162162 0.707107 + 1.22474i 0.707107 + 1.22474i
163163 0 0 1.00000 00
−1.00000 π\pi
164164 0 0
165165 0 0
166166 0 0
167167 0.707107 + 1.22474i 0.707107 + 1.22474i 0.965926 + 0.258819i 0.0833333π0.0833333\pi
−0.258819 + 0.965926i 0.583333π0.583333\pi
168168 0 0
169169 −0.500000 + 0.866025i −0.500000 + 0.866025i
170170 0 0
171171 0 0
172172 0 0
173173 −0.707107 + 1.22474i −0.707107 + 1.22474i 0.258819 + 0.965926i 0.416667π0.416667\pi
−0.965926 + 0.258819i 0.916667π0.916667\pi
174174 0 0
175175 0 0
176176 0 0
177177 0 0
178178 0 0
179179 0 0 1.00000 00
−1.00000 π\pi
180180 0.500000 + 0.866025i 0.500000 + 0.866025i
181181 0 0 −0.500000 0.866025i 0.666667π-0.666667\pi
0.500000 + 0.866025i 0.333333π0.333333\pi
182182 0 0
183183 0 0
184184 0 0
185185 −0.707107 + 1.22474i −0.707107 + 1.22474i
186186 0 0
187187 0 0
188188 0 0
189189 0 0
190190 0 0
191191 −2.00000 −2.00000 −1.00000 π\pi
−1.00000 π\pi
192192 −0.707107 + 1.22474i −0.707107 + 1.22474i
193193 0.707107 1.22474i 0.707107 1.22474i −0.258819 0.965926i 0.583333π-0.583333\pi
0.965926 0.258819i 0.0833333π-0.0833333\pi
194194 1.00000 + 1.73205i 1.00000 + 1.73205i
195195 −1.00000 + 1.73205i −1.00000 + 1.73205i
196196 −0.500000 0.866025i −0.500000 0.866025i
197197 0 0 1.00000 00
−1.00000 π\pi
198198 0 0
199199 1.00000 + 1.73205i 1.00000 + 1.73205i 0.500000 + 0.866025i 0.333333π0.333333\pi
0.500000 + 0.866025i 0.333333π0.333333\pi
200200 0 0
201201 −2.00000 −2.00000
202202 0 0
203203 0 0
204204 0 0
205205 0 0
206206 −1.00000 + 1.73205i −1.00000 + 1.73205i
207207 0 0
208208 −1.41421 −1.41421
209209 0 0
210210 0 0
211211 0 0 0.500000 0.866025i 0.333333π-0.333333\pi
−0.500000 + 0.866025i 0.666667π0.666667\pi
212212 0.707107 1.22474i 0.707107 1.22474i
213213 0 0
214214 −1.00000 + 1.73205i −1.00000 + 1.73205i
215215 0 0
216216 0 0
217217 0 0
218218 0 0
219219 0 0
220220 0 0
221221 0 0
222222 −1.41421 2.44949i −1.41421 2.44949i
223223 0.707107 1.22474i 0.707107 1.22474i −0.258819 0.965926i 0.583333π-0.583333\pi
0.965926 0.258819i 0.0833333π-0.0833333\pi
224224 0 0
225225 −0.500000 + 0.866025i −0.500000 + 0.866025i
226226 −1.00000 + 1.73205i −1.00000 + 1.73205i
227227 1.41421 1.41421 0.707107 0.707107i 0.250000π-0.250000\pi
0.707107 + 0.707107i 0.250000π0.250000\pi
228228 0 0
229229 0 0 1.00000i 0.5π-0.5\pi
1.00000i 0.5π0.5\pi
230230 0 0
231231 0 0
232232 0 0
233233 0 0 0.500000 0.866025i 0.333333π-0.333333\pi
−0.500000 + 0.866025i 0.666667π0.666667\pi
234234 −1.00000 1.73205i −1.00000 1.73205i
235235 0 0
236236 0 0
237237 0 0
238238 0 0
239239 2.00000 2.00000 1.00000 00
1.00000 00
240240 −1.41421 −1.41421
241241 0 0 −0.500000 0.866025i 0.666667π-0.666667\pi
0.500000 + 0.866025i 0.333333π0.333333\pi
242242 0.707107 1.22474i 0.707107 1.22474i
243243 −0.707107 1.22474i −0.707107 1.22474i
244244 0 0
245245 0.500000 0.866025i 0.500000 0.866025i
246246 0 0
247247 0 0
248248 0 0
249249 0 0
250250 0.707107 1.22474i 0.707107 1.22474i
251251 1.00000 + 1.73205i 1.00000 + 1.73205i 0.500000 + 0.866025i 0.333333π0.333333\pi
0.500000 + 0.866025i 0.333333π0.333333\pi
252252 0 0
253253 0 0
254254 −2.00000 −2.00000
255255 0 0
256256 −0.500000 0.866025i −0.500000 0.866025i
257257 0.707107 + 1.22474i 0.707107 + 1.22474i 0.965926 + 0.258819i 0.0833333π0.0833333\pi
−0.258819 + 0.965926i 0.583333π0.583333\pi
258258 0 0
259259 0 0
260260 0.707107 + 1.22474i 0.707107 + 1.22474i
261261 0 0
262262 −1.41421 2.44949i −1.41421 2.44949i
263263 0 0 0.500000 0.866025i 0.333333π-0.333333\pi
−0.500000 + 0.866025i 0.666667π0.666667\pi
264264 0 0
265265 1.41421 1.41421
266266 0 0
267267 0 0
