Newspace parameters
comment: Compute space of new eigenforms
[N,k,chi] = [1872,2,Mod(1,1872)]
mf = mfinit([N,k,chi],0)
lf = mfeigenbasis(mf)
from sage.modular.dirichlet import DirichletCharacter
H = DirichletGroup(1872, base_ring=CyclotomicField(2))
chi = DirichletCharacter(H, H._module([0, 0, 0, 0]))
N = Newforms(chi, 2, names="a")
//Please install CHIMP (https://github.com/edgarcosta/CHIMP) if you want to run this code
chi := DirichletCharacter("1872.1");
S:= CuspForms(chi, 2);
N := Newforms(S);
Level: | \( N \) | \(=\) | \( 1872 = 2^{4} \cdot 3^{2} \cdot 13 \) |
Weight: | \( k \) | \(=\) | \( 2 \) |
Character orbit: | \([\chi]\) | \(=\) | 1872.a (trivial) |
Newform invariants
comment: select newform
sage: f = N[0] # Warning: the index may be different
gp: f = lf[1] \\ Warning: the index may be different
Self dual: | yes |
Analytic conductor: | \(14.9479952584\) |
Analytic rank: | \(1\) |
Dimension: | \(1\) |
Coefficient field: | \(\mathbb{Q}\) |
Coefficient ring: | \(\mathbb{Z}\) |
Coefficient ring index: | \( 1 \) |
Twist minimal: | no (minimal twist has level 312) |
Fricke sign: | \(+1\) |
Sato-Tate group: | $\mathrm{SU}(2)$ |
Embedding invariants
Embedding label | 1.1 | ||
Character | \(\chi\) | \(=\) | 1872.1 |
$q$-expansion
comment: q-expansion
sage: f.q_expansion() # note that sage often uses an isomorphic number field
gp: mfcoefs(f, 20)
Coefficient data
For each \(n\) we display the coefficients of the \(q\)-expansion \(a_n\), the Satake parameters \(\alpha_p\), and the Satake angles \(\theta_p = \textrm{Arg}(\alpha_p)\).
(See \(a_n\) instead)
(See \(a_n\) instead)
(See \(a_n\) instead)
(See only \(a_p\))
(See only \(a_p\))
(See only \(a_p\))
\(n\) | \(a_n\) | \(a_n / n^{(k-1)/2}\) | \( \alpha_n \) | \( \theta_n \) | ||||||
---|---|---|---|---|---|---|---|---|---|---|
\(p\) | \(a_p\) | \(a_p / p^{(k-1)/2}\) | \( \alpha_p\) | \( \theta_p \) | ||||||
\(2\) | 0 | 0 | ||||||||
\(3\) | 0 | 0 | ||||||||
\(4\) | 0 | 0 | ||||||||
\(5\) | −2.00000 | −0.894427 | −0.447214 | − | 0.894427i | \(-0.647584\pi\) | ||||
−0.447214 | + | 0.894427i | \(0.647584\pi\) | |||||||
\(6\) | 0 | 0 | ||||||||
\(7\) | 0 | 0 | − | 1.00000i | \(-0.5\pi\) | |||||
1.00000i | \(0.5\pi\) | |||||||||
\(8\) | 0 | 0 | ||||||||
\(9\) | 0 | 0 | ||||||||
\(10\) | 0 | 0 | ||||||||
\(11\) | 0 | 0 | − | 1.00000i | \(-0.5\pi\) | |||||
1.00000i | \(0.5\pi\) | |||||||||
\(12\) | 0 | 0 | ||||||||
\(13\) | 1.00000 | 0.277350 | ||||||||
\(14\) | 0 | 0 | ||||||||
\(15\) | 0 | 0 | ||||||||
\(16\) | 0 | 0 | ||||||||
\(17\) | −2.00000 | −0.485071 | −0.242536 | − | 0.970143i | \(-0.577979\pi\) | ||||
−0.242536 | + | 0.970143i | \(0.577979\pi\) | |||||||
