Properties

Label 1805.2.a.f
Level $1805$
Weight $2$
Character orbit 1805.a
Self dual yes
Analytic conductor $14.413$
Analytic rank $1$
Dimension $3$
CM no
Inner twists $1$

Related objects

Downloads

Learn more

Show commands: Magma / PariGP / SageMath

Newspace parameters

comment: Compute space of new eigenforms
 
[N,k,chi] = [1805,2,Mod(1,1805)]
 
mf = mfinit([N,k,chi],0)
 
lf = mfeigenbasis(mf)
 
from sage.modular.dirichlet import DirichletCharacter
 
H = DirichletGroup(1805, base_ring=CyclotomicField(2))
 
chi = DirichletCharacter(H, H._module([0, 0]))
 
N = Newforms(chi, 2, names="a")
 
//Please install CHIMP (https://github.com/edgarcosta/CHIMP) if you want to run this code
 
chi := DirichletCharacter("1805.1");
 
S:= CuspForms(chi, 2);
 
N := Newforms(S);
 
Level: \( N \) \(=\) \( 1805 = 5 \cdot 19^{2} \)
Weight: \( k \) \(=\) \( 2 \)
Character orbit: \([\chi]\) \(=\) 1805.a (trivial)

Newform invariants

comment: select newform
 
sage: f = N[0] # Warning: the index may be different
 
gp: f = lf[1] \\ Warning: the index may be different
 
Self dual: yes
Analytic conductor: \(14.4129975648\)
Analytic rank: \(1\)
Dimension: \(3\)
Coefficient field: 3.3.148.1
comment: defining polynomial
 
gp: f.mod \\ as an extension of the character field
 
Defining polynomial: \( x^{3} - x^{2} - 3x + 1 \) Copy content Toggle raw display
Coefficient ring: \(\Z[a_1, a_2]\)
Coefficient ring index: \( 1 \)
Twist minimal: no (minimal twist has level 95)
Fricke sign: \(+1\)
Sato-Tate group: $\mathrm{SU}(2)$

$q$-expansion

comment: q-expansion
 
sage: f.q_expansion() # note that sage often uses an isomorphic number field
 
gp: mfcoefs(f, 20)
 

Coefficients of the \(q\)-expansion are expressed in terms of a basis \(1,\beta_1,\beta_2\) for the coefficient ring described below. We also show the integral \(q\)-expansion of the trace form.

\(f(q)\) \(=\) \( q - \beta_1 q^{2} + (\beta_{2} + \beta_1 - 1) q^{3} + (\beta_{2} + \beta_1) q^{4} + q^{5} + ( - \beta_{2} - \beta_1 - 1) q^{6} + 2 \beta_{2} q^{7} + ( - \beta_{2} - 1) q^{8} + ( - 2 \beta_{2} + 1) q^{9}+ \cdots + (4 \beta_{2} + 2 \beta_1 - 6) q^{99}+O(q^{100}) \) Copy content Toggle raw display
\(\operatorname{Tr}(f)(q)\) \(=\) \( 3 q - q^{2} - 2 q^{3} + q^{4} + 3 q^{5} - 4 q^{6} - 3 q^{8} + 3 q^{9} - q^{10} - 8 q^{11} + 10 q^{12} - 8 q^{13} + 4 q^{14} - 2 q^{15} - 3 q^{16} + 2 q^{17} - 5 q^{18} + q^{20} + 12 q^{21} + 16 q^{22}+ \cdots - 16 q^{99}+O(q^{100}) \) Copy content Toggle raw display

Basis of coefficient ring in terms of a root \(\nu\) of \( x^{3} - x^{2} - 3x + 1 \) : Copy content Toggle raw display

\(\beta_{1}\)\(=\) \( \nu \) Copy content Toggle raw display
\(\beta_{2}\)\(=\) \( \nu^{2} - \nu - 2 \) Copy content Toggle raw display
\(\nu\)\(=\) \( \beta_1 \) Copy content Toggle raw display
\(\nu^{2}\)\(=\) \( \beta_{2} + \beta _1 + 2 \) Copy content Toggle raw display

Embeddings

For each embedding \(\iota_m\) of the coefficient field, the values \(\iota_m(a_n)\) are shown below.

For more information on an embedded modular form you can click on its label.

comment: embeddings in the coefficient field
 
gp: mfembed(f)
 
Label   \(\iota_m(\nu)\) \( a_{2} \) \( a_{3} \) \( a_{4} \) \( a_{5} \) \( a_{6} \) \( a_{7} \) \( a_{8} \) \( a_{9} \) \( a_{10} \)
1.1
2.17009
0.311108
−1.48119
−2.17009 1.70928 2.70928 1.00000 −3.70928 1.07838 −1.53919 −0.0783777 −2.17009
1.2 −0.311108 −2.90321 −1.90321 1.00000 0.903212 −4.42864 1.21432 5.42864 −0.311108
1.3 1.48119 −0.806063 0.193937 1.00000 −1.19394 3.35026 −2.67513 −2.35026 1.48119
\(n\): e.g. 2-40 or 990-1000
Significant digits:
Format:

Atkin-Lehner signs

\( p \) Sign
\(5\) \( -1 \)
\(19\) \( -1 \)

Inner twists

This newform does not admit any (nontrivial) inner twists.