268268 −0.707107 + 1.22474i −0.707107 + 1.22474i
269269 0 0 0.500000 0.866025i 0.333333π-0.333333\pi
−0.500000 + 0.866025i 0.666667π0.666667\pi
270270 0 0
271271 0 0 −0.866025 0.500000i 0.833333π-0.833333\pi
0.866025 + 0.500000i 0.166667π0.166667\pi
272272 0 0
273273 0 0
274274 0 0
275275 0 0
276276 0 0
277277 0 0 1.00000 00
−1.00000 π\pi
278278 0 0
279279 0 0
280280 0 0
281281 0 0 −0.500000 0.866025i 0.666667π-0.666667\pi
0.500000 + 0.866025i 0.333333π0.333333\pi
282282 0 0
283283 0 0 0.500000 0.866025i 0.333333π-0.333333\pi
−0.500000 + 0.866025i 0.666667π0.666667\pi
284284 0 0
285285 0 0
286286 0 0
287287 0 0
288288 0.707107 1.22474i 0.707107 1.22474i
289289 −0.500000 0.866025i −0.500000 0.866025i
290290 0 0
291291 −1.00000 1.73205i −1.00000 1.73205i
292292 0 0
293293 −1.41421 −1.41421 −0.707107 0.707107i 0.750000π-0.750000\pi
−0.707107 + 0.707107i 0.750000π0.750000\pi
294294 1.00000 + 1.73205i 1.00000 + 1.73205i
295295 0 0
296296 0 0
297297 0 0
298298 0 0
299299 0 0
300300 0.707107 + 1.22474i 0.707107 + 1.22474i
301301 0 0
302302 0 0
303303 0 0
304304 0 0
305305 0 0
306306 0 0
307307 −0.707107 + 1.22474i −0.707107 + 1.22474i 0.258819 + 0.965926i 0.416667π0.416667\pi
−0.965926 + 0.258819i 0.916667π0.916667\pi
308308 0 0
309309 1.00000 1.73205i 1.00000 1.73205i
310310 0 0
311311 0 0 1.00000i 0.5π-0.5\pi
1.00000i 0.5π0.5\pi
312312 0 0
313313 0 0 −0.500000 0.866025i 0.666667π-0.666667\pi
0.500000 + 0.866025i 0.333333π0.333333\pi
314314 0 0
315315 0 0
316316 0 0
317317 −0.707107 1.22474i −0.707107 1.22474i −0.965926 0.258819i 0.916667π-0.916667\pi
0.258819 0.965926i 0.416667π-0.416667\pi
318318 −1.41421 + 2.44949i −1.41421 + 2.44949i
319319 0 0
320320 −0.500000 + 0.866025i −0.500000 + 0.866025i
321321 1.00000 1.73205i 1.00000 1.73205i
322322 0 0
323323 0 0
324324 −1.00000 −1.00000
325325 −0.707107 + 1.22474i −0.707107 + 1.22474i
326326 0 0
327327 0 0
328328 0 0
329329 0 0
330330 0 0
331331 0 0 1.00000 00
−1.00000 π\pi
332332 0 0
333333 0.707107 + 1.22474i 0.707107 + 1.22474i
334334 −2.00000 −2.00000
335335 −1.41421 −1.41421
336336 0 0
337337 −0.707107 + 1.22474i −0.707107 + 1.22474i 0.258819 + 0.965926i 0.416667π0.416667\pi
−0.965926 + 0.258819i 0.916667π0.916667\pi
338338 −0.707107 1.22474i −0.707107 1.22474i
339339 1.00000 1.73205i 1.00000 1.73205i
340340 0 0
341341 0 0
342342 0 0
343343 0 0
344344 0 0
345345 0 0
346346 −1.00000 1.73205i −1.00000 1.73205i
347347 0 0 0.500000 0.866025i 0.333333π-0.333333\pi
−0.500000 + 0.866025i 0.666667π0.666667\pi
348348 0 0
349349 −2.00000 −2.00000 −1.00000 π\pi
−1.00000 π\pi
350350 0 0
351351 0 0
352352 0 0
353353 0 0 1.00000 00
−1.00000 π\pi
354354 0 0
355355 0 0
356356 0 0
357357 0 0
358358 0 0
359359 0 0 −0.866025 0.500000i 0.833333π-0.833333\pi
0.866025 + 0.500000i 0.166667π0.166667\pi
360360 0 0
361361 0 0
362362 0 0
363363 −0.707107 + 1.22474i −0.707107 + 1.22474i
364364 0 0
365365 0 0
366366 0 0
367367 0 0 −0.500000 0.866025i 0.666667π-0.666667\pi
0.500000 + 0.866025i 0.333333π0.333333\pi
368368 0 0
369369 0 0
370370 −1.00000 1.73205i −1.00000 1.73205i
371371 0 0
372372 0 0
373373 −1.41421 −1.41421 −0.707107 0.707107i 0.750000π-0.750000\pi
−0.707107 + 0.707107i 0.750000π0.750000\pi
374374 0 0
375375 −0.707107 + 1.22474i −0.707107 + 1.22474i
376376 0 0
377377 0 0
378378 0 0
379379 0 0 1.00000 00
−1.00000 π\pi
380380 0 0
381381 2.00000 2.00000
382382 1.41421 2.44949i 1.41421 2.44949i
383383 −0.707107 + 1.22474i −0.707107 + 1.22474i 0.258819 + 0.965926i 0.416667π0.416667\pi
−0.965926 + 0.258819i 0.916667π0.916667\pi
384384 0 0
385385 0 0
