Properties

Label 1815.4.a.s
Level $1815$
Weight $4$
Character orbit 1815.a
Self dual yes
Analytic conductor $107.088$
Analytic rank $1$
Dimension $3$
CM no
Inner twists $1$

Related objects

Downloads

Learn more

Show commands: Magma / PariGP / SageMath

Newspace parameters

comment: Compute space of new eigenforms
 
[N,k,chi] = [1815,4,Mod(1,1815)]
 
mf = mfinit([N,k,chi],0)
 
lf = mfeigenbasis(mf)
 
from sage.modular.dirichlet import DirichletCharacter
 
H = DirichletGroup(1815, base_ring=CyclotomicField(2))
 
chi = DirichletCharacter(H, H._module([0, 0, 0]))
 
N = Newforms(chi, 4, names="a")
 
//Please install CHIMP (https://github.com/edgarcosta/CHIMP) if you want to run this code
 
chi := DirichletCharacter("1815.1");
 
S:= CuspForms(chi, 4);
 
N := Newforms(S);
 
Level: \( N \) \(=\) \( 1815 = 3 \cdot 5 \cdot 11^{2} \)
Weight: \( k \) \(=\) \( 4 \)
Character orbit: \([\chi]\) \(=\) 1815.a (trivial)

Newform invariants

comment: select newform
 
sage: f = N[0] # Warning: the index may be different
 
gp: f = lf[1] \\ Warning: the index may be different
 
Self dual: yes
Analytic conductor: \(107.088466660\)
Analytic rank: \(1\)
Dimension: \(3\)
Coefficient field: 3.3.23612.1
comment: defining polynomial
 
gp: f.mod \\ as an extension of the character field
 
Defining polynomial: \( x^{3} - x^{2} - 20x + 26 \) Copy content Toggle raw display
Coefficient ring: \(\Z[a_1, a_2]\)
Coefficient ring index: \( 1 \)
Twist minimal: no (minimal twist has level 165)
Fricke sign: \(-1\)
Sato-Tate group: $\mathrm{SU}(2)$

$q$-expansion

comment: q-expansion
 
sage: f.q_expansion() # note that sage often uses an isomorphic number field
 
gp: mfcoefs(f, 20)
 

Coefficients of the \(q\)-expansion are expressed in terms of a basis \(1,\beta_1,\beta_2\) for the coefficient ring described below. We also show the integral \(q\)-expansion of the trace form.

\(f(q)\) \(=\) \( q + (\beta_1 + 1) q^{2} - 3 q^{3} + (\beta_{2} + \beta_1 + 7) q^{4} - 5 q^{5} + ( - 3 \beta_1 - 3) q^{6} + (2 \beta_{2} - 2 \beta_1 + 2) q^{7} + (4 \beta_{2} + 3 \beta_1 + 15) q^{8} + 9 q^{9} + ( - 5 \beta_1 - 5) q^{10}+ \cdots + ( - 64 \beta_{2} - 131 \beta_1 - 147) q^{98}+O(q^{100}) \) Copy content Toggle raw display
\(\operatorname{Tr}(f)(q)\) \(=\) \( 3 q + 4 q^{2} - 9 q^{3} + 22 q^{4} - 15 q^{5} - 12 q^{6} + 4 q^{7} + 48 q^{8} + 27 q^{9} - 20 q^{10} - 66 q^{12} - 56 q^{14} + 45 q^{15} + 50 q^{16} + 218 q^{17} + 36 q^{18} - 146 q^{19} - 110 q^{20} - 12 q^{21}+ \cdots - 572 q^{98}+O(q^{100}) \) Copy content Toggle raw display

Basis of coefficient ring in terms of a root \(\nu\) of \( x^{3} - x^{2} - 20x + 26 \) : Copy content Toggle raw display

\(\beta_{1}\)\(=\) \( \nu \) Copy content Toggle raw display
\(\beta_{2}\)\(=\) \( \nu^{2} + \nu - 14 \) Copy content Toggle raw display
\(\nu\)\(=\) \( \beta_1 \) Copy content Toggle raw display
\(\nu^{2}\)\(=\) \( \beta_{2} - \beta _1 + 14 \) Copy content Toggle raw display

Embeddings

For each embedding \(\iota_m\) of the coefficient field, the values \(\iota_m(a_n)\) are shown below.