\(18\) | 0 | 0 | ||||||||
\(19\) | 4.00000 | 0.917663 | 0.458831 | − | 0.888523i | \(-0.348268\pi\) | ||||
0.458831 | + | 0.888523i | \(0.348268\pi\) | |||||||
\(20\) | 0 | 0 | ||||||||
\(21\) | 0 | 0 | ||||||||
\(22\) | 0 | 0 | ||||||||
\(23\) | 0 | 0 | − | 1.00000i | \(-0.5\pi\) | |||||
1.00000i | \(0.5\pi\) | |||||||||
\(24\) | 0 | 0 | ||||||||
\(25\) | −1.00000 | −0.200000 | ||||||||
\(26\) | 0 | 0 | ||||||||
\(27\) | 0 | 0 | ||||||||
\(28\) | 0 | 0 | ||||||||
\(29\) | −6.00000 | −1.11417 | −0.557086 | − | 0.830455i | \(-0.688081\pi\) | ||||
−0.557086 | + | 0.830455i | \(0.688081\pi\) | |||||||
\(30\) | 0 | 0 | ||||||||
\(31\) | 0 | 0 | − | 1.00000i | \(-0.5\pi\) | |||||
1.00000i | \(0.5\pi\) | |||||||||
\(32\) | 0 | 0 | ||||||||
\(33\) | 0 | 0 | ||||||||
\(34\) | 0 | 0 | ||||||||
\(35\) | 0 | 0 | ||||||||
\(36\) | 0 | 0 | ||||||||
\(37\) | −2.00000 | −0.328798 | −0.164399 | − | 0.986394i | \(-0.552568\pi\) | ||||
−0.164399 | + | 0.986394i | \(0.552568\pi\) | |||||||
\(38\) | 0 | 0 | ||||||||
\(39\) | 0 | 0 | ||||||||
\(40\) | 0 | 0 | ||||||||
\(41\) | −6.00000 | −0.937043 | −0.468521 | − | 0.883452i | \(-0.655213\pi\) | ||||
−0.468521 | + | 0.883452i | \(0.655213\pi\) | |||||||
\(42\) | 0 | 0 | ||||||||
\(43\) | 12.0000 | 1.82998 | 0.914991 | − | 0.403473i | \(-0.132197\pi\) | ||||
0.914991 | + | 0.403473i | \(0.132197\pi\) | |||||||
\(44\) | 0 | 0 | ||||||||
\(45\) | 0 | 0 | ||||||||
\(46\) | 0 | 0 | ||||||||
\(47\) | −4.00000 | −0.583460 | −0.291730 | − | 0.956501i | \(-0.594231\pi\) | ||||
−0.291730 | + | 0.956501i | \(0.594231\pi\) | |||||||
\(48\) | 0 | 0 | ||||||||
\(49\) | −7.00000 | −1.00000 | ||||||||
\(50\) | 0 | 0 | ||||||||
\(51\) | 0 | 0 | ||||||||
\(52\) | 0 | 0 | ||||||||
\(53\) | −6.00000 | −0.824163 | −0.412082 | − | 0.911147i | \(-0.635198\pi\) | ||||
−0.412082 | + | 0.911147i | \(0.635198\pi\) | |||||||
\(54\) | 0 | 0 | ||||||||
\(55\) | 0 | 0 | ||||||||
\(56\) | 0 | 0 | ||||||||
\(57\) | 0 | 0 | ||||||||
\(58\) | 0 | 0 | ||||||||
\(59\) | −8.00000 | −1.04151 | −0.520756 | − | 0.853706i | \(-0.674350\pi\) | ||||
−0.520756 | + | 0.853706i | \(0.674350\pi\) | |||||||
\(60\) | 0 | 0 | ||||||||
\(61\) | −2.00000 | −0.256074 | −0.128037 | − | 0.991769i | \(-0.540868\pi\) | ||||
−0.128037 | + | 0.991769i | \(0.540868\pi\) | |||||||
\(62\) | 0 | 0 | ||||||||
\(63\) | 0 | 0 | ||||||||
\(64\) | 0 | 0 | ||||||||
\(65\) | −2.00000 | −0.248069 | ||||||||
\(66\) | 0 | 0 | ||||||||
\(67\) | −4.00000 | −0.488678 | −0.244339 | − | 0.969690i | \(-0.578571\pi\) | ||||
−0.244339 | + | 0.969690i | \(0.578571\pi\) | |||||||
\(68\) | 0 | 0 | ||||||||
\(69\) | 0 | 0 | ||||||||
\(70\) | 0 | 0 | ||||||||