386386 1.00000 + 1.73205i 1.00000 + 1.73205i
387387 0 0
388388 −1.41421 −1.41421
389389 −1.00000 1.73205i −1.00000 1.73205i −0.500000 0.866025i 0.666667π-0.666667\pi
−0.500000 0.866025i 0.666667π-0.666667\pi
390390 −1.41421 2.44949i −1.41421 2.44949i
391391 0 0
392392 0 0
393393 1.41421 + 2.44949i 1.41421 + 2.44949i
394394 0 0
395395 0 0
396396 0 0
397397 0 0 0.500000 0.866025i 0.333333π-0.333333\pi
−0.500000 + 0.866025i 0.666667π0.666667\pi
398398 −2.82843 −2.82843
399399 0 0
400400 −1.00000 −1.00000
401401 0 0 0.500000 0.866025i 0.333333π-0.333333\pi
−0.500000 + 0.866025i 0.666667π0.666667\pi
402402 1.41421 2.44949i 1.41421 2.44949i
403403 0 0
404404 0 0
405405 −0.500000 0.866025i −0.500000 0.866025i
406406 0 0
407407 0 0
408408 0 0
409409 0 0 −0.500000 0.866025i 0.666667π-0.666667\pi
0.500000 + 0.866025i 0.333333π0.333333\pi
410410 0 0
411411 0 0
412412 −0.707107 1.22474i −0.707107 1.22474i
413413 0 0
414414 0 0
415415 0 0
416416 1.00000 1.73205i 1.00000 1.73205i
417417 0 0
418418 0 0
419419 2.00000 2.00000 1.00000 00
1.00000 00
420420 0 0
421421 0 0 0.500000 0.866025i 0.333333π-0.333333\pi
−0.500000 + 0.866025i 0.666667π0.666667\pi
422422 0 0
423423 0 0
424424 0 0
425425 0 0
426426 0 0
427427 0 0
428428 −0.707107 1.22474i −0.707107 1.22474i
429429 0 0
430430 0 0
431431 0 0 −0.500000 0.866025i 0.666667π-0.666667\pi
0.500000 + 0.866025i 0.333333π0.333333\pi
432432 0 0
433433 −0.707107 1.22474i −0.707107 1.22474i −0.965926 0.258819i 0.916667π-0.916667\pi
0.258819 0.965926i 0.416667π-0.416667\pi
434434 0 0
435435 0 0
436436 0 0
437437 0 0
438438 0 0
439439 0 0 0.500000 0.866025i 0.333333π-0.333333\pi
−0.500000 + 0.866025i 0.666667π0.666667\pi
440440 0 0
441441 −0.500000 0.866025i −0.500000 0.866025i
442442 0 0
443443 0 0 −0.500000 0.866025i 0.666667π-0.666667\pi
0.500000 + 0.866025i 0.333333π0.333333\pi
444444 2.00000 2.00000
445445 0 0
446446 1.00000 + 1.73205i 1.00000 + 1.73205i
447447 0 0
448448 0 0
449449 0 0 1.00000 00
−1.00000 π\pi
450450 −0.707107 1.22474i −0.707107 1.22474i
451451 0 0
452452 −0.707107 1.22474i −0.707107 1.22474i
453453 0 0
454454 −1.00000 + 1.73205i −1.00000 + 1.73205i
455455 0 0
456456 0 0
457457 0 0 1.00000 00
−1.00000 π\pi
458458 0 0
459459 0 0
460460 0 0
461461 −1.00000 + 1.73205i −1.00000 + 1.73205i −0.500000 + 0.866025i 0.666667π0.666667\pi
−0.500000 + 0.866025i 0.666667π0.666667\pi
462462 0 0
463463 0 0 1.00000 00
−1.00000 π\pi
464464 0 0
465465 0 0
466466 0 0
467467 0 0 1.00000 00
−1.00000 π\pi
468468 1.41421 1.41421
469469 0 0
470470 0 0
471471 0 0
472472 0 0
473473 0 0
474474 0 0
475475 0 0
476476 0 0
477477 0.707107 1.22474i 0.707107 1.22474i
478478 −1.41421 + 2.44949i −1.41421 + 2.44949i
479479 0 0 0.866025 0.500000i 0.166667π-0.166667\pi
−0.866025 + 0.500000i 0.833333π0.833333\pi
480480 1.00000 1.73205i 1.00000 1.73205i
481481 1.00000 + 1.73205i 1.00000 + 1.73205i
482482 0 0
483483 0 0
484484 0.500000 + 0.866025i 0.500000 + 0.866025i
485485 −0.707107 1.22474i −0.707107 1.22474i
486486 2.00000 2.00000
487487 1.41421 1.41421 0.707107 0.707107i 0.250000π-0.250000\pi
0.707107 + 0.707107i 0.250000π0.250000\pi
488488 0 0
489489 0 0
490490 0.707107 + 1.22474i 0.707107 + 1.22474i
491491 1.00000 1.73205i 1.00000 1.73205i 0.500000 0.866025i 0.333333π-0.333333\pi
0.500000 0.866025i 0.333333π-0.333333\pi
492492 0 0
493493 0 0
494494 0 0
495495 0 0
496496 0 0
497497 0 0
498498 0 0
499499 0 0 −0.866025 0.500000i 0.833333π-0.833333\pi
0.866025 + 0.500000i 0.166667π0.166667\pi
500500 0.500000 + 0.866025i 0.500000 + 0.866025i
501501 2.00000 2.00000
502502 −2.82843 −2.82843
