Properties

Label 1805.4.a.r
Level $1805$
Weight $4$
Character orbit 1805.a
Self dual yes
Analytic conductor $106.498$
Analytic rank $0$
Dimension $10$
CM no
Inner twists $1$

Related objects

Downloads

Learn more

Show commands: Magma / PariGP / SageMath

Newspace parameters

comment: Compute space of new eigenforms
 
[N,k,chi] = [1805,4,Mod(1,1805)]
 
mf = mfinit([N,k,chi],0)
 
lf = mfeigenbasis(mf)
 
from sage.modular.dirichlet import DirichletCharacter
 
H = DirichletGroup(1805, base_ring=CyclotomicField(2))
 
chi = DirichletCharacter(H, H._module([0, 0]))
 
N = Newforms(chi, 4, names="a")
 
//Please install CHIMP (https://github.com/edgarcosta/CHIMP) if you want to run this code
 
chi := DirichletCharacter("1805.1");
 
S:= CuspForms(chi, 4);
 
N := Newforms(S);
 
Level: \( N \) \(=\) \( 1805 = 5 \cdot 19^{2} \)
Weight: \( k \) \(=\) \( 4 \)
Character orbit: \([\chi]\) \(=\) 1805.a (trivial)

Newform invariants

comment: select newform
 
sage: f = N[0] # Warning: the index may be different
 
gp: f = lf[1] \\ Warning: the index may be different
 
Self dual: yes
Analytic conductor: \(106.498447560\)
Analytic rank: \(0\)
Dimension: \(10\)
Coefficient field: \(\mathbb{Q}[x]/(x^{10} - \cdots)\)
comment: defining polynomial
 
gp: f.mod \\ as an extension of the character field
 
Defining polynomial: \( x^{10} - 3 x^{9} - 57 x^{8} + 148 x^{7} + 1138 x^{6} - 2387 x^{5} - 9690 x^{4} + 14326 x^{3} + \cdots - 48336 \) Copy content Toggle raw display
Coefficient ring: \(\Z[a_1, a_2, a_3]\)
Coefficient ring index: \( 1 \)
Twist minimal: no (minimal twist has level 95)
Fricke sign: \(+1\)
Sato-Tate group: $\mathrm{SU}(2)$

$q$-expansion

comment: q-expansion
 
sage: f.q_expansion() # note that sage often uses an isomorphic number field
 
gp: mfcoefs(f, 20)
 

Coefficients of the \(q\)-expansion are expressed in terms of a basis \(1,\beta_1,\ldots,\beta_{9}\) for the coefficient ring described below. We also show the integral \(q\)-expansion of the trace form.

