Properties

Label 185.2.k.a
Level $185$
Weight $2$
Character orbit 185.k
Analytic conductor $1.477$
Analytic rank $1$
Dimension $2$
Inner twists $2$

Related objects

Downloads

Learn more

Show commands: Magma / PariGP / SageMath

Newspace parameters

comment: Compute space of new eigenforms
 
[N,k,chi] = [185,2,Mod(68,185)]
 
mf = mfinit([N,k,chi],0)
 
lf = mfeigenbasis(mf)
 
from sage.modular.dirichlet import DirichletCharacter
 
H = DirichletGroup(185, base_ring=CyclotomicField(4))
 
chi = DirichletCharacter(H, H._module([3, 1]))
 
N = Newforms(chi, 2, names="a")
 
//Please install CHIMP (https://github.com/edgarcosta/CHIMP) if you want to run this code
 
chi := DirichletCharacter("185.68");
 
S:= CuspForms(chi, 2);
 
N := Newforms(S);
 
Level: \( N \) \(=\) \( 185 = 5 \cdot 37 \)
Weight: \( k \) \(=\) \( 2 \)
Character orbit: \([\chi]\) \(=\) 185.k (of order \(4\), degree \(2\), minimal)

Newform invariants

comment: select newform
 
sage: f = N[0] # Warning: the index may be different
 
gp: f = lf[1] \\ Warning: the index may be different
 
Self dual: no
Analytic conductor: \(1.47723243739\)
Analytic rank: \(1\)
Dimension: \(2\)
Coefficient field: \(\Q(\sqrt{-1}) \)
comment: defining polynomial
 
gp: f.mod \\ as an extension of the character field
 
Defining polynomial: \( x^{2} + 1 \) Copy content Toggle raw display
Coefficient ring: \(\Z[a_1, \ldots, a_{9}]\)
Coefficient ring index: \( 1 \)
Twist minimal: yes
Sato-Tate group: $\mathrm{SU}(2)[C_{4}]$

$q$-expansion

comment: q-expansion
 
sage: f.q_expansion() # note that sage often uses an isomorphic number field
 
gp: mfcoefs(f, 20)
 

Coefficients of the \(q\)-expansion are expressed in terms of \(i = \sqrt{-1}\). We also show the integral \(q\)-expansion of the trace form.

\(f(q)\) \(=\) \( q - q^{2} + (2 i - 2) q^{3} - q^{4} + (2 i - 1) q^{5} + ( - 2 i + 2) q^{6} + 3 q^{8} - 5 i q^{9} + ( - 2 i + 1) q^{10} - 4 i q^{11} + ( - 2 i + 2) q^{12} - 4 q^{13} + ( - 6 i - 2) q^{15} - q^{16} + 2 i q^{17} + \cdots - 20 q^{99} +O(q^{100}) \) Copy content Toggle raw display
\(\operatorname{Tr}(f)(q)\) \(=\) \( 2 q - 2 q^{2} - 4 q^{3} - 2 q^{4} - 2 q^{5} + 4 q^{6} + 6 q^{8} + 2 q^{10} + 4 q^{12} - 8 q^{13} - 4 q^{15} - 2 q^{16} + 2 q^{20} + 8 q^{23} - 12 q^{24} - 6 q^{25} + 8 q^{26} + 8 q^{27} - 2 q^{29} + 4 q^{30}+ \cdots - 40 q^{99}+O(q^{100}) \) Copy content Toggle raw display

Character values

We give the values of \(\chi\) on generators for \(\left(\mathbb{Z}/185\mathbb{Z}\right)^\times\).

\(n\) \(76\) \(112\)
\(\chi(n)\) \(i\) \(-i\)

Embeddings

For each embedding \(\iota_m\) of the coefficient field, the values \(\iota_m(a_n)\) are shown below.

