Properties

Label 1850.2.b.b
Level 18501850
Weight 22
Character orbit 1850.b
Analytic conductor 14.77214.772
Analytic rank 00
Dimension 22
Inner twists 22

Related objects

Downloads

Learn more

Show commands: Magma / PariGP / SageMath

Newspace parameters

comment: Compute space of new eigenforms
 
[N,k,chi] = [1850,2,Mod(149,1850)]
 
mf = mfinit([N,k,chi],0)
 
lf = mfeigenbasis(mf)
 
from sage.modular.dirichlet import DirichletCharacter
 
H = DirichletGroup(1850, base_ring=CyclotomicField(2))
 
chi = DirichletCharacter(H, H._module([1, 0]))
 
N = Newforms(chi, 2, names="a")
 
//Please install CHIMP (https://github.com/edgarcosta/CHIMP) if you want to run this code
 
chi := DirichletCharacter("1850.149");
 
S:= CuspForms(chi, 2);
 
N := Newforms(S);
 
Level: N N == 1850=25237 1850 = 2 \cdot 5^{2} \cdot 37
Weight: k k == 2 2
Character orbit: [χ][\chi] == 1850.b (of order 22, degree 11, not minimal)

Newform invariants

comment: select newform
 
sage: f = N[0] # Warning: the index may be different
 
gp: f = lf[1] \\ Warning: the index may be different
 
Self dual: no
Analytic conductor: 14.772324373914.7723243739
Analytic rank: 00
Dimension: 22
Coefficient field: Q(1)\Q(\sqrt{-1})
comment: defining polynomial
 
gp: f.mod \\ as an extension of the character field
 
Defining polynomial: x2+1 x^{2} + 1 Copy content Toggle raw display
Coefficient ring: Z[a1,a2]\Z[a_1, a_2]
Coefficient ring index: 1 1
Twist minimal: no (minimal twist has level 370)
Sato-Tate group: SU(2)[C2]\mathrm{SU}(2)[C_{2}]

qq-expansion

comment: q-expansion
 
sage: f.q_expansion() # note that sage often uses an isomorphic number field
 
gp: mfcoefs(f, 20)
 

Coefficients of the qq-expansion are expressed in terms of i=1i = \sqrt{-1}. We also show the integral qq-expansion of the trace form.

f(q)f(q) == q+iq2+2iq3q42q6+2iq7iq8q92iq122iq132q14+q16+6iq17iq182q194q21+2q24+2q26+4iq27++3iq98+O(q100) q + i q^{2} + 2 i q^{3} - q^{4} - 2 q^{6} + 2 i q^{7} - i q^{8} - q^{9} - 2 i q^{12} - 2 i q^{13} - 2 q^{14} + q^{16} + 6 i q^{17} - i q^{18} - 2 q^{19} - 4 q^{21} + 2 q^{24} + 2 q^{26} + 4 i q^{27} + \cdots + 3 i q^{98} +O(q^{100}) Copy content Toggle raw display
Tr(f)(q)\operatorname{Tr}(f)(q) == 2q2q44q62q94q14+2q164q198q21+4q24+4q2612q2920q3112q34+2q36+8q3912q41+6q4924q518q54+4q96+O(q100) 2 q - 2 q^{4} - 4 q^{6} - 2 q^{9} - 4 q^{14} + 2 q^{16} - 4 q^{19} - 8 q^{21} + 4 q^{24} + 4 q^{26} - 12 q^{29} - 20 q^{31} - 12 q^{34} + 2 q^{36} + 8 q^{39} - 12 q^{41} + 6 q^{49} - 24 q^{51} - 8 q^{54}+ \cdots - 4 q^{96}+O(q^{100}) Copy content Toggle raw display

Character values

We give the values of χ\chi on generators for (Z/1850Z)×\left(\mathbb{Z}/1850\mathbb{Z}\right)^\times.

nn 10011001 17771777
χ(n)\chi(n) 11 1-1

Embeddings

For each embedding ιm\iota_m of the coefficient field, the values ιm(an)\iota_m(a_n) are shown below.