503503 0 0 −0.500000 0.866025i 0.666667π-0.666667\pi
0.500000 + 0.866025i 0.333333π0.333333\pi
504504 0 0
505505 0 0
506506 0 0
507507 0.707107 + 1.22474i 0.707107 + 1.22474i
508508 0.707107 1.22474i 0.707107 1.22474i
509509 0 0 −0.500000 0.866025i 0.666667π-0.666667\pi
0.500000 + 0.866025i 0.333333π0.333333\pi
510510 0 0
511511 0 0
512512 1.41421 1.41421
513513 0 0
514514 −2.00000 −2.00000
515515 0.707107 1.22474i 0.707107 1.22474i
516516 0 0
517517 0 0
518518 0 0
519519 1.00000 + 1.73205i 1.00000 + 1.73205i
520520 0 0
521521 0 0 1.00000 00
−1.00000 π\pi
522522 0 0
523523 0.707107 + 1.22474i 0.707107 + 1.22474i 0.965926 + 0.258819i 0.0833333π0.0833333\pi
−0.258819 + 0.965926i 0.583333π0.583333\pi
524524 2.00000 2.00000
525525 0 0
526526 0 0
527527 0 0
528528 0 0
529529 −0.500000 + 0.866025i −0.500000 + 0.866025i
530530 −1.00000 + 1.73205i −1.00000 + 1.73205i
531531 0 0
532532 0 0
533533 0 0
534534 0 0
535535 0.707107 1.22474i 0.707107 1.22474i
536536 0 0
537537 0 0
538538 0 0
539539 0 0
540540 0 0
541541 0 0 0.866025 0.500000i 0.166667π-0.166667\pi
−0.866025 + 0.500000i 0.833333π0.833333\pi
542542 0 0
543543 0 0
544544 0 0
545545 0 0
546546 0 0
547547 0.707107 + 1.22474i 0.707107 + 1.22474i 0.965926 + 0.258819i 0.0833333π0.0833333\pi
−0.258819 + 0.965926i 0.583333π0.583333\pi
548548 0 0
549549 0 0
550550 0 0
551551 0 0
552552 0 0
553553 0 0
554554 0 0
555555 1.00000 + 1.73205i 1.00000 + 1.73205i
556556 0 0
557557 0 0 −0.500000 0.866025i 0.666667π-0.666667\pi
0.500000 + 0.866025i 0.333333π0.333333\pi
558558 0 0
559559 0 0
560560 0 0
561561 0 0
562562 0 0
563563 −1.41421 −1.41421 −0.707107 0.707107i 0.750000π-0.750000\pi
−0.707107 + 0.707107i 0.750000π0.750000\pi
564564 0 0
565565 0.707107 1.22474i 0.707107 1.22474i
566566 0 0
567567 0 0
568568 0 0
569569 0 0 1.00000 00
−1.00000 π\pi
570570 0 0
571571 0 0 1.00000i 0.5π-0.5\pi
1.00000i 0.5π0.5\pi
572572 0 0
573573 −1.41421 + 2.44949i −1.41421 + 2.44949i
574574 0 0
575575 0 0
576576 0.500000 + 0.866025i 0.500000 + 0.866025i
577577 0 0 1.00000 00
−1.00000 π\pi
578578 1.41421 1.41421
579579 −1.00000 1.73205i −1.00000 1.73205i
580580 0 0
581581 0 0
582582 2.82843 2.82843
583583 0 0
584584 0 0
585585 0.707107 + 1.22474i 0.707107 + 1.22474i
586586 1.00000 1.73205i 1.00000 1.73205i
587587 0 0 0.500000 0.866025i 0.333333π-0.333333\pi
−0.500000 + 0.866025i 0.666667π0.666667\pi
588588 −1.41421 −1.41421
589589 0 0
590590 0 0
591591 0 0
592592 −0.707107 + 1.22474i −0.707107 + 1.22474i
593593 0 0 −0.500000 0.866025i 0.666667π-0.666667\pi
0.500000 + 0.866025i 0.333333π0.333333\pi
594594 0 0
595595 0 0
596596 0 0
597597 2.82843 2.82843
598598 0 0
599599 0 0 −0.500000 0.866025i 0.666667π-0.666667\pi
0.500000 + 0.866025i 0.333333π0.333333\pi
600600 0 0
601601 0 0 1.00000 00
−1.00000 π\pi
602602 0 0
603603 −0.707107 + 1.22474i −0.707107 + 1.22474i
604604 0 0
605605 −0.500000 + 0.866025i −0.500000 + 0.866025i
606606 0 0
607607 1.41421 1.41421 0.707107 0.707107i 0.250000π-0.250000\pi
0.707107 + 0.707107i 0.250000π0.250000\pi
608608 0 0
609609 0 0
610610 0 0
611611 0 0
612612 0 0
613613 0 0 0.500000 0.866025i 0.333333π-0.333333\pi
−0.500000 + 0.866025i 0.666667π0.666667\pi
614614 −1.00000 1.73205i −1.00000 1.73205i
615615 0 0
616616 0 0
617617 0 0 −0.500000 0.866025i 0.666667π-0.666667\pi
0.500000 + 0.866025i 0.333333π0.333333\pi
618618 1.41421 + 2.44949i 1.41421 + 2.44949i
619619 0 0 1.00000i 0.5π-0.5\pi
1.00000i 0.5π0.5\pi
620620 0 0
621621 0 0
622622 0 0
623623 0 0
624624 −1.00000 + 1.73205i −1.00000 + 1.73205i
625625 −0.500000 + 0.866025i −0.500000 + 0.866025i
626626 0 0