\(f(q)\) \(=\) \( q + \beta_1 q^{2} + \beta_{4} q^{3} + (\beta_{2} + 4) q^{4} - 5 q^{5} + ( - \beta_{5} + \beta_1 - 1) q^{6} + ( - \beta_{8} - \beta_1 + 1) q^{7} + (\beta_{4} + \beta_{3} + 3 \beta_1 + 3) q^{8} + ( - \beta_{9} - \beta_{6} + \beta_{4} + \cdots + 9) q^{9}+O(q^{10}) \) Copy content Toggle raw display \( q + \beta_1 q^{2} + \beta_{4} q^{3} + (\beta_{2} + 4) q^{4} - 5 q^{5} + ( - \beta_{5} + \beta_1 - 1) q^{6} + ( - \beta_{8} - \beta_1 + 1) q^{7} + (\beta_{4} + \beta_{3} + 3 \beta_1 + 3) q^{8} + ( - \beta_{9} - \beta_{6} + \beta_{4} + \cdots + 9) q^{9}+ \cdots + ( - 6 \beta_{9} - 14 \beta_{8} + \cdots - 215) q^{99}+O(q^{100}) \) Copy content Toggle raw display
\(\operatorname{Tr}(f)(q)\) \(=\) \( 10 q + 3 q^{2} + 5 q^{3} + 43 q^{4} - 50 q^{5} - 9 q^{6} + 3 q^{7} + 48 q^{8} + 97 q^{9}+O(q^{10}) \) Copy content Toggle raw display \( 10 q + 3 q^{2} + 5 q^{3} + 43 q^{4} - 50 q^{5} - 9 q^{6} + 3 q^{7} + 48 q^{8} + 97 q^{9} - 15 q^{10} - 18 q^{11} + 93 q^{12} - 14 q^{13} - 68 q^{14} - 25 q^{15} - 9 q^{16} + 144 q^{17} - 11 q^{18} - 215 q^{20} - 46 q^{21} + 136 q^{22} - 321 q^{23} + 416 q^{24} + 250 q^{25} - 23 q^{26} + 503 q^{27} - 130 q^{28} + 178 q^{29} + 45 q^{30} + 302 q^{31} + 202 q^{32} - 1099 q^{33} + 751 q^{34} - 15 q^{35} + 526 q^{36} - 387 q^{37} - 608 q^{39} - 240 q^{40} + 388 q^{41} - 143 q^{42} + 514 q^{43} + 1246 q^{44} - 485 q^{45} + 1825 q^{46} - 522 q^{47} - 4 q^{48} + 791 q^{49} + 75 q^{50} + 1080 q^{51} - 569 q^{52} + 681 q^{53} + 321 q^{54} + 90 q^{55} - 1592 q^{56} + 599 q^{58} + 891 q^{59} - 465 q^{60} - 1110 q^{61} + 1921 q^{62} + 727 q^{63} + 476 q^{64} + 70 q^{65} - 3312 q^{66} + 691 q^{67} - 114 q^{68} + 86 q^{69} + 340 q^{70} - 382 q^{71} + 2678 q^{72} + 797 q^{73} - 404 q^{74} + 125 q^{75} + 1195 q^{77} - 1000 q^{78} + 660 q^{79} + 45 q^{80} + 2454 q^{81} + 1155 q^{82} - 1013 q^{83} + 5378 q^{84} - 720 q^{85} - 858 q^{86} + 156 q^{87} - 49 q^{88} + 2957 q^{89} + 55 q^{90} + 3110 q^{91} - 98 q^{92} - 1500 q^{93} - 3187 q^{94} - 292 q^{96} + 2881 q^{97} - 4062 q^{98} - 2723 q^{99}+O(q^{100}) \) Copy content Toggle raw display

Basis of coefficient ring in terms of a root \(\nu\) of \( x^{10} - 3 x^{9} - 57 x^{8} + 148 x^{7} + 1138 x^{6} - 2387 x^{5} - 9690 x^{4} + 14326 x^{3} + \cdots - 48336 \) : Copy content Toggle raw display

