Properties

Label 1805.1.o.b
Level 18051805
Weight 11
Character orbit 1805.o
Analytic conductor 0.9010.901
Analytic rank 00
Dimension 1212
Projective image D4D_{4}
CM discriminant -95
Inner twists 2424

Related objects

Downloads

Learn more

Show commands: Magma / PariGP / SageMath

Newspace parameters

comment: Compute space of new eigenforms
 
[N,k,chi] = [1805,1,Mod(299,1805)]
 
mf = mfinit([N,k,chi],0)
 
lf = mfeigenbasis(mf)
 
from sage.modular.dirichlet import DirichletCharacter
 
H = DirichletGroup(1805, base_ring=CyclotomicField(18))
 
chi = DirichletCharacter(H, H._module([9, 7]))
 
N = Newforms(chi, 1, names="a")
 
//Please install CHIMP (https://github.com/edgarcosta/CHIMP) if you want to run this code
 
chi := DirichletCharacter("1805.299");
 
S:= CuspForms(chi, 1);
 
N := Newforms(S);
 
Level: N N == 1805=5192 1805 = 5 \cdot 19^{2}
Weight: k k == 1 1
Character orbit: [χ][\chi] == 1805.o (of order 1818, degree 66, not minimal)

Newform invariants

comment: select newform
 
sage: f = N[0] # Warning: the index may be different
 
gp: f = lf[1] \\ Warning: the index may be different
 
Self dual: no
Analytic conductor: 0.9008123478030.900812347803
Analytic rank: 00
Dimension: 1212
Relative dimension: 22 over Q(ζ18)\Q(\zeta_{18})
Coefficient field: 12.0.101559956668416.2
comment: defining polynomial
 
gp: f.mod \\ as an extension of the character field
 
Defining polynomial: x12+8x6+64 x^{12} + 8x^{6} + 64 Copy content Toggle raw display
Coefficient ring: Z[a1,,a4]\Z[a_1, \ldots, a_{4}]
Coefficient ring index: 1 1
Twist minimal: no (minimal twist has level 95)
Projective image: D4D_{4}
Projective field: Galois closure of 4.2.475.1
Artin image: C9×D8C_9\times D_8
Artin field: Galois closure of Q[x]/(x72)\mathbb{Q}[x]/(x^{72} - \cdots)

qq-expansion

comment: q-expansion
 
sage: f.q_expansion() # note that sage often uses an isomorphic number field
 
gp: mfcoefs(f, 20)
 

Coefficients of the qq-expansion are expressed in terms of a basis 1,β1,,β111,\beta_1,\ldots,\beta_{11} for the coefficient ring described below. We also show the integral qq-expansion of the trace form.

f(q)f(q) == q+(β11+β5)q2+β5q3+(β10β4)q4β2q52β4q6+β10q9+β1q10+β3q12+(β7+β1)q13+β5q98+O(q100) q + (\beta_{11} + \beta_{5}) q^{2} + \beta_{5} q^{3} + ( - \beta_{10} - \beta_{4}) q^{4} - \beta_{2} q^{5} - 2 \beta_{4} q^{6} + \beta_{10} q^{9} + \beta_1 q^{10} + \beta_{3} q^{12} + (\beta_{7} + \beta_1) q^{13}+ \cdots - \beta_{5} q^{98}+O(q^{100}) Copy content Toggle raw display
Tr(f)(q)\operatorname{Tr}(f)(q) == 12q12q2012q2612q3024q39+6q456q49+6q64+24q96+O(q100) 12 q - 12 q^{20} - 12 q^{26} - 12 q^{30} - 24 q^{39} + 6 q^{45} - 6 q^{49} + 6 q^{64} + 24 q^{96}+O(q^{100}) Copy content Toggle raw display

Basis of coefficient ring in terms of a root ν\nu of x12+8x6+64 x^{12} + 8x^{6} + 64 : Copy content Toggle raw display