627627 0 0
628628 0 0
629629 0 0
630630 0 0
631631 0 0 0.866025 0.500000i 0.166667π-0.166667\pi
−0.866025 + 0.500000i 0.833333π0.833333\pi
632632 0 0
633633 0 0
634634 2.00000 2.00000
635635 1.41421 1.41421
636636 −1.00000 1.73205i −1.00000 1.73205i
637637 −0.707107 1.22474i −0.707107 1.22474i
638638 0 0
639639 0 0
640640 0 0
641641 0 0 0.500000 0.866025i 0.333333π-0.333333\pi
−0.500000 + 0.866025i 0.666667π0.666667\pi
642642 1.41421 + 2.44949i 1.41421 + 2.44949i
643643 0 0 0.500000 0.866025i 0.333333π-0.333333\pi
−0.500000 + 0.866025i 0.666667π0.666667\pi
644644 0 0
645645 0 0
646646 0 0
647647 0 0 1.00000 00
−1.00000 π\pi
648648 0 0
649649 0 0
650650 −1.00000 1.73205i −1.00000 1.73205i
651651 0 0
652652 0 0
653653 0 0 1.00000 00
−1.00000 π\pi
654654 0 0
655655 1.00000 + 1.73205i 1.00000 + 1.73205i
656656 0 0
657657 0 0
658658 0 0
659659 0 0 −0.500000 0.866025i 0.666667π-0.666667\pi
0.500000 + 0.866025i 0.333333π0.333333\pi
660660 0 0
661661 0 0 −0.500000 0.866025i 0.666667π-0.666667\pi
0.500000 + 0.866025i 0.333333π0.333333\pi
662662 0 0
663663 0 0
664664 0 0
665665 0 0
666666 −2.00000 −2.00000
667667 0 0
668668 0.707107 1.22474i 0.707107 1.22474i
669669 −1.00000 1.73205i −1.00000 1.73205i
670670 1.00000 1.73205i 1.00000 1.73205i
671671 0 0
672672 0 0
673673 1.41421 1.41421 0.707107 0.707107i 0.250000π-0.250000\pi
0.707107 + 0.707107i 0.250000π0.250000\pi
674674 −1.00000 1.73205i −1.00000 1.73205i
675675 0 0
676676 1.00000 1.00000
677677 −1.41421 −1.41421 −0.707107 0.707107i 0.750000π-0.750000\pi
−0.707107 + 0.707107i 0.750000π0.750000\pi
678678 1.41421 + 2.44949i 1.41421 + 2.44949i
679679 0 0
680680 0 0
681681 1.00000 1.73205i 1.00000 1.73205i
682682 0 0
683683 −1.41421 −1.41421 −0.707107 0.707107i 0.750000π-0.750000\pi
−0.707107 + 0.707107i 0.750000π0.750000\pi
684684 0 0
685685 0 0
686686 0 0
687687 0 0
688688 0 0
689689 1.00000 1.73205i 1.00000 1.73205i
690690 0 0
691691 0 0 1.00000i 0.5π-0.5\pi
1.00000i 0.5π0.5\pi
692692 1.41421 1.41421
693693 0 0
694694 0 0
695695 0 0
696696 0 0
697697 0 0
698698 1.41421 2.44949i 1.41421 2.44949i
699699 0 0
700700 0 0
701701 0 0 −0.866025 0.500000i 0.833333π-0.833333\pi
0.866025 + 0.500000i 0.166667π0.166667\pi
702702 0 0
703703 0 0
704704 0 0
705705 0 0
706706 0 0
707707 0 0
708708 0 0
709709 1.00000 + 1.73205i 1.00000 + 1.73205i 0.500000 + 0.866025i 0.333333π0.333333\pi
0.500000 + 0.866025i 0.333333π0.333333\pi
710710 0 0
711711 0 0
712712 0 0
713713 0 0
714714 0 0
715715 0 0
716716 0 0
717717 1.41421 2.44949i 1.41421 2.44949i
718718 0 0
719719 0 0 −0.866025 0.500000i 0.833333π-0.833333\pi
0.866025 + 0.500000i 0.166667π0.166667\pi
720720 −0.500000 + 0.866025i −0.500000 + 0.866025i
721721 0 0
722722 0 0
723723 0 0
724724 0 0
725725 0 0
726726 −1.00000 1.73205i −1.00000 1.73205i
727727 0 0 0.500000 0.866025i 0.333333π-0.333333\pi
−0.500000 + 0.866025i 0.666667π0.666667\pi
728728 0 0
729729 −1.00000 −1.00000
730730 0 0
731731 0 0
732732 0 0
733733 0 0 1.00000 00
−1.00000 π\pi
734734 0 0
735735 −0.707107 1.22474i −0.707107 1.22474i
736736 0 0
737737 0 0
738738 0 0
739739 1.00000 1.73205i 1.00000 1.73205i 0.500000 0.866025i 0.333333π-0.333333\pi
0.500000 0.866025i 0.333333π-0.333333\pi
740740 1.41421 1.41421
741741 0 0
742742 0 0
743743 0.707107 1.22474i 0.707107 1.22474i −0.258819 0.965926i 0.583333π-0.583333\pi
0.965926 0.258819i 0.0833333π-0.0833333\pi
744744 0 0
745745 0 0
746746 1.00000 1.73205i 1.00000 1.73205i
747747 0 0
748748 0 0
749749 0 0
750750 −1.00000 1.73205i −1.00000 1.73205i
751751 0 0 −0.500000 0.866025i 0.666667π-0.666667\pi
