Newspace parameters
comment: Compute space of new eigenforms
[N,k,chi] = [182,2,Mod(9,182)]
mf = mfinit([N,k,chi],0)
lf = mfeigenbasis(mf)
from sage.modular.dirichlet import DirichletCharacter
H = DirichletGroup(182, base_ring=CyclotomicField(6))
chi = DirichletCharacter(H, H._module([2, 4]))
N = Newforms(chi, 2, names="a")
//Please install CHIMP (https://github.com/edgarcosta/CHIMP) if you want to run this code
chi := DirichletCharacter("182.9");
S:= CuspForms(chi, 2);
N := Newforms(S);
Level: | |||
Weight: | |||
Character orbit: | 182.h (of order , degree , minimal) |
Newform invariants
comment: select newform
sage: f = N[0] # Warning: the index may be different
gp: f = lf[1] \\ Warning: the index may be different
Self dual: | no |
Analytic conductor: | |
Analytic rank: | |
Dimension: | |
Relative dimension: | over |
Coefficient field: | 10.0.23207289578928.1 |
comment: defining polynomial
gp: f.mod \\ as an extension of the character field
|
|
Defining polynomial: |
|
Coefficient ring: | |
Coefficient ring index: | |
Twist minimal: | yes |
Sato-Tate group: |
-expansion
comment: q-expansion
sage: f.q_expansion() # note that sage often uses an isomorphic number field
gp: mfcoefs(f, 20)
Coefficients of the -expansion are expressed in terms of a basis for the coefficient ring described below. We also show the integral -expansion of the trace form.
Basis of coefficient ring in terms of a root of
:
Character values
We give the values of on generators for .
Embeddings
For each embedding of the coefficient field, the values are shown below.
For more information on an embedded modular form you can click on its label.
comment: embeddings in the coefficient field
gp: mfembed(f)
Label | ||||||||||||||||||||||||||||||||||||||||||||||||||||||||||
---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
9.1 |
|
−0.500000 | − | 0.866025i | −2.39949 | −0.500000 | + | 0.866025i | −0.561520 | + | 0.972581i | 1.19975 | + | 2.07802i | 2.64005 | + | 0.173642i | 1.00000 | 2.75756 | 1.12304 | ||||||||||||||||||||||||||||||||||||||
9.2 | −0.500000 | − | 0.866025i | −1.44440 | −0.500000 | + | 0.866025i | 0.451759 | − | 0.782469i | 0.722201 | + | 1.25089i | −0.686411 | − | 2.55516i | 1.00000 | −0.913706 | −0.903518 | |||||||||||||||||||||||||||||||||||||||
9.3 | −0.500000 | − | 0.866025i | 0.160199 | −0.500000 | + | 0.866025i | −1.66520 | + | 2.88422i | −0.0800993 | − | 0.138736i | −0.402064 | + | 2.61502i | 1.00000 | −2.97434 | 3.33041 | |||||||||||||||||||||||||||||||||||||||
9.4 | −0.500000 | − | 0.866025i | 2.05726 | −0.500000 | + | 0.866025i | 1.69274 | − | 2.93192i | −1.02863 | − | 1.78164i | −2.60522 | + | 0.461340i | 1.00000 | 1.23231 | −3.38549 | |||||||||||||||||||||||||||||||||||||||
9.5 | −0.500000 | − | 0.866025i | 2.62644 | −0.500000 | + | 0.866025i | −0.917780 | + | 1.58964i | −1.31322 | − | 2.27456i | 1.05365 | − | 2.42690i | 1.00000 | 3.89817 | 1.83556 | |||||||||||||||||||||||||||||||||||||||