β1\beta_{1}== ν \nu Copy content Toggle raw display
β2\beta_{2}== (ν2)/2 ( \nu^{2} ) / 2 Copy content Toggle raw display
β3\beta_{3}== (ν3)/2 ( \nu^{3} ) / 2 Copy content Toggle raw display
β4\beta_{4}== (ν4)/4 ( \nu^{4} ) / 4 Copy content Toggle raw display
β5\beta_{5}== (ν5)/4 ( \nu^{5} ) / 4 Copy content Toggle raw display
β6\beta_{6}== (ν6)/8 ( \nu^{6} ) / 8 Copy content Toggle raw display
β7\beta_{7}== (ν7)/8 ( \nu^{7} ) / 8 Copy content Toggle raw display
β8\beta_{8}== (ν8)/16 ( \nu^{8} ) / 16 Copy content Toggle raw display
β9\beta_{9}== (ν9)/16 ( \nu^{9} ) / 16 Copy content Toggle raw display
β10\beta_{10}== (ν10)/32 ( \nu^{10} ) / 32 Copy content Toggle raw display
β11\beta_{11}== (ν11)/32 ( \nu^{11} ) / 32 Copy content Toggle raw display
ν\nu== β1 \beta_1 Copy content Toggle raw display
ν2\nu^{2}== 2β2 2\beta_{2} Copy content Toggle raw display
ν3\nu^{3}== 2β3 2\beta_{3} Copy content Toggle raw display
ν4\nu^{4}== 4β4 4\beta_{4} Copy content Toggle raw display
ν5\nu^{5}== 4β5 4\beta_{5} Copy content Toggle raw display
ν6\nu^{6}== 8β6 8\beta_{6} Copy content Toggle raw display
ν7\nu^{7}== 8β7 8\beta_{7} Copy content Toggle raw display
ν8\nu^{8}== 16β8 16\beta_{8} Copy content Toggle raw display
ν9\nu^{9}== 16β9 16\beta_{9} Copy content Toggle raw display
ν10\nu^{10}== 32β10 32\beta_{10} Copy content Toggle raw display
ν11\nu^{11}== 32β11 32\beta_{11} Copy content Toggle raw display

Character values

We give the values of χ\chi on generators for (Z/1805Z)×\left(\mathbb{Z}/1805\mathbb{Z}\right)^\times.

nn 362362 14461446
χ(n)\chi(n) 1-1 β4+β10\beta_{4} + \beta_{10}

Embeddings

For each embedding ιm\iota_m of the coefficient field, the values ιm(an)\iota_m(a_n) are shown below.

For more information on an embedded modular form you can click on its label.

comment: embeddings in the coefficient field
 
gp: mfembed(f)
 