\(71\) | −12.0000 | −1.42414 | −0.712069 | − | 0.702109i | \(-0.752242\pi\) | ||||
−0.712069 | + | 0.702109i | \(0.752242\pi\) | |||||||
\(72\) | 0 | 0 | ||||||||
\(73\) | −14.0000 | −1.63858 | −0.819288 | − | 0.573382i | \(-0.805631\pi\) | ||||
−0.819288 | + | 0.573382i | \(0.805631\pi\) | |||||||
\(74\) | 0 | 0 | ||||||||
\(75\) | 0 | 0 | ||||||||
\(76\) | 0 | 0 | ||||||||
\(77\) | 0 | 0 | ||||||||
\(78\) | 0 | 0 | ||||||||
\(79\) | 0 | 0 | − | 1.00000i | \(-0.5\pi\) | |||||
1.00000i | \(0.5\pi\) | |||||||||
\(80\) | 0 | 0 | ||||||||
\(81\) | 0 | 0 | ||||||||
\(82\) | 0 | 0 | ||||||||
\(83\) | 8.00000 | 0.878114 | 0.439057 | − | 0.898459i | \(-0.355313\pi\) | ||||
0.439057 | + | 0.898459i | \(0.355313\pi\) | |||||||
\(84\) | 0 | 0 | ||||||||
\(85\) | 4.00000 | 0.433861 | ||||||||
\(86\) | 0 | 0 | ||||||||
\(87\) | 0 | 0 | ||||||||
\(88\) | 0 | 0 | ||||||||
\(89\) | 18.0000 | 1.90800 | 0.953998 | − | 0.299813i | \(-0.0969242\pi\) | ||||
0.953998 | + | 0.299813i | \(0.0969242\pi\) | |||||||
\(90\) | 0 | 0 | ||||||||
\(91\) | 0 | 0 | ||||||||
\(92\) | 0 | 0 | ||||||||
\(93\) | 0 | 0 | ||||||||
\(94\) | 0 | 0 | ||||||||
\(95\) | −8.00000 | −0.820783 | ||||||||
\(96\) | 0 | 0 | ||||||||
\(97\) | −6.00000 | −0.609208 | −0.304604 | − | 0.952479i | \(-0.598524\pi\) | ||||
−0.304604 | + | 0.952479i | \(0.598524\pi\) | |||||||
\(98\) | 0 | 0 | ||||||||
\(99\) | 0 | 0 | ||||||||
\(100\) | 0 | 0 | ||||||||
\(101\) | −14.0000 | −1.39305 | −0.696526 | − | 0.717532i | \(-0.745272\pi\) | ||||
−0.696526 | + | 0.717532i | \(0.745272\pi\) | |||||||
\(102\) | 0 | 0 | ||||||||
\(103\) | −16.0000 | −1.57653 | −0.788263 | − | 0.615338i | \(-0.789020\pi\) | ||||
−0.788263 | + | 0.615338i | \(0.789020\pi\) | |||||||
\(104\) | 0 | 0 | ||||||||
\(105\) | 0 | 0 | ||||||||
\(106\) | 0 | 0 | ||||||||
\(107\) | 4.00000 | 0.386695 | 0.193347 | − | 0.981130i | \(-0.438066\pi\) | ||||
0.193347 | + | 0.981130i | \(0.438066\pi\) | |||||||
\(108\) | 0 | 0 | ||||||||
\(109\) | −2.00000 | −0.191565 | −0.0957826 | − | 0.995402i | \(-0.530535\pi\) | ||||
−0.0957826 | + | 0.995402i | \(0.530535\pi\) | |||||||
\(110\) | 0 | 0 | ||||||||
\(111\) | 0 | 0 | ||||||||
\(112\) | 0 | 0 | ||||||||
\(113\) | 6.00000 | 0.564433 | 0.282216 | − | 0.959351i | \(-0.408930\pi\) | ||||
0.282216 | + | 0.959351i | \(0.408930\pi\) | |||||||
\(114\) | 0 | 0 | ||||||||
\(115\) | 0 | 0 | ||||||||
\(116\) | 0 | 0 | ||||||||
\(117\) | 0 | 0 | ||||||||
\(118\) | 0 | 0 | ||||||||
\(119\) | 0 | 0 | ||||||||
\(120\) | 0 | 0 | ||||||||
\(121\) | −11.0000 | −1.00000 | ||||||||
\(122\) | 0 | 0 | ||||||||
\(123\) | 0 | 0 | ||||||||
\(124\) | 0 | 0 | ||||||||
\(125\) | 12.0000 | 1.07331 | ||||||||