For more information on an embedded modular form you can click on its label.

comment: embeddings in the coefficient field
 
gp: mfembed(f)
 
Label   \(\iota_m(\nu)\) \( a_{2} \) \( a_{3} \) \( a_{4} \) \( a_{5} \) \( a_{6} \) \( a_{7} \) \( a_{8} \) \( a_{9} \) \( a_{10} \)
68.1
1.00000i
1.00000i
−1.00000 −2.00000 + 2.00000i −1.00000 −1.00000 + 2.00000i 2.00000 2.00000i 0 3.00000 5.00000i 1.00000 2.00000i
117.1 −1.00000 −2.00000 2.00000i −1.00000 −1.00000 2.00000i 2.00000 + 2.00000i 0 3.00000 5.00000i 1.00000 + 2.00000i
\(n\): e.g. 2-40 or 990-1000
Significant digits:
Format:

Inner twists

Char Parity Ord Mult Type
1.a even 1 1 trivial
185.k even 4 1 inner

Twists

       By twisting character orbit
Char Parity Ord Mult Type Twist Min Dim
1.a even 1 1 trivial 185.2.k.a yes 2
5.b even 2 1 925.2.k.b 2
5.c odd 4 1 185.2.f.b 2
5.c odd 4 1 925.2.f.a 2
37.d odd 4 1 185.2.f.b 2
185.f even 4 1 925.2.k.b 2
185.j odd 4 1 925.2.f.a 2
185.k even 4 1 inner 185.2.k.a yes 2
    
        By twisted newform orbit
Twist Min Dim Char Parity Ord Mult Type
185.2.f.b 2 5.c odd 4 1
185.2.f.b 2 37.d odd 4 1
185.2.k.a yes 2 1.a even 1 1 trivial
185.2.k.a yes 2 185.k even 4 1 inner
925.2.f.a 2 5.c odd 4 1
925.2.f.a 2 185.j odd 4 1
925.2.k.b 2 5.b even 2 1
925.2.k.b 2 185.f even 4 1

Hecke kernels

This newform subspace can be constructed as the intersection of the kernels of the following linear operators acting on \(S_{2}^{\mathrm{new}}(185, [\chi])\):

\( T_{2} + 1 \) Copy content Toggle raw display
\( T_{3}^{2} + 4T_{3} + 8 \) Copy content Toggle raw display

Hecke characteristic polynomials

$p$ $F_p(T)$
$2$ \( (T + 1)^{2} \) Copy content Toggle raw display
$3$ \( T^{2} + 4T + 8 \) Copy content Toggle raw display
$5$ \( T^{2} + 2T + 5 \) Copy content Toggle raw display
$7$ \( T^{2} \) Copy content Toggle raw display
$11$ \( T^{2} + 16 \) Copy content Toggle raw display
$13$ \( (T + 4)^{2} \) Copy content Toggle raw display
$17$ \( T^{2} + 4 \) Copy content Toggle raw display
$19$ \( T^{2} \) Copy content Toggle raw display
$23$ \( (T - 4)^{2} \) Copy content Toggle raw display
$29$ \( T^{2} + 2T + 2 \) Copy content Toggle raw display
$31$ \( T^{2} + 12T + 72 \) Copy content Toggle raw display
$37$ \( T^{2} + 2T + 37 \) Copy content Toggle raw display
$41$ \( T^{2} \) Copy content Toggle raw display
$43$ \( (T + 12)^{2} \) Copy content Toggle raw display
$47$ \( T^{2} - 16T + 128 \) Copy content Toggle raw display
$53$ \( T^{2} + 18T + 162 \) Copy content Toggle raw display
$59$ \( T^{2} - 8T + 32 \) Copy content Toggle raw display
$61$ \( T^{2} - 2T + 2 \) Copy content Toggle raw display
$67$ \( T^{2} + 12T + 72 \) Copy content Toggle raw display
$71$ \( (T + 4)^{2} \) Copy content Toggle raw display
$73$ \( T^{2} + 22T + 242 \) Copy content Toggle raw display
$79$ \( T^{2} + 12T + 72 \) Copy content Toggle raw display
$83$ \( T^{2} + 4T + 8 \) Copy content Toggle raw display
$89$ \( T^{2} + 2T + 2 \) Copy content Toggle raw display
$97$ \( T^{2} + 16 \) Copy content Toggle raw display
show more
show less