Label   ιm(ν)\iota_m(\nu) a2 a_{2} a3 a_{3} a4 a_{4} a5 a_{5} a6 a_{6} a7 a_{7} a8 a_{8} a9 a_{9} a10 a_{10}
299.1
1.32893 + 0.483690i
−1.32893 0.483690i
0.245576 1.39273i
−0.245576 + 1.39273i
1.08335 + 0.909039i
−1.08335 0.909039i
1.32893 0.483690i
−1.32893 + 0.483690i
1.08335 0.909039i
−1.08335 + 0.909039i
0.245576 + 1.39273i
−0.245576 1.39273i
−1.32893 + 0.483690i −0.245576 + 1.39273i 0.766044 0.642788i −0.766044 0.642788i −0.347296 1.96962i 0 0 −0.939693 0.342020i 1.32893 + 0.483690i
299.2 1.32893 0.483690i 0.245576 1.39273i 0.766044 0.642788i −0.766044 0.642788i −0.347296 1.96962i 0 0 −0.939693 0.342020i −1.32893 0.483690i
694.1 −0.245576 1.39273i 1.08335 0.909039i −0.939693 + 0.342020i 0.939693 + 0.342020i −1.53209 1.28558i 0 0 0.173648 0.984808i 0.245576 1.39273i
694.2 0.245576 + 1.39273i −1.08335 + 0.909039i −0.939693 + 0.342020i 0.939693 + 0.342020i −1.53209 1.28558i 0 0 0.173648 0.984808i −0.245576 + 1.39273i
849.1 −1.08335 + 0.909039i −1.32893 0.483690i 0.173648 0.984808i −0.173648 0.984808i 1.87939 0.684040i 0 0 0.766044 + 0.642788i 1.08335 + 0.909039i
849.2 1.08335 0.909039i 1.32893 + 0.483690i 0.173648 0.984808i −0.173648 0.984808i 1.87939 0.684040i 0 0 0.766044 + 0.642788i −1.08335 0.909039i
984.1 −1.32893 0.483690i −0.245576 1.39273i 0.766044 + 0.642788i −0.766044 + 0.642788i −0.347296 + 1.96962i 0 0 −0.939693 + 0.342020i 1.32893 0.483690i
984.2 1.32893 + 0.483690i 0.245576 + 1.39273i 0.766044 + 0.642788i −0.766044 + 0.642788i −0.347296 + 1.96962i 0 0 −0.939693 + 0.342020i −1.32893 + 0.483690i
1029.1 −1.08335 0.909039i −1.32893 + 0.483690i 0.173648 + 0.984808i −0.173648 + 0.984808i 1.87939 + 0.684040i 0 0 0.766044 0.642788i 1.08335 0.909039i
1029.2 1.08335 + 0.909039i 1.32893 0.483690i 0.173648 + 0.984808i −0.173648 + 0.984808i 1.87939 + 0.684040i 0 0 0.766044 0.642788i −1.08335 + 0.909039i
1199.1 −0.245576 + 1.39273i 1.08335 + 0.909039i −0.939693 0.342020i 0.939693 0.342020i −1.53209 + 1.28558i 0 0 0.173648 + 0.984808i 0.245576 + 1.39273i
1199.2 0.245576 1.39273i −1.08335 0.909039i −0.939693 0.342020i 0.939693 0.342020i −1.53209 + 1.28558i 0 0 0.173648 + 0.984808i −0.245576 1.39273i
nn: e.g. 2-40 or 990-1000
Embeddings: e.g. 1-3 or 299.2
Significant digits:
Format:

Inner twists

Char Parity Ord Mult Type
1.a even 1 1 trivial
95.d odd 2 1 CM by Q(95)\Q(\sqrt{-95})
5.b even 2 1 inner
19.b odd 2 1 inner
19.c even 3 2 inner
19.d odd 6 2 inner
19.e even 9 3 inner
19.f odd 18 3 inner
95.h odd 6 2 inner
95.i even 6 2 inner
95.o odd 18 3 inner
95.p even 18 3 inner

Twists

       By twisting character orbit
Char Parity Ord Mult Type Twist Min Dim
1.a even 1 1 trivial 1805.1.o.b 12
5.b even 2 1 inner 1805.1.o.b 12
19.b odd 2 1 inner 1805.1.o.b 12
19.c even 3 2 inner 1805.1.o.b 12
19.d odd 6 2 inner 1805.1.o.b 12
19.e even 9 1 95.1.d.b 2
19.e even 9 2 1805.1.h.b 4
19.e even 9 3 inner 1805.1.o.b 12
19.f odd 18 1 95.1.d.b 2
19.f odd 18 2 1805.1.h.b 4
19.f odd 18 3 inner 1805.1.o.b 12
57.j even 18 1 855.1.g.c 2
57.l odd 18 1 855.1.g.c 2
76.k even 18 1 1520.1.m.b 2
76.l odd 18 1 1520.1.m.b 2
95.d odd 2 1 CM 1805.1.o.b 12
95.h odd 6 2 inner 1805.1.o.b 12
95.i even 6 2 inner 1805.1.o.b 12
95.o odd 18 1 95.1.d.b 2
95.o odd 18 2 1805.1.h.b 4
95.o odd 18 3 inner 1805.1.o.b 12
95.p even 18 1 95.1.d.b 2
95.p even 18 2 1805.1.h.b 4
95.p even 18 3 inner 1805.1.o.b 12
95.q odd 36 2 475.1.c.b 2
95.r even 36 2 475.1.c.b 2
285.bd odd 18 1 855.1.g.c 2
285.bf even 18 1 855.1.g.c 2
380.ba odd 18 1 1520.1.m.b 2
380.bb even 18 1 1520.1.m.b 2
    