\(126\) | 0 | 0 | ||||||||
\(127\) | −16.0000 | −1.41977 | −0.709885 | − | 0.704317i | \(-0.751253\pi\) | ||||
−0.709885 | + | 0.704317i | \(0.751253\pi\) | |||||||
\(128\) | 0 | 0 | ||||||||
\(129\) | 0 | 0 | ||||||||
\(130\) | 0 | 0 | ||||||||
\(131\) | 12.0000 | 1.04844 | 0.524222 | − | 0.851581i | \(-0.324356\pi\) | ||||
0.524222 | + | 0.851581i | \(0.324356\pi\) | |||||||
\(132\) | 0 | 0 | ||||||||
\(133\) | 0 | 0 | ||||||||
\(134\) | 0 | 0 | ||||||||
\(135\) | 0 | 0 | ||||||||
\(136\) | 0 | 0 | ||||||||
\(137\) | −6.00000 | −0.512615 | −0.256307 | − | 0.966595i | \(-0.582506\pi\) | ||||
−0.256307 | + | 0.966595i | \(0.582506\pi\) | |||||||
\(138\) | 0 | 0 | ||||||||
\(139\) | −4.00000 | −0.339276 | −0.169638 | − | 0.985506i | \(-0.554260\pi\) | ||||
−0.169638 | + | 0.985506i | \(0.554260\pi\) | |||||||
\(140\) | 0 | 0 | ||||||||
\(141\) | 0 | 0 | ||||||||
\(142\) | 0 | 0 | ||||||||
\(143\) | 0 | 0 | ||||||||
\(144\) | 0 | 0 | ||||||||
\(145\) | 12.0000 | 0.996546 | ||||||||
\(146\) | 0 | 0 | ||||||||
\(147\) | 0 | 0 | ||||||||
\(148\) | 0 | 0 | ||||||||
\(149\) | −10.0000 | −0.819232 | −0.409616 | − | 0.912258i | \(-0.634337\pi\) | ||||
−0.409616 | + | 0.912258i | \(0.634337\pi\) | |||||||
\(150\) | 0 | 0 | ||||||||
\(151\) | −8.00000 | −0.651031 | −0.325515 | − | 0.945537i | \(-0.605538\pi\) | ||||
−0.325515 | + | 0.945537i | \(0.605538\pi\) | |||||||
\(152\) | 0 | 0 | ||||||||
\(153\) | 0 | 0 | ||||||||
\(154\) | 0 | 0 | ||||||||
\(155\) | 0 | 0 | ||||||||
\(156\) | 0 | 0 | ||||||||
\(157\) | 14.0000 | 1.11732 | 0.558661 | − | 0.829396i | \(-0.311315\pi\) | ||||
0.558661 | + | 0.829396i | \(0.311315\pi\) | |||||||
\(158\) | 0 | 0 | ||||||||
\(159\) | 0 | 0 | ||||||||
\(160\) | 0 | 0 | ||||||||
\(161\) | 0 | 0 | ||||||||
\(162\) | 0 | 0 | ||||||||
\(163\) | −12.0000 | −0.939913 | −0.469956 | − | 0.882690i | \(-0.655730\pi\) | ||||
−0.469956 | + | 0.882690i | \(0.655730\pi\) | |||||||
\(164\) | 0 | 0 | ||||||||
\(165\) | 0 | 0 | ||||||||
\(166\) | 0 | 0 | ||||||||
\(167\) | −12.0000 | −0.928588 | −0.464294 | − | 0.885681i | \(-0.653692\pi\) | ||||
−0.464294 | + | 0.885681i | \(0.653692\pi\) | |||||||
\(168\) | 0 | 0 | ||||||||
\(169\) | 1.00000 | 0.0769231 | ||||||||
\(170\) | 0 | 0 | ||||||||
\(171\) | 0 | 0 | ||||||||
\(172\) | 0 | 0 | ||||||||
\(173\) | −6.00000 | −0.456172 | −0.228086 | − | 0.973641i | \(-0.573247\pi\) | ||||
−0.228086 | + | 0.973641i | \(0.573247\pi\) | |||||||
\(174\) | 0 | 0 | ||||||||
\(175\) | 0 | 0 | ||||||||
\(176\) | 0 | 0 | ||||||||
\(177\) | 0 | 0 | ||||||||
\(178\) | 0 | 0 | ||||||||
\(179\) | 20.0000 | 1.49487 | 0.747435 | − | 0.664335i | \(-0.231285\pi\) | ||||