For more information on an embedded modular form you can click on its label.

comment: embeddings in the coefficient field
 
gp: mfembed(f)
 
Label   \(\iota_m(\nu)\) \( a_{2} \) \( a_{3} \) \( a_{4} \) \( a_{5} \) \( a_{6} \) \( a_{7} \) \( a_{8} \) \( a_{9} \) \( a_{10} \)
1.1
−4.59056
1.32906
4.26150
−3.59056 −3.00000 4.89212 −5.00000 10.7717 16.1465 11.1590 9.00000 17.9528
1.2 2.32906 −3.00000 −2.57547 −5.00000 −6.98719 −22.4672 −24.6309 9.00000 −11.6453
1.3 5.26150 −3.00000 19.6833 −5.00000 −15.7845 10.3207 61.4719 9.00000 −26.3075
\(n\): e.g. 2-40 or 990-1000
Significant digits:
Format:

Atkin-Lehner signs

\( p \) Sign
\(3\) \( +1 \)
\(5\) \( +1 \)
\(11\) \( -1 \)

Inner twists

This newform does not admit any (nontrivial) inner twists.

Twists

       By twisting character orbit
Char Parity Ord Mult Type Twist Min Dim
1.a even 1 1 trivial 1815.4.a.s 3
11.b odd 2 1 165.4.a.d 3
33.d even 2 1 495.4.a.l 3
55.d odd 2 1 825.4.a.s 3
55.e even 4 2 825.4.c.l 6
165.d even 2 1 2475.4.a.s 3
    
        By twisted newform orbit
Twist Min Dim Char Parity Ord Mult Type
165.4.a.d 3 11.b odd 2 1
495.4.a.l 3 33.d even 2 1
825.4.a.s 3 55.d odd 2 1
825.4.c.l 6 55.e even 4 2
1815.4.a.s 3 1.a even 1 1 trivial
2475.4.a.s 3 165.d even 2 1

Hecke kernels

This newform subspace can be constructed as the intersection of the kernels of the following linear operators acting on \(S_{4}^{\mathrm{new}}(\Gamma_0(1815))\):

\( T_{2}^{3} - 4T_{2}^{2} - 15T_{2} + 44 \) Copy content Toggle raw display
\( T_{7}^{3} - 4T_{7}^{2} - 428T_{7} + 3744 \) Copy content Toggle raw display

Hecke characteristic polynomials

$p$ $F_p(T)$
$2$ \( T^{3} - 4 T^{2} + \cdots + 44 \) Copy content Toggle raw display
$3$ \( (T + 3)^{3} \) Copy content Toggle raw display
$5$ \( (T + 5)^{3} \) Copy content Toggle raw display
$7$ \( T^{3} - 4 T^{2} + \cdots + 3744 \) Copy content Toggle raw display
$11$ \( T^{3} \) Copy content Toggle raw display
$13$ \( T^{3} - 3560T + 34144 \) Copy content Toggle raw display
$17$ \( T^{3} - 218 T^{2} + \cdots + 235104 \) Copy content Toggle raw display
$19$ \( T^{3} + 146 T^{2} + \cdots + 30960 \) Copy content Toggle raw display
$23$ \( T^{3} + 200 T^{2} + \cdots + 1664 \) Copy content Toggle raw display
$29$ \( T^{3} + 68 T^{2} + \cdots - 3163056 \) Copy content Toggle raw display
$31$ \( T^{3} + 68 T^{2} + \cdots - 1812096 \) Copy content Toggle raw display
$37$ \( T^{3} + 390 T^{2} + \cdots + 618952 \) Copy content Toggle raw display
$41$ \( T^{3} - 196 T^{2} + \cdots + 4364208 \) Copy content Toggle raw display
$43$ \( T^{3} - 524 T^{2} + \cdots + 31273920 \) Copy content Toggle raw display
$47$ \( T^{3} + 60 T^{2} + \cdots - 20966976 \) Copy content Toggle raw display
$53$ \( T^{3} + 158 T^{2} + \cdots + 39574952 \) Copy content Toggle raw display
$59$ \( T^{3} + 1044 T^{2} + \cdots - 84227264 \) Copy content Toggle raw display
$61$ \( T^{3} + 642 T^{2} + \cdots - 22757384 \) Copy content Toggle raw display
$67$ \( T^{3} + 236 T^{2} + \cdots + 87537664 \) Copy content Toggle raw display
$71$ \( T^{3} + 544 T^{2} + \cdots + 6553600 \) Copy content Toggle raw display
$73$ \( T^{3} + 900 T^{2} + \cdots + 5609344 \) Copy content Toggle raw display
$79$ \( T^{3} - 1586 T^{2} + \cdots + 14694992 \) Copy content Toggle raw display
$83$ \( T^{3} - 1582 T^{2} + \cdots + 924645384 \) Copy content Toggle raw display
$89$ \( T^{3} + 2122 T^{2} + \cdots + 293444632 \) Copy content Toggle raw display
$97$ \( T^{3} - 618 T^{2} + \cdots - 223543736 \) Copy content Toggle raw display
show more
show less