\(\beta_{1}\)\(=\) \( \nu \) Copy content Toggle raw display
\(\beta_{2}\)\(=\) \( \nu^{2} - 12 \) Copy content Toggle raw display
\(\beta_{3}\)\(=\) \( ( - 213 \nu^{9} + 917 \nu^{8} + 10179 \nu^{7} - 42118 \nu^{6} - 147186 \nu^{5} + 588687 \nu^{4} + \cdots + 2462888 ) / 56200 \) Copy content Toggle raw display
\(\beta_{4}\)\(=\) \( ( 213 \nu^{9} - 917 \nu^{8} - 10179 \nu^{7} + 42118 \nu^{6} + 147186 \nu^{5} - 588687 \nu^{4} + \cdots - 2631488 ) / 56200 \) Copy content Toggle raw display
\(\beta_{5}\)\(=\) \( ( 139 \nu^{9} - 981 \nu^{8} - 5297 \nu^{7} + 47604 \nu^{6} + 40128 \nu^{5} - 728451 \nu^{4} + \cdots - 5175884 ) / 28100 \) Copy content Toggle raw display
\(\beta_{6}\)\(=\) \( ( - 59 \nu^{9} + 473 \nu^{8} + 2495 \nu^{7} - 23764 \nu^{6} - 27266 \nu^{5} + 376861 \nu^{4} + \cdots + 2747160 ) / 11240 \) Copy content Toggle raw display
\(\beta_{7}\)\(=\) \( ( 21 \nu^{9} - 35 \nu^{8} - 1150 \nu^{7} + 1481 \nu^{6} + 20721 \nu^{5} - 19127 \nu^{4} - 135326 \nu^{3} + \cdots - 90700 ) / 2810 \) Copy content Toggle raw display
\(\beta_{8}\)\(=\) \( ( 517 \nu^{9} - 2173 \nu^{8} - 24311 \nu^{7} + 102362 \nu^{6} + 331054 \nu^{5} - 1490303 \nu^{4} + \cdots - 8906992 ) / 56200 \) Copy content Toggle raw display
\(\beta_{9}\)\(=\) \( ( 633 \nu^{9} - 1617 \nu^{8} - 33179 \nu^{7} + 71738 \nu^{6} + 561606 \nu^{5} - 915027 \nu^{4} + \cdots + 1511712 ) / 56200 \) Copy content Toggle raw display
\(\nu\)\(=\) \( \beta_1 \) Copy content Toggle raw display
\(\nu^{2}\)\(=\) \( \beta_{2} + 12 \) Copy content Toggle raw display
\(\nu^{3}\)\(=\) \( \beta_{4} + \beta_{3} + 19\beta _1 + 3 \) Copy content Toggle raw display
\(\nu^{4}\)\(=\) \( \beta_{9} - \beta_{7} + \beta_{3} + 27\beta_{2} + 4\beta _1 + 221 \) Copy content Toggle raw display
\(\nu^{5}\)\(=\) \( 2\beta_{9} - 5\beta_{8} + \beta_{7} + 4\beta_{5} + 31\beta_{4} + 32\beta_{3} + 12\beta_{2} + 412\beta _1 + 116 \) Copy content Toggle raw display
\(\nu^{6}\)\(=\) \( 41 \beta_{9} + 2 \beta_{8} - 33 \beta_{7} - 4 \beta_{6} + 6 \beta_{5} - 31 \beta_{4} + 44 \beta_{3} + \cdots + 4796 \) Copy content Toggle raw display
\(\nu^{7}\)\(=\) \( 99 \beta_{9} - 205 \beta_{8} + 36 \beta_{7} + 20 \beta_{6} + 210 \beta_{5} + 754 \beta_{4} + 868 \beta_{3} + \cdots + 4088 \) Copy content Toggle raw display
\(\nu^{8}\)\(=\) \( 1312 \beta_{9} + 115 \beta_{8} - 855 \beta_{7} - 140 \beta_{6} + 396 \beta_{5} - 1714 \beta_{4} + \cdots + 110871 \) Copy content Toggle raw display
\(\nu^{9}\)\(=\) \( 3654 \beta_{9} - 6242 \beta_{8} + 1110 \beta_{7} + 1144 \beta_{6} + 7790 \beta_{5} + 16476 \beta_{4} + \cdots + 132594 \) Copy content Toggle raw display

Embeddings

For each embedding \(\iota_m\) of the coefficient field, the values \(\iota_m(a_n)\) are shown below.

For more information on an embedded modular form you can click on its label.

comment: embeddings in the coefficient field
 
gp: mfembed(f)
 
Label   \(\iota_m(\nu)\) \( a_{2} \) \( a_{3} \) \( a_{4} \) \( a_{5} \) \( a_{6} \) \( a_{7} \) \( a_{8} \) \( a_{9} \) \( a_{10} \)
1.1
−4.80335
−4.19346
−2.37046
−2.19968
−1.15104
1.87520
2.71312
3.18057
4.78143
5.16766
−4.80335 −3.28547 15.0722 −5.00000 15.7813 −11.3286 −33.9701 −16.2057 24.0167
1.2 −4.19346 7.45528 9.58510 −5.00000 −31.2634 33.0991 −6.64705 28.5812 20.9673
1.3 −2.37046 −7.40326 −2.38094 −5.00000 17.5491 9.37372 24.6076 27.8082 11.8523
1.4 −2.19968 8.75512 −3.16141 −5.00000 −19.2584 −33.5680 24.5515 49.6521 10.9984
1.5 −1.15104 0.368561 −6.67511 −5.00000 −0.424227 −2.58808 16.8916 −26.8642 5.75519
1.6 1.87520 1.27242 −4.48363 −5.00000 2.38604 29.8625 −23.4093 −25.3809 −9.37599
1.7 2.71312 −8.60185 −0.638955 −5.00000 −23.3379 10.4999 −23.4386 46.9918 −13.5656
1.8 3.18057 0.0718266 2.11603 −5.00000 0.228450 −23.3899 −18.7144 −26.9948 −15.9029
1.9 4.78143 9.23102 14.8621 −5.00000 44.1375 5.17574 32.8105 58.2118 −23.9071
1.10 5.16766 −2.86365 18.7047 −5.00000 −14.7984 −14.1365 55.3182 −18.7995 −25.8383
\(n\): e.g. 2-40 or 990-1000
Embeddings: e.g. 1-3 or 1.10
Significant digits:
Format:

Atkin-Lehner signs

\( p \) Sign
\(5\) \( +1 \)
\(19\) \( +1 \)

Inner twists

This newform does not admit any (nontrivial) inner twists.