0.747435 | + | 0.664335i | \(0.231285\pi\) | |||||||
\(180\) | 0 | 0 | ||||||||
\(181\) | 22.0000 | 1.63525 | 0.817624 | − | 0.575753i | \(-0.195291\pi\) | ||||
0.817624 | + | 0.575753i | \(0.195291\pi\) | |||||||
\(182\) | 0 | 0 | ||||||||
\(183\) | 0 | 0 | ||||||||
\(184\) | 0 | 0 | ||||||||
\(185\) | 4.00000 | 0.294086 | ||||||||
\(186\) | 0 | 0 | ||||||||
\(187\) | 0 | 0 | ||||||||
\(188\) | 0 | 0 | ||||||||
\(189\) | 0 | 0 | ||||||||
\(190\) | 0 | 0 | ||||||||
\(191\) | 16.0000 | 1.15772 | 0.578860 | − | 0.815427i | \(-0.303498\pi\) | ||||
0.578860 | + | 0.815427i | \(0.303498\pi\) | |||||||
\(192\) | 0 | 0 | ||||||||
\(193\) | 2.00000 | 0.143963 | 0.0719816 | − | 0.997406i | \(-0.477068\pi\) | ||||
0.0719816 | + | 0.997406i | \(0.477068\pi\) | |||||||
\(194\) | 0 | 0 | ||||||||
\(195\) | 0 | 0 | ||||||||
\(196\) | 0 | 0 | ||||||||
\(197\) | −2.00000 | −0.142494 | −0.0712470 | − | 0.997459i | \(-0.522698\pi\) | ||||
−0.0712470 | + | 0.997459i | \(0.522698\pi\) | |||||||
\(198\) | 0 | 0 | ||||||||
\(199\) | 24.0000 | 1.70131 | 0.850657 | − | 0.525720i | \(-0.176204\pi\) | ||||
0.850657 | + | 0.525720i | \(0.176204\pi\) | |||||||
\(200\) | 0 | 0 | ||||||||
\(201\) | 0 | 0 | ||||||||
\(202\) | 0 | 0 | ||||||||
\(203\) | 0 | 0 | ||||||||
\(204\) | 0 | 0 | ||||||||
\(205\) | 12.0000 | 0.838116 | ||||||||
\(206\) | 0 | 0 | ||||||||
\(207\) | 0 | 0 | ||||||||
\(208\) | 0 | 0 | ||||||||
\(209\) | 0 | 0 | ||||||||
\(210\) | 0 | 0 | ||||||||
\(211\) | −4.00000 | −0.275371 | −0.137686 | − | 0.990476i | \(-0.543966\pi\) | ||||
−0.137686 | + | 0.990476i | \(0.543966\pi\) | |||||||
\(212\) | 0 | 0 | ||||||||
\(213\) | 0 | 0 | ||||||||
\(214\) | 0 | 0 | ||||||||
\(215\) | −24.0000 | −1.63679 | ||||||||
\(216\) | 0 | 0 | ||||||||
\(217\) | 0 | 0 | ||||||||
\(218\) | 0 | 0 | ||||||||
\(219\) | 0 | 0 | ||||||||
\(220\) | 0 | 0 | ||||||||
\(221\) | −2.00000 | −0.134535 | ||||||||
\(222\) | 0 | 0 | ||||||||
\(223\) | −16.0000 | −1.07144 | −0.535720 | − | 0.844396i | \(-0.679960\pi\) | ||||
−0.535720 | + | 0.844396i | \(0.679960\pi\) | |||||||
\(224\) | 0 | 0 | ||||||||
\(225\) | 0 | 0 | ||||||||
\(226\) | 0 | 0 | ||||||||
\(227\) | 0 | 0 | − | 1.00000i | \(-0.5\pi\) | |||||
1.00000i | \(0.5\pi\) | |||||||||
\(228\) | 0 | 0 | ||||||||
\(229\) | −26.0000 | −1.71813 | −0.859064 | − | 0.511868i | \(-0.828954\pi\) | ||||
−0.859064 | + | 0.511868i | \(0.828954\pi\) | |||||||
\(230\) | 0 | 0 | ||||||||
\(231\) | 0 | 0 | ||||||||
\(232\) | 0 | 0 | ||||||||
\(233\) | 14.0000 | 0.917170 | 0.458585 | − | 0.888650i | \(-0.348356\pi\) | ||||
0.458585 | + | 0.888650i | \(0.348356\pi\) | |||||||
\(234\) | 0 | 0 | ||||||||
\(235\) | 8.00000 | 0.521862 | ||||||||
