Properties

Label 1815.4.a.bb
Level 18151815
Weight 44
Character orbit 1815.a
Self dual yes
Analytic conductor 107.088107.088
Analytic rank 00
Dimension 66
Inner twists 22

Related objects

Downloads

Learn more

Show commands: Magma / PariGP / SageMath

Newspace parameters

comment: Compute space of new eigenforms
 
[N,k,chi] = [1815,4,Mod(1,1815)]
 
mf = mfinit([N,k,chi],0)
 
lf = mfeigenbasis(mf)
 
from sage.modular.dirichlet import DirichletCharacter
 
H = DirichletGroup(1815, base_ring=CyclotomicField(2))
 
chi = DirichletCharacter(H, H._module([0, 0, 0]))
 
N = Newforms(chi, 4, names="a")
 
//Please install CHIMP (https://github.com/edgarcosta/CHIMP) if you want to run this code
 
chi := DirichletCharacter("1815.1");
 
S:= CuspForms(chi, 4);
 
N := Newforms(S);
 
Level: N N == 1815=35112 1815 = 3 \cdot 5 \cdot 11^{2}
Weight: k k == 4 4
Character orbit: [χ][\chi] == 1815.a (trivial)

Newform invariants

comment: select newform
 
sage: f = N[0] # Warning: the index may be different
 
gp: f = lf[1] \\ Warning: the index may be different
 
Self dual: yes
Analytic conductor: 107.088466660107.088466660
Analytic rank: 00
Dimension: 66
Coefficient field: Q[x]/(x6)\mathbb{Q}[x]/(x^{6} - \cdots)
comment: defining polynomial
 
gp: f.mod \\ as an extension of the character field
 
Defining polynomial: x644x4+495x21200 x^{6} - 44x^{4} + 495x^{2} - 1200 Copy content Toggle raw display
Coefficient ring: Z[a1,,a7]\Z[a_1, \ldots, a_{7}]
Coefficient ring index: 245 2^{4}\cdot 5
Twist minimal: yes
Fricke sign: +1+1
Sato-Tate group: SU(2)\mathrm{SU}(2)

qq-expansion

comment: q-expansion
 
sage: f.q_expansion() # note that sage often uses an isomorphic number field
 
gp: mfcoefs(f, 20)
 

Coefficients of the qq-expansion are expressed in terms of a basis 1,β1,,β51,\beta_1,\ldots,\beta_{5} for the coefficient ring described below. We also show the integral qq-expansion of the trace form.

f(q)f(q) == q+β1q2+3q3+(β2+7)q4+5q5+3β1q6+(β3+β1)q7+(β4+β3+6β1)q8+9q9+5β1q10+(3β2+21)q12++(26β486β345β1)q98+O(q100) q + \beta_1 q^{2} + 3 q^{3} + (\beta_{2} + 7) q^{4} + 5 q^{5} + 3 \beta_1 q^{6} + ( - \beta_{3} + \beta_1) q^{7} + (\beta_{4} + \beta_{3} + 6 \beta_1) q^{8} + 9 q^{9} + 5 \beta_1 q^{10} + (3 \beta_{2} + 21) q^{12}+ \cdots + ( - 26 \beta_{4} - 86 \beta_{3} - 45 \beta_1) q^{98}+O(q^{100}) Copy content Toggle raw display
Tr(f)(q)\operatorname{Tr}(f)(q) == 6q+18q3+40q4+30q5+54q9+120q12+116q14+90q15+164q16+200q20+56q23+150q25+292q26+162q27+576q3192q34+360q36+332q37++2812q97+O(q100) 6 q + 18 q^{3} + 40 q^{4} + 30 q^{5} + 54 q^{9} + 120 q^{12} + 116 q^{14} + 90 q^{15} + 164 q^{16} + 200 q^{20} + 56 q^{23} + 150 q^{25} + 292 q^{26} + 162 q^{27} + 576 q^{31} - 92 q^{34} + 360 q^{36} + 332 q^{37}+ \cdots + 2812 q^{97}+O(q^{100}) Copy content Toggle raw display

Basis of coefficient ring in terms of a root ν\nu of x644x4+495x21200 x^{6} - 44x^{4} + 495x^{2} - 1200 : Copy content Toggle raw display

β1\beta_{1}== ν \nu Copy content Toggle raw display
β2\beta_{2}== ν215 \nu^{2} - 15 Copy content Toggle raw display
β3\beta_{3}== (ν534ν3+195ν)/10 ( \nu^{5} - 34\nu^{3} + 195\nu ) / 10 Copy content Toggle raw display
β4\beta_{4}== (ν5+44ν3415ν)/10 ( -\nu^{5} + 44\nu^{3} - 415\nu ) / 10 Copy content Toggle raw display
β5\beta_{5}== ν432ν2+154 \nu^{4} - 32\nu^{2} + 154 Copy content Toggle raw display
ν\nu== β1 \beta_1 Copy content Toggle raw display
ν2\nu^{2}== β2+15 \beta_{2} + 15 Copy content Toggle raw display
ν3\nu^{3}== β4+β3+22β1 \beta_{4} + \beta_{3} + 22\beta_1 Copy content Toggle raw display
ν4\nu^{4}== β5+32β2+326 \beta_{5} + 32\beta_{2} + 326 Copy content Toggle raw display
ν5\nu^{5}== 34β4+44β3+553β1 34\beta_{4} + 44\beta_{3} + 553\beta_1 Copy content Toggle raw display

Embeddings

For each embedding ιm\iota_m of the coefficient field, the values ιm(an)\iota_m(a_n) are shown below.