0.500000 + 0.866025i 0.333333π0.333333\pi
752752 0 0
753753 2.82843 2.82843
754754 0 0
755755 0 0
756756 0 0
757757 0 0 0.500000 0.866025i 0.333333π-0.333333\pi
−0.500000 + 0.866025i 0.666667π0.666667\pi
758758 0 0
759759 0 0
760760 0 0
761761 0 0 1.00000i 0.5π-0.5\pi
1.00000i 0.5π0.5\pi
762762 −1.41421 + 2.44949i −1.41421 + 2.44949i
763763 0 0
764764 1.00000 + 1.73205i 1.00000 + 1.73205i
765765 0 0
766766 −1.00000 1.73205i −1.00000 1.73205i
767767 0 0
768768 −1.41421 −1.41421
769769 0 0 0.866025 0.500000i 0.166667π-0.166667\pi
−0.866025 + 0.500000i 0.833333π0.833333\pi
770770 0 0
771771 2.00000 2.00000
772772 −1.41421 −1.41421
773773 −0.707107 1.22474i −0.707107 1.22474i −0.965926 0.258819i 0.916667π-0.916667\pi
0.258819 0.965926i 0.416667π-0.416667\pi
774774 0 0
775775 0 0
776776 0 0
777777 0 0
778778 2.82843 2.82843
779779 0 0
780780 2.00000 2.00000
781781 0 0
782782 0 0
783783 0 0
784784 0.500000 0.866025i 0.500000 0.866025i
785785 0 0
786786 −4.00000 −4.00000
787787 −1.41421 −1.41421 −0.707107 0.707107i 0.750000π-0.750000\pi
−0.707107 + 0.707107i 0.750000π0.750000\pi
788788 0 0
789789 0 0
790790 0 0
791791 0 0
792792 0 0
793793 0 0
794794 0 0
795795 1.00000 1.73205i 1.00000 1.73205i
796796 1.00000 1.73205i 1.00000 1.73205i
797797 −1.41421 −1.41421 −0.707107 0.707107i 0.750000π-0.750000\pi
−0.707107 + 0.707107i 0.750000π0.750000\pi
798798 0 0
799799 0 0
800800 0.707107 1.22474i 0.707107 1.22474i
801801 0 0
802802 0 0
803803 0 0
804804 1.00000 + 1.73205i 1.00000 + 1.73205i
805805 0 0
806806 0 0
807807 0 0
808808 0 0
809809 −2.00000 −2.00000 −1.00000 π\pi
−1.00000 π\pi
810810 1.41421 1.41421
811811 0 0 −0.500000 0.866025i 0.666667π-0.666667\pi
0.500000 + 0.866025i 0.333333π0.333333\pi
812812 0 0
813813 0 0
814814 0 0
815815 0 0
816816 0 0
817817 0 0
818818 0 0
819819 0 0
820820 0 0
821821 −1.00000 1.73205i −1.00000 1.73205i −0.500000 0.866025i 0.666667π-0.666667\pi
−0.500000 0.866025i 0.666667π-0.666667\pi
822822 0 0
823823 0 0 −0.500000 0.866025i 0.666667π-0.666667\pi
0.500000 + 0.866025i 0.333333π0.333333\pi
824824 0 0
825825 0 0
826826 0 0
827827 0.707107 + 1.22474i 0.707107 + 1.22474i 0.965926 + 0.258819i 0.0833333π0.0833333\pi
−0.258819 + 0.965926i 0.583333π0.583333\pi
828828 0 0
829829 0 0 1.00000 00
−1.00000 π\pi
830830 0 0
831831 0 0
832832 0.707107 + 1.22474i 0.707107 + 1.22474i
833833 0 0
834834 0 0
835835 1.41421 1.41421
836836 0 0
837837 0 0
838838 −1.41421 + 2.44949i −1.41421 + 2.44949i
839839 0 0 0.500000 0.866025i 0.333333π-0.333333\pi
−0.500000 + 0.866025i 0.666667π0.666667\pi
840840 0 0
841841 −0.500000 + 0.866025i −0.500000 + 0.866025i
842842 0 0
843843 0 0
844844 0 0
845845 0.500000 + 0.866025i 0.500000 + 0.866025i
846846 0 0
847847 0 0
848848 1.41421 1.41421
849849 0 0
850850 0 0
851851 0 0
852852 0 0
853853 0 0 0.500000 0.866025i 0.333333π-0.333333\pi
−0.500000 + 0.866025i 0.666667π0.666667\pi
854854 0 0
855855 0 0
856856 0 0
857857 0.707107 1.22474i 0.707107 1.22474i −0.258819 0.965926i 0.583333π-0.583333\pi
0.965926 0.258819i 0.0833333π-0.0833333\pi
858858 0 0
859859 −1.00000 1.73205i −1.00000 1.73205i −0.500000 0.866025i 0.666667π-0.666667\pi
−0.500000 0.866025i 0.666667π-0.666667\pi
860860 0 0
861861 0 0
862862 0 0
863863 −1.41421 −1.41421 −0.707107 0.707107i 0.750000π-0.750000\pi
−0.707107 + 0.707107i 0.750000π0.750000\pi
864864 0 0
865865 0.707107 + 1.22474i 0.707107 + 1.22474i
866866 2.00000 2.00000
867867 −1.41421 −1.41421
868868 0 0
869869 0 0
870870 0 0
871871 −1.00000 + 1.73205i −1.00000 + 1.73205i
872872 0 0
873873 −1.41421 −1.41421
874874 0 0
875875 0 0
876876 0 0