Twists

       By twisting character orbit
Char Parity Ord Mult Type Twist Min Dim
1.a even 1 1 trivial 1805.2.a.f 3
5.b even 2 1 9025.2.a.bb 3
19.b odd 2 1 95.2.a.a 3
57.d even 2 1 855.2.a.i 3
76.d even 2 1 1520.2.a.p 3
95.d odd 2 1 475.2.a.f 3
95.g even 4 2 475.2.b.d 6
133.c even 2 1 4655.2.a.u 3
152.b even 2 1 6080.2.a.by 3
152.g odd 2 1 6080.2.a.bo 3
285.b even 2 1 4275.2.a.bk 3
380.d even 2 1 7600.2.a.bx 3
    
        By twisted newform orbit
Twist Min Dim Char Parity Ord Mult Type
95.2.a.a 3 19.b odd 2 1
475.2.a.f 3 95.d odd 2 1
475.2.b.d 6 95.g even 4 2
855.2.a.i 3 57.d even 2 1
1520.2.a.p 3 76.d even 2 1
1805.2.a.f 3 1.a even 1 1 trivial
4275.2.a.bk 3 285.b even 2 1
4655.2.a.u 3 133.c even 2 1
6080.2.a.bo 3 152.g odd 2 1
6080.2.a.by 3 152.b even 2 1
7600.2.a.bx 3 380.d even 2 1
9025.2.a.bb 3 5.b even 2 1

Hecke kernels

This newform subspace can be constructed as the intersection of the kernels of the following linear operators acting on \(S_{2}^{\mathrm{new}}(\Gamma_0(1805))\):

\( T_{2}^{3} + T_{2}^{2} - 3T_{2} - 1 \) Copy content Toggle raw display
\( T_{3}^{3} + 2T_{3}^{2} - 4T_{3} - 4 \) Copy content Toggle raw display

Hecke characteristic polynomials

$p$ $F_p(T)$
$2$ \( T^{3} + T^{2} - 3T - 1 \) Copy content Toggle raw display
$3$ \( T^{3} + 2 T^{2} + \cdots - 4 \) Copy content Toggle raw display
$5$ \( (T - 1)^{3} \) Copy content Toggle raw display
$7$ \( T^{3} - 16T + 16 \) Copy content Toggle raw display
$11$ \( T^{3} + 8 T^{2} + \cdots - 16 \) Copy content Toggle raw display
$13$ \( T^{3} + 8 T^{2} + \cdots + 4 \) Copy content Toggle raw display
$17$ \( T^{3} - 2 T^{2} + \cdots + 104 \) Copy content Toggle raw display
$19$ \( T^{3} \) Copy content Toggle raw display
$23$ \( T^{3} + 4 T^{2} + \cdots - 16 \) Copy content Toggle raw display
$29$ \( T^{3} - 10 T^{2} + \cdots + 40 \) Copy content Toggle raw display
$31$ \( T^{3} + 4 T^{2} + \cdots - 64 \) Copy content Toggle raw display
$37$ \( T^{3} + 20 T^{2} + \cdots + 244 \) Copy content Toggle raw display
$41$ \( T^{3} - 2 T^{2} + \cdots + 104 \) Copy content Toggle raw display
$43$ \( T^{3} + 4 T^{2} + \cdots - 592 \) Copy content Toggle raw display
$47$ \( T^{3} - 16T + 16 \) Copy content Toggle raw display
$53$ \( T^{3} + 16 T^{2} + \cdots + 92 \) Copy content Toggle raw display
$59$ \( T^{3} - 20 T^{2} + \cdots - 160 \) Copy content Toggle raw display
$61$ \( T^{3} + 2 T^{2} + \cdots + 232 \) Copy content Toggle raw display
$67$ \( T^{3} + 2 T^{2} + \cdots + 116 \) Copy content Toggle raw display
$71$ \( T^{3} - 4 T^{2} + \cdots + 64 \) Copy content Toggle raw display
$73$ \( T^{3} - 2 T^{2} + \cdots + 8 \) Copy content Toggle raw display
$79$ \( T^{3} - 192T + 160 \) Copy content Toggle raw display
$83$ \( T^{3} + 32 T^{2} + \cdots + 1072 \) Copy content Toggle raw display
$89$ \( T^{3} + 2 T^{2} + \cdots - 680 \) Copy content Toggle raw display
$97$ \( T^{3} + 20 T^{2} + \cdots - 1748 \) Copy content Toggle raw display
show more
show less