For more information on an embedded modular form you can click on its label.

comment: embeddings in the coefficient field
 
gp: mfembed(f)
 
Label   ιm(ν)\iota_m(\nu) a2 a_{2} a3 a_{3} a4 a_{4} a5 a_{5} a6 a_{6} a7 a_{7} a8 a_{8} a9 a_{9} a10 a_{10}
149.1
1.00000i
1.00000i
1.00000i 2.00000i −1.00000 0 −2.00000 2.00000i 1.00000i −1.00000 0
149.2 1.00000i 2.00000i −1.00000 0 −2.00000 2.00000i 1.00000i −1.00000 0
nn: e.g. 2-40 or 990-1000
Significant digits:
Format:

Inner twists

Char Parity Ord Mult Type
1.a even 1 1 trivial
5.b even 2 1 inner

Twists

       By twisting character orbit
Char Parity Ord Mult Type Twist Min Dim
1.a even 1 1 trivial 1850.2.b.b 2
5.b even 2 1 inner 1850.2.b.b 2
5.c odd 4 1 370.2.a.d 1
5.c odd 4 1 1850.2.a.f 1
15.e even 4 1 3330.2.a.d 1
20.e even 4 1 2960.2.a.m 1
    
        By twisted newform orbit
Twist Min Dim Char Parity Ord Mult Type
370.2.a.d 1 5.c odd 4 1
1850.2.a.f 1 5.c odd 4 1
1850.2.b.b 2 1.a even 1 1 trivial
1850.2.b.b 2 5.b even 2 1 inner
2960.2.a.m 1 20.e even 4 1
3330.2.a.d 1 15.e even 4 1

Hecke kernels

This newform subspace can be constructed as the intersection of the kernels of the following linear operators acting on S2new(1850,[χ])S_{2}^{\mathrm{new}}(1850, [\chi]):

T32+4 T_{3}^{2} + 4 Copy content Toggle raw display
T72+4 T_{7}^{2} + 4 Copy content Toggle raw display
T132+4 T_{13}^{2} + 4 Copy content Toggle raw display

Hecke characteristic polynomials

pp Fp(T)F_p(T)
22 T2+1 T^{2} + 1 Copy content Toggle raw display
33 T2+4 T^{2} + 4 Copy content Toggle raw display
55 T2 T^{2} Copy content Toggle raw display
77 T2+4 T^{2} + 4 Copy content Toggle raw display
1111 T2 T^{2} Copy content Toggle raw display
1313 T2+4 T^{2} + 4 Copy content Toggle raw display
1717 T2+36 T^{2} + 36 Copy content Toggle raw display
1919 (T+2)2 (T + 2)^{2} Copy content Toggle raw display
2323 T2 T^{2} Copy content Toggle raw display
2929 (T+6)2 (T + 6)^{2} Copy content Toggle raw display
3131 (T+10)2 (T + 10)^{2} Copy content Toggle raw display
3737 T2+1 T^{2} + 1 Copy content Toggle raw display
4141 (T+6)2 (T + 6)^{2} Copy content Toggle raw display
4343 T2+16 T^{2} + 16 Copy content Toggle raw display
4747 T2+36 T^{2} + 36 Copy content Toggle raw display
5353 T2+36 T^{2} + 36 Copy content Toggle raw display
5959 (T6)2 (T - 6)^{2} Copy content Toggle raw display
6161 (T+10)2 (T + 10)^{2} Copy content Toggle raw display
6767 T2+4 T^{2} + 4 Copy content Toggle raw display
7171 T2 T^{2} Copy content Toggle raw display
7373 T2+4 T^{2} + 4 Copy content Toggle raw display
7979 (T10)2 (T - 10)^{2} Copy content Toggle raw display
8383 T2+36 T^{2} + 36 Copy content Toggle raw display
8989 (T6)2 (T - 6)^{2} Copy content Toggle raw display
9797 T2+4 T^{2} + 4 Copy content Toggle raw display
show more
show less