877877 0.707107 1.22474i 0.707107 1.22474i −0.258819 0.965926i 0.583333π-0.583333\pi
0.965926 0.258819i 0.0833333π-0.0833333\pi
878878 0 0
879879 −1.00000 + 1.73205i −1.00000 + 1.73205i
880880 0 0
881881 0 0 1.00000i 0.5π-0.5\pi
1.00000i 0.5π0.5\pi
882882 1.41421 1.41421
883883 0 0 −0.500000 0.866025i 0.666667π-0.666667\pi
0.500000 + 0.866025i 0.333333π0.333333\pi
884884 0 0
885885 0 0
886886 0 0
887887 −0.707107 1.22474i −0.707107 1.22474i −0.965926 0.258819i 0.916667π-0.916667\pi
0.258819 0.965926i 0.416667π-0.416667\pi
888888 0 0
889889 0 0
890890 0 0
891891 0 0
892892 −1.41421 −1.41421
893893 0 0
894894 0 0
895895 0 0
896896 0 0
897897 0 0
898898 0 0
899899 0 0
900900 1.00000 1.00000
901901 0 0
902902 0 0
903903 0 0
904904 0 0
905905 0 0
906906 0 0
907907 −0.707107 + 1.22474i −0.707107 + 1.22474i 0.258819 + 0.965926i 0.416667π0.416667\pi
−0.965926 + 0.258819i 0.916667π0.916667\pi
908908 −0.707107 1.22474i −0.707107 1.22474i
909909 0 0
910910 0 0
911911 0 0 1.00000 00
−1.00000 π\pi
912912 0 0
913913 0 0
914914 0 0
915915 0 0
916916 0 0
917917 0 0
918918 0 0
919919 2.00000 2.00000 1.00000 00
1.00000 00
920920 0 0
921921 1.00000 + 1.73205i 1.00000 + 1.73205i
922922 −1.41421 2.44949i −1.41421 2.44949i
923923 0 0
924924 0 0
925925 0.707107 + 1.22474i 0.707107 + 1.22474i
926926 0 0
927927 −0.707107 1.22474i −0.707107 1.22474i
928928 0 0
929929 1.00000 1.73205i 1.00000 1.73205i 0.500000 0.866025i 0.333333π-0.333333\pi
0.500000 0.866025i 0.333333π-0.333333\pi
930930 0 0
931931 0 0
932932 0 0
933933 0 0
934934 0 0
935935 0 0
936936 0 0
937937 0 0 −0.500000 0.866025i 0.666667π-0.666667\pi
0.500000 + 0.866025i 0.333333π0.333333\pi
938938 0 0
939939 0 0
940940 0 0
941941 0 0 −0.500000 0.866025i 0.666667π-0.666667\pi
0.500000 + 0.866025i 0.333333π0.333333\pi
942942 0 0
943943 0 0
944944 0 0
945945 0 0
946946 0 0
947947 0 0 0.500000 0.866025i 0.333333π-0.333333\pi
−0.500000 + 0.866025i 0.666667π0.666667\pi
948948 0 0
949949 0 0
950950 0 0
951951 −2.00000 −2.00000
952952 0 0
953953 0.707107 1.22474i 0.707107 1.22474i −0.258819 0.965926i 0.583333π-0.583333\pi
0.965926 0.258819i 0.0833333π-0.0833333\pi
954954 1.00000 + 1.73205i 1.00000 + 1.73205i
955955 −1.00000 + 1.73205i −1.00000 + 1.73205i
956956 −1.00000 1.73205i −1.00000 1.73205i
957957 0 0
958958 0 0
959959 0 0
960960 0.707107 + 1.22474i 0.707107 + 1.22474i
961961 1.00000 1.00000
962962 −2.82843 −2.82843
963963 −0.707107 1.22474i −0.707107 1.22474i
964964 0 0
965965 −0.707107 1.22474i −0.707107 1.22474i
966966 0 0
967967 0 0 0.500000 0.866025i 0.333333π-0.333333\pi
−0.500000 + 0.866025i 0.666667π0.666667\pi
968968 0 0
969969 0 0
970970 2.00000 2.00000
971971 0 0 0.500000 0.866025i 0.333333π-0.333333\pi
−0.500000 + 0.866025i 0.666667π0.666667\pi
972972 −0.707107 + 1.22474i −0.707107 + 1.22474i
973973 0 0
974974 −1.00000 + 1.73205i −1.00000 + 1.73205i
975975 1.00000 + 1.73205i 1.00000 + 1.73205i
976976 0 0
977977 1.41421 1.41421 0.707107 0.707107i 0.250000π-0.250000\pi
0.707107 + 0.707107i 0.250000π0.250000\pi
978978 0 0
979979 0 0
980980 −1.00000 −1.00000
981981 0 0
982982 1.41421 + 2.44949i 1.41421 + 2.44949i
983983 −0.707107 + 1.22474i −0.707107 + 1.22474i 0.258819 + 0.965926i 0.416667π0.416667\pi
−0.965926 + 0.258819i 0.916667π0.916667\pi
984984 0 0
985985 0 0
986986 0 0
987987 0 0
988988 0 0
989989 0 0
990990 0 0
991991 0 0 0.500000 0.866025i 0.333333π-0.333333\pi
−0.500000 + 0.866025i 0.666667π0.666667\pi
992992 0 0
993993 0 0
994994 0 0
995995 2.00000 2.00000
996996 0 0
997997 0 0 −0.500000 0.866025i 0.666667π-0.666667\pi
0.500000 + 0.866025i 0.333333π0.333333\pi