Twists

       By twisting character orbit
Char Parity Ord Mult Type Twist Min Dim
1.a even 1 1 trivial 1805.4.a.r 10
19.b odd 2 1 1805.4.a.p 10
19.c even 3 2 95.4.e.c 20
    
        By twisted newform orbit
Twist Min Dim Char Parity Ord Mult Type
95.4.e.c 20 19.c even 3 2
1805.4.a.p 10 19.b odd 2 1
1805.4.a.r 10 1.a even 1 1 trivial

Hecke kernels

This newform subspace can be constructed as the intersection of the kernels of the following linear operators acting on \(S_{4}^{\mathrm{new}}(\Gamma_0(1805))\):

\( T_{2}^{10} - 3 T_{2}^{9} - 57 T_{2}^{8} + 148 T_{2}^{7} + 1138 T_{2}^{6} - 2387 T_{2}^{5} - 9690 T_{2}^{4} + \cdots - 48336 \) Copy content Toggle raw display
\( T_{3}^{10} - 5 T_{3}^{9} - 171 T_{3}^{8} + 639 T_{3}^{7} + 9634 T_{3}^{6} - 19528 T_{3}^{5} + \cdots + 12160 \) Copy content Toggle raw display

Hecke characteristic polynomials

$p$ $F_p(T)$
$2$ \( T^{10} - 3 T^{9} + \cdots - 48336 \) Copy content Toggle raw display
$3$ \( T^{10} - 5 T^{9} + \cdots + 12160 \) Copy content Toggle raw display
$5$ \( (T + 5)^{10} \) Copy content Toggle raw display
$7$ \( T^{10} + \cdots - 163855792416 \) Copy content Toggle raw display
$11$ \( T^{10} + \cdots - 20\!\cdots\!39 \) Copy content Toggle raw display
$13$ \( T^{10} + \cdots + 6382352340208 \) Copy content Toggle raw display
$17$ \( T^{10} + \cdots - 14\!\cdots\!92 \) Copy content Toggle raw display
$19$ \( T^{10} \) Copy content Toggle raw display
$23$ \( T^{10} + \cdots + 36\!\cdots\!52 \) Copy content Toggle raw display
$29$ \( T^{10} + \cdots + 17\!\cdots\!16 \) Copy content Toggle raw display
$31$ \( T^{10} + \cdots + 61\!\cdots\!92 \) Copy content Toggle raw display
$37$ \( T^{10} + \cdots + 38\!\cdots\!48 \) Copy content Toggle raw display
$41$ \( T^{10} + \cdots - 11\!\cdots\!12 \) Copy content Toggle raw display
$43$ \( T^{10} + \cdots - 11\!\cdots\!56 \) Copy content Toggle raw display
$47$ \( T^{10} + \cdots - 61\!\cdots\!96 \) Copy content Toggle raw display
$53$ \( T^{10} + \cdots - 16\!\cdots\!76 \) Copy content Toggle raw display
$59$ \( T^{10} + \cdots - 22\!\cdots\!00 \) Copy content Toggle raw display
$61$ \( T^{10} + \cdots - 41\!\cdots\!24 \) Copy content Toggle raw display
$67$ \( T^{10} + \cdots + 25\!\cdots\!20 \) Copy content Toggle raw display
$71$ \( T^{10} + \cdots + 94\!\cdots\!76 \) Copy content Toggle raw display
$73$ \( T^{10} + \cdots - 14\!\cdots\!80 \) Copy content Toggle raw display
$79$ \( T^{10} + \cdots - 23\!\cdots\!04 \) Copy content Toggle raw display
$83$ \( T^{10} + \cdots - 24\!\cdots\!28 \) Copy content Toggle raw display
$89$ \( T^{10} + \cdots - 28\!\cdots\!36 \) Copy content Toggle raw display
$97$ \( T^{10} + \cdots - 20\!\cdots\!68 \) Copy content Toggle raw display
show more
show less