        By twisted newform orbit
Twist Min Dim Char Parity Ord Mult Type
95.1.d.b 2 19.e even 9 1
95.1.d.b 2 19.f odd 18 1
95.1.d.b 2 95.o odd 18 1
95.1.d.b 2 95.p even 18 1
475.1.c.b 2 95.q odd 36 2
475.1.c.b 2 95.r even 36 2
855.1.g.c 2 57.j even 18 1
855.1.g.c 2 57.l odd 18 1
855.1.g.c 2 285.bd odd 18 1
855.1.g.c 2 285.bf even 18 1
1520.1.m.b 2 76.k even 18 1
1520.1.m.b 2 76.l odd 18 1
1520.1.m.b 2 380.ba odd 18 1
1520.1.m.b 2 380.bb even 18 1
1805.1.h.b 4 19.e even 9 2
1805.1.h.b 4 19.f odd 18 2
1805.1.h.b 4 95.o odd 18 2
1805.1.h.b 4 95.p even 18 2
1805.1.o.b 12 1.a even 1 1 trivial
1805.1.o.b 12 5.b even 2 1 inner
1805.1.o.b 12 19.b odd 2 1 inner
1805.1.o.b 12 19.c even 3 2 inner
1805.1.o.b 12 19.d odd 6 2 inner
1805.1.o.b 12 19.e even 9 3 inner
1805.1.o.b 12 19.f odd 18 3 inner
1805.1.o.b 12 95.d odd 2 1 CM
1805.1.o.b 12 95.h odd 6 2 inner
1805.1.o.b 12 95.i even 6 2 inner
1805.1.o.b 12 95.o odd 18 3 inner
1805.1.o.b 12 95.p even 18 3 inner

Hecke kernels

This newform subspace can be constructed as the kernel of the linear operator T212+8T26+64 T_{2}^{12} + 8T_{2}^{6} + 64 acting on S1new(1805,[χ])S_{1}^{\mathrm{new}}(1805, [\chi]). Copy content Toggle raw display

Hecke characteristic polynomials

pp Fp(T)F_p(T)
22 T12+8T6+64 T^{12} + 8T^{6} + 64 Copy content Toggle raw display
33 T12+8T6+64 T^{12} + 8T^{6} + 64 Copy content Toggle raw display
55 (T6T3+1)2 (T^{6} - T^{3} + 1)^{2} Copy content Toggle raw display
77 T12 T^{12} Copy content Toggle raw display
1111 T12 T^{12} Copy content Toggle raw display
1313 T12+8T6+64 T^{12} + 8T^{6} + 64 Copy content Toggle raw display
1717 T12 T^{12} Copy content Toggle raw display
1919 T12 T^{12} Copy content Toggle raw display
2323 T12 T^{12} Copy content Toggle raw display
2929 T12 T^{12} Copy content Toggle raw display
3131 T12 T^{12} Copy content Toggle raw display
3737 (T22)6 (T^{2} - 2)^{6} Copy content Toggle raw display
4141 T12 T^{12} Copy content Toggle raw display
4343 T12 T^{12} Copy content Toggle raw display
4747 T12 T^{12} Copy content Toggle raw display
5353 T12+8T6+64 T^{12} + 8T^{6} + 64 Copy content Toggle raw display
5959 T12 T^{12} Copy content Toggle raw display
6161 T12 T^{12} Copy content Toggle raw display
6767 T12+8T6+64 T^{12} + 8T^{6} + 64 Copy content Toggle raw display
7171 T12 T^{12} Copy content Toggle raw display
7373 T12 T^{12} Copy content Toggle raw display
7979 T12 T^{12} Copy content Toggle raw display
8383 T12 T^{12} Copy content Toggle raw display
8989 T12 T^{12} Copy content Toggle raw display
9797 T12+8T6+64 T^{12} + 8T^{6} + 64 Copy content Toggle raw display
show more
show less