81.1 | −0.500000 | + | 0.866025i | −2.39949 | −0.500000 | − | 0.866025i | −0.561520 | − | 0.972581i | 1.19975 | − | 2.07802i | 2.64005 | − | 0.173642i | 1.00000 | 2.75756 | 1.12304 | |||||||||||||||||||||||||||||||||||||||
81.2 | −0.500000 | + | 0.866025i | −1.44440 | −0.500000 | − | 0.866025i | 0.451759 | + | 0.782469i | 0.722201 | − | 1.25089i | −0.686411 | + | 2.55516i | 1.00000 | −0.913706 | −0.903518 | |||||||||||||||||||||||||||||||||||||||
81.3 | −0.500000 | + | 0.866025i | 0.160199 | −0.500000 | − | 0.866025i | −1.66520 | − | 2.88422i | −0.0800993 | + | 0.138736i | −0.402064 | − | 2.61502i | 1.00000 | −2.97434 | 3.33041 | |||||||||||||||||||||||||||||||||||||||
81.4 | −0.500000 | + | 0.866025i | 2.05726 | −0.500000 | − | 0.866025i | 1.69274 | + | 2.93192i | −1.02863 | + | 1.78164i | −2.60522 | − | 0.461340i | 1.00000 | 1.23231 | −3.38549 | |||||||||||||||||||||||||||||||||||||||
81.5 | −0.500000 | + | 0.866025i | 2.62644 | −0.500000 | − | 0.866025i | −0.917780 | − | 1.58964i | −1.31322 | + | 2.27456i | 1.05365 | + | 2.42690i | 1.00000 | 3.89817 | 1.83556 | |||||||||||||||||||||||||||||||||||||||
Inner twists
Char | Parity | Ord | Mult | Type |
---|---|---|---|---|
1.a | even | 1 | 1 | trivial |
91.g | even | 3 | 1 | inner |
Twists
By twisting character orbit | |||||||
---|---|---|---|---|---|---|---|
Char | Parity | Ord | Mult | Type | Twist | Min | Dim |
1.a | even | 1 | 1 | trivial | 182.2.h.d | yes | 10 |
3.b | odd | 2 | 1 | 1638.2.p.k | 10 | ||
7.b | odd | 2 | 1 | 1274.2.h.s | 10 | ||
7.c | even | 3 | 1 | 182.2.e.d | ✓ | 10 | |
7.c | even | 3 | 1 | 1274.2.g.p | 10 | ||
7.d | odd | 6 | 1 | 1274.2.e.s | 10 | ||
7.d | odd | 6 | 1 | 1274.2.g.q | 10 | ||
13.c | even | 3 | 1 | 182.2.e.d | ✓ | 10 | |
21.h | odd | 6 | 1 | 1638.2.m.j | 10 | ||
39.i | odd | 6 | 1 | 1638.2.m.j | 10 | ||
91.g | even | 3 | 1 | inner | 182.2.h.d | yes | 10 |
91.h | even | 3 | 1 | 1274.2.g.p | 10 | ||
91.m | odd | 6 | 1 | 1274.2.h.s | 10 | ||
91.n | odd | 6 | 1 | 1274.2.e.s | 10 | ||
91.v | odd | 6 | 1 | 1274.2.g.q | 10 | ||
273.bm | odd | 6 | 1 | 1638.2.p.k | 10 |
By twisted newform orbit | |||||||
---|---|---|---|---|---|---|---|
Twist | Min | Dim | Char | Parity | Ord | Mult | Type |
182.2.e.d | ✓ | 10 | 7.c | even | 3 | 1 | |
182.2.e.d | ✓ | 10 | 13.c | even | 3 | 1 | |
182.2.h.d | yes | 10 | 1.a | even | 1 | 1 | trivial |
182.2.h.d | yes | 10 | 91.g | even | 3 | 1 | inner |
1274.2.e.s | 10 | 7.d | odd | 6 | 1 | ||
1274.2.e.s | 10 | 91.n | odd | 6 | 1 | ||
1274.2.g.p | 10 | 7.c | even | 3 | 1 | ||
1274.2.g.p | 10 | 91.h | even | 3 | 1 | ||
1274.2.g.q | 10 | 7.d | odd | 6 | 1 | ||
1274.2.g.q | 10 | 91.v | odd | 6 | 1 | ||
1274.2.h.s | 10 | 7.b | odd | 2 | 1 | ||
1274.2.h.s | 10 | 91.m | odd | 6 | 1 | ||
1638.2.m.j | 10 | 21.h | odd | 6 | 1 | ||
1638.2.m.j | 10 | 39.i | odd | 6 | 1 | ||
1638.2.p.k | 10 | 3.b | odd | 2 | 1 | ||
1638.2.p.k | 10 | 273.bm | odd | 6 | 1 |
Hecke kernels
This newform subspace can be constructed as the intersection of the kernels of the following linear operators acting on :
|
|