For more information on an embedded modular form you can click on its label.

comment: embeddings in the coefficient field
 
gp: mfembed(f)
 
Label   ιm(ν)\iota_m(\nu) a2 a_{2} a3 a_{3} a4 a_{4} a5 a_{5} a6 a_{6} a7 a_{7} a8 a_{8} a9 a_{9} a10 a_{10}
1.1
−5.26184
−3.60164
−1.82790
1.82790
3.60164
5.26184
−5.26184 3.00000 19.6870 5.00000 −15.7855 5.37309 −61.4950 9.00000 −26.3092
1.2 −3.60164 3.00000 4.97180 5.00000 −10.8049 −31.6129 10.9065 9.00000 −18.0082
1.3 −1.82790 3.00000 −4.65878 5.00000 −5.48370 15.0916 23.1390 9.00000 −9.13951
1.4 1.82790 3.00000 −4.65878 5.00000 5.48370 −15.0916 −23.1390 9.00000 9.13951
1.5 3.60164 3.00000 4.97180 5.00000 10.8049 31.6129 −10.9065 9.00000 18.0082
1.6 5.26184 3.00000 19.6870 5.00000 15.7855 −5.37309 61.4950 9.00000 26.3092
nn: e.g. 2-40 or 990-1000
Embeddings: e.g. 1-3 or 1.6
Significant digits:
Format:

Atkin-Lehner signs

p p Sign
33 1 -1
55 1 -1
1111 +1 +1

Inner twists

Char Parity Ord Mult Type
1.a even 1 1 trivial
11.b odd 2 1 inner

Twists

       By twisting character orbit
Char Parity Ord Mult Type Twist Min Dim
1.a even 1 1 trivial 1815.4.a.bb 6
11.b odd 2 1 inner 1815.4.a.bb 6
    
        By twisted newform orbit
Twist Min Dim Char Parity Ord Mult Type
1815.4.a.bb 6 1.a even 1 1 trivial
1815.4.a.bb 6 11.b odd 2 1 inner

Hecke kernels

This newform subspace can be constructed as the intersection of the kernels of the following linear operators acting on S4new(Γ0(1815))S_{4}^{\mathrm{new}}(\Gamma_0(1815)):

T2644T24+495T221200 T_{2}^{6} - 44T_{2}^{4} + 495T_{2}^{2} - 1200 Copy content Toggle raw display
T761256T74+263040T726571200 T_{7}^{6} - 1256T_{7}^{4} + 263040T_{7}^{2} - 6571200 Copy content Toggle raw display

Hecke characteristic polynomials

pp Fp(T)F_p(T)
22 T644T4+1200 T^{6} - 44 T^{4} + \cdots - 1200 Copy content Toggle raw display
33 (T3)6 (T - 3)^{6} Copy content Toggle raw display
55 (T5)6 (T - 5)^{6} Copy content Toggle raw display
77 T61256T4+6571200 T^{6} - 1256 T^{4} + \cdots - 6571200 Copy content Toggle raw display
1111 T6 T^{6} Copy content Toggle raw display
1313 T61664T4+5227200 T^{6} - 1664 T^{4} + \cdots - 5227200 Copy content Toggle raw display
1717 T6+31678852800 T^{6} + \cdots - 31678852800 Copy content Toggle raw display
1919 T6+6481171200 T^{6} + \cdots - 6481171200 Copy content Toggle raw display
2323 (T328T2++1938432)2 (T^{3} - 28 T^{2} + \cdots + 1938432)^{2} Copy content Toggle raw display
2929 T6+2099899468800 T^{6} + \cdots - 2099899468800 Copy content Toggle raw display
3131 (T3288T2++761600)2 (T^{3} - 288 T^{2} + \cdots + 761600)^{2} Copy content Toggle raw display
3737 (T3166T2++3002872)2 (T^{3} - 166 T^{2} + \cdots + 3002872)^{2} Copy content Toggle raw display
4141 T6+12226636800 T^{6} + \cdots - 12226636800 Copy content Toggle raw display
4343 T6+107322824836800 T^{6} + \cdots - 107322824836800 Copy content Toggle raw display
4747 (T348T2++13192704)2 (T^{3} - 48 T^{2} + \cdots + 13192704)^{2} Copy content Toggle raw display
5353 (T3154T2+13663032)2 (T^{3} - 154 T^{2} + \cdots - 13663032)^{2} Copy content Toggle raw display
5959 (T31040T2++92904000)2 (T^{3} - 1040 T^{2} + \cdots + 92904000)^{2} Copy content Toggle raw display
6161 T6+49478086963200 T^{6} + \cdots - 49478086963200 Copy content Toggle raw display
6767 (T3+584T2+538988864)2 (T^{3} + 584 T^{2} + \cdots - 538988864)^{2} Copy content Toggle raw display
7171 (T3532T2+101340672)2 (T^{3} - 532 T^{2} + \cdots - 101340672)^{2} Copy content Toggle raw display
7373 T6+86 ⁣ ⁣00 T^{6} + \cdots - 86\!\cdots\!00 Copy content Toggle raw display
7979 T6+17 ⁣ ⁣00 T^{6} + \cdots - 17\!\cdots\!00 Copy content Toggle raw display
8383 T6+12 ⁣ ⁣00 T^{6} + \cdots - 12\!\cdots\!00 Copy content Toggle raw display
8989 (T3+342T2+10996920)2 (T^{3} + 342 T^{2} + \cdots - 10996920)^{2} Copy content Toggle raw display
9797 (T31406T2++927003032)2 (T^{3} - 1406 T^{2} + \cdots + 927003032)^{2} Copy content Toggle raw display
show more
show less