998998 0 0
999999 0 0
Display apa_p with pp up to: 50 250 1000 (See ana_n instead) (See ana_n instead) (See ana_n instead) Display ana_n with nn up to: 50 250 1000 (See only apa_p) (See only apa_p) (See only apa_p)

Twists

       By twisting character
Char Parity Ord Type Twist Min Dim
1.1 even 1 trivial 1805.1.h.b.654.1 4
5.4 even 2 inner 1805.1.h.b.654.2 4
19.2 odd 18 1805.1.o.b.849.1 12
19.3 odd 18 1805.1.o.b.984.2 12
19.4 even 9 1805.1.o.b.299.1 12
19.5 even 9 1805.1.o.b.694.2 12
19.6 even 9 1805.1.o.b.1029.2 12
19.7 even 3 inner 1805.1.h.b.69.1 4
19.8 odd 6 95.1.d.b.94.1 2
19.9 even 9 1805.1.o.b.1199.2 12
19.10 odd 18 1805.1.o.b.1199.1 12
19.11 even 3 95.1.d.b.94.2 yes 2
19.12 odd 6 inner 1805.1.h.b.69.2 4
19.13 odd 18 1805.1.o.b.1029.1 12
19.14 odd 18 1805.1.o.b.694.1 12
19.15 odd 18 1805.1.o.b.299.2 12
19.16 even 9 1805.1.o.b.984.1 12
19.17 even 9 1805.1.o.b.849.2 12
19.18 odd 2 inner 1805.1.h.b.654.2 4
57.8 even 6 855.1.g.c.379.2 2
57.11 odd 6 855.1.g.c.379.1 2
76.11 odd 6 1520.1.m.b.1329.2 2
76.27 even 6 1520.1.m.b.1329.1 2
95.4 even 18 1805.1.o.b.299.2 12
95.8 even 12 475.1.c.b.151.2 2
95.9 even 18 1805.1.o.b.1199.1 12
95.14 odd 18 1805.1.o.b.694.2 12
95.24 even 18 1805.1.o.b.694.1 12
95.27 even 12 475.1.c.b.151.1 2
95.29 odd 18 1805.1.o.b.1199.2 12
95.34 odd 18 1805.1.o.b.299.1 12
95.44 even 18 1805.1.o.b.1029.1 12
95.49 even 6 95.1.d.b.94.1 2
95.54 even 18 1805.1.o.b.984.2 12
95.59 odd 18 1805.1.o.b.849.2 12
95.64 even 6 inner 1805.1.h.b.69.2 4
95.68 odd 12 475.1.c.b.151.1 2
95.69 odd 6 inner 1805.1.h.b.69.1 4
95.74 even 18 1805.1.o.b.849.1 12
95.79 odd 18 1805.1.o.b.984.1 12
95.84 odd 6 95.1.d.b.94.2 yes 2
95.87 odd 12 475.1.c.b.151.2 2
95.89 odd 18 1805.1.o.b.1029.2 12
95.94 odd 2 CM 1805.1.h.b.654.1 4
285.179 even 6 855.1.g.c.379.1 2
285.239 odd 6 855.1.g.c.379.2 2
380.179 even 6 1520.1.m.b.1329.2 2
380.239 odd 6 1520.1.m.b.1329.1 2
    
        By twisted newform
Twist Min Dim Char Parity Ord Type
95.1.d.b.94.1 2 19.8 odd 6
95.1.d.b.94.1 2 95.49 even 6
95.1.d.b.94.2 yes 2 19.11 even 3
95.1.d.b.94.2 yes 2 95.84 odd 6
475.1.c.b.151.1 2 95.27 even 12
475.1.c.b.151.1 2 95.68 odd 12
475.1.c.b.151.2 2 95.8 even 12
475.1.c.b.151.2 2 95.87 odd 12
855.1.g.c.379.1 2 57.11 odd 6
855.1.g.c.379.1 2 285.179 even 6
855.1.g.c.379.2 2 57.8 even 6
855.1.g.c.379.2 2 285.239 odd 6
1520.1.m.b.1329.1 2 76.27 even 6
1520.1.m.b.1329.1 2 380.239 odd 6
1520.1.m.b.1329.2 2 76.11 odd 6
1520.1.m.b.1329.2 2 380.179 even 6
1805.1.h.b.69.1 4 19.7 even 3 inner
1805.1.h.b.69.1 4 95.69 odd 6 inner
1805.1.h.b.69.2 4 19.12 odd 6 inner
1805.1.h.b.69.2 4 95.64 even 6 inner
1805.1.h.b.654.1 4 1.1 even 1 trivial
1805.1.h.b.654.1 4 95.94 odd 2 CM
1805.1.h.b.654.2 4 5.4 even 2 inner
1805.1.h.b.654.2 4 19.18 odd 2 inner
1805.1.o.b.299.1 12 19.4 even 9
1805.1.o.b.299.1 12 95.34 odd 18
1805.1.o.b.299.2 12 19.15 odd 18
1805.1.o.b.299.2 12 95.4 even 18
1805.1.o.b.694.1 12 19.14 odd 18
1805.1.o.b.694.1 12 95.24 even 18
1805.1.o.b.694.2 12 19.5 even 9
1805.1.o.b.694.2 12 95.14 odd 18
1805.1.o.b.849.1 12 19.2 odd 18
1805.1.o.b.849.1 12 95.74 even 18
1805.1.o.b.849.2 12 19.17 even 9
1805.1.o.b.849.2 12 95.59 odd 18
1805.1.o.b.984.1 12 19.16 even 9
1805.1.o.b.984.1 12 95.79 odd 18
1805.1.o.b.984.2 12 19.3 odd 18
1805.1.o.b.984.2 12 95.54 even 18
1805.1.o.b.1029.1 12 19.13 odd 18
1805.1.o.b.1029.1 12 95.44 even 18
1805.1.o.b.1029.2 12 19.6 even 9
1805.1.o.b.1029.2 12 95.89 odd 18
1805.1.o.b.1199.1 12 19.10 odd 18
1805.1.o.b.1199.1 12 95.9 even 18
1805.1.o.b.1199.2 12 19.9 even 9
1805.1.o.b.1199.2 12 95.29 odd 18