Newspace parameters
comment: Compute space of new eigenforms
[N,k,chi] = [1815,4,Mod(1,1815)]
mf = mfinit([N,k,chi],0)
lf = mfeigenbasis(mf)
from sage.modular.dirichlet import DirichletCharacter
H = DirichletGroup(1815, base_ring=CyclotomicField(2))
chi = DirichletCharacter(H, H._module([0, 0, 0]))
N = Newforms(chi, 4, names="a")
//Please install CHIMP (https://github.com/edgarcosta/CHIMP) if you want to run this code
chi := DirichletCharacter("1815.1");
S:= CuspForms(chi, 4);
N := Newforms(S);
Level: | |||
Weight: | |||
Character orbit: | 1815.a (trivial) |
Newform invariants
comment: select newform
sage: f = N[0] # Warning: the index may be different
gp: f = lf[1] \\ Warning: the index may be different
Self dual: | yes |
Analytic conductor: | |
Analytic rank: | |
Dimension: | |
Coefficient field: | |
comment: defining polynomial
gp: f.mod \\ as an extension of the character field
|
|
Defining polynomial: |
|
Coefficient ring: | |
Coefficient ring index: | |
Twist minimal: | yes |
Fricke sign: | |
Sato-Tate group: |
-expansion
comment: q-expansion
sage: f.q_expansion() # note that sage often uses an isomorphic number field
gp: mfcoefs(f, 20)
Coefficients of the -expansion are expressed in terms of a basis for the coefficient ring described below. We also show the integral -expansion of the trace form.
Basis of coefficient ring in terms of a root of
:
Embeddings
For each embedding of the coefficient field, the values are shown below.
For more information on an embedded modular form you can click on its label.
comment: embeddings in the coefficient field
gp: mfembed(f)
Label | ||||||||||||||||||||||||||||||||||||||||||||||
---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
1.1 |
|
−5.26184 | 3.00000 | 19.6870 | 5.00000 | −15.7855 | 5.37309 | −61.4950 | 9.00000 | −26.3092 | ||||||||||||||||||||||||||||||||||||
1.2 | −3.60164 | 3.00000 | 4.97180 | 5.00000 | −10.8049 | −31.6129 | 10.9065 | 9.00000 | −18.0082 | |||||||||||||||||||||||||||||||||||||
1.3 | −1.82790 | 3.00000 | −4.65878 | 5.00000 | −5.48370 | 15.0916 | 23.1390 | 9.00000 | −9.13951 | |||||||||||||||||||||||||||||||||||||
1.4 | 1.82790 | 3.00000 | −4.65878 | 5.00000 | 5.48370 | −15.0916 | −23.1390 | 9.00000 | 9.13951 | |||||||||||||||||||||||||||||||||||||
1.5 | 3.60164 | 3.00000 | 4.97180 | 5.00000 | 10.8049 | 31.6129 | −10.9065 | 9.00000 | 18.0082 | |||||||||||||||||||||||||||||||||||||
1.6 | 5.26184 | 3.00000 | 19.6870 | 5.00000 | 15.7855 | −5.37309 | 61.4950 | 9.00000 | 26.3092 | |||||||||||||||||||||||||||||||||||||
Atkin-Lehner signs
Sign | |
---|---|
Inner twists
Char | Parity | Ord | Mult | Type |
---|---|---|---|---|
1.a | even | 1 | 1 | trivial |
11.b | odd | 2 | 1 | inner |
Twists
By twisting character orbit | |||||||
---|---|---|---|---|---|---|---|
Char | Parity | Ord | Mult | Type | Twist | Min | Dim |
1.a | even | 1 | 1 | trivial | 1815.4.a.bb | ✓ | 6 |
11.b | odd | 2 | 1 | inner | 1815.4.a.bb | ✓ | 6 |
By twisted newform orbit | |||||||
---|---|---|---|---|---|---|---|
Twist | Min | Dim | Char | Parity | Ord | Mult | Type |
1815.4.a.bb | ✓ | 6 | 1.a | even | 1 | 1 | trivial |
1815.4.a.bb | ✓ | 6 | 11.b | odd | 2 | 1 | inner |
Hecke kernels
This newform subspace can be constructed as the intersection of the kernels of the following linear operators acting on :
|
|