\(236\) | 0 | 0 | ||||||||
\(237\) | 0 | 0 | ||||||||
\(238\) | 0 | 0 | ||||||||
\(239\) | −20.0000 | −1.29369 | −0.646846 | − | 0.762620i | \(-0.723912\pi\) | ||||
−0.646846 | + | 0.762620i | \(0.723912\pi\) | |||||||
\(240\) | 0 | 0 | ||||||||
\(241\) | 26.0000 | 1.67481 | 0.837404 | − | 0.546585i | \(-0.184072\pi\) | ||||
0.837404 | + | 0.546585i | \(0.184072\pi\) | |||||||
\(242\) | 0 | 0 | ||||||||
\(243\) | 0 | 0 | ||||||||
\(244\) | 0 | 0 | ||||||||
\(245\) | 14.0000 | 0.894427 | ||||||||
\(246\) | 0 | 0 | ||||||||
\(247\) | 4.00000 | 0.254514 | ||||||||
\(248\) | 0 | 0 | ||||||||
\(249\) | 0 | 0 | ||||||||
\(250\) | 0 | 0 | ||||||||
\(251\) | −12.0000 | −0.757433 | −0.378717 | − | 0.925513i | \(-0.623635\pi\) | ||||
−0.378717 | + | 0.925513i | \(0.623635\pi\) | |||||||
\(252\) | 0 | 0 | ||||||||
\(253\) | 0 | 0 | ||||||||
\(254\) | 0 | 0 | ||||||||
\(255\) | 0 | 0 | ||||||||
\(256\) | 0 | 0 | ||||||||
\(257\) | 6.00000 | 0.374270 | 0.187135 | − | 0.982334i | \(-0.440080\pi\) | ||||
0.187135 | + | 0.982334i | \(0.440080\pi\) | |||||||
\(258\) | 0 | 0 | ||||||||
\(259\) | 0 | 0 | ||||||||
\(260\) | 0 | 0 | ||||||||
\(261\) | 0 | 0 | ||||||||
\(262\) | 0 | 0 | ||||||||
\(263\) | 16.0000 | 0.986602 | 0.493301 | − | 0.869859i | \(-0.335790\pi\) | ||||
0.493301 | + | 0.869859i | \(0.335790\pi\) | |||||||
\(264\) | 0 | 0 | ||||||||
\(265\) | 12.0000 | 0.737154 | ||||||||
\(266\) | 0 | 0 | ||||||||
\(267\) | 0 | 0 | ||||||||
\(268\) | 0 | 0 | ||||||||
\(269\) | 26.0000 | 1.58525 | 0.792624 | − | 0.609711i | \(-0.208714\pi\) | ||||
0.792624 | + | 0.609711i | \(0.208714\pi\) | |||||||
\(270\) | 0 | 0 | ||||||||
\(271\) | 8.00000 | 0.485965 | 0.242983 | − | 0.970031i | \(-0.421874\pi\) | ||||
0.242983 | + | 0.970031i | \(0.421874\pi\) | |||||||
\(272\) | 0 | 0 | ||||||||
\(273\) | 0 | 0 | ||||||||
\(274\) | 0 | 0 | ||||||||
\(275\) | 0 | 0 | ||||||||
\(276\) | 0 | 0 | ||||||||
\(277\) | −10.0000 | −0.600842 | −0.300421 | − | 0.953807i | \(-0.597127\pi\) | ||||
−0.300421 | + | 0.953807i | \(0.597127\pi\) | |||||||
\(278\) | 0 | 0 | ||||||||
\(279\) | 0 | 0 | ||||||||
\(280\) | 0 | 0 | ||||||||
\(281\) | −6.00000 | −0.357930 | −0.178965 | − | 0.983855i | \(-0.557275\pi\) | ||||
−0.178965 | + | 0.983855i | \(0.557275\pi\) | |||||||
\(282\) | 0 | 0 | ||||||||
\(283\) | −12.0000 | −0.713326 | −0.356663 | − | 0.934233i | \(-0.616086\pi\) | ||||
−0.356663 | + | 0.934233i | \(0.616086\pi\) | |||||||
\(284\) | 0 | 0 | ||||||||
\(285\) | 0 | 0 | ||||||||
\(286\) | 0 | 0 | ||||||||
\(287\) | 0 | 0 | ||||||||
\(288\) | 0 | 0 | ||||||||
\(289\) | −13.0000 | −0.764706 | ||||||||
\(290\) | 0 | 0 | ||||||||
\(291\) | 0 | 0 | ||||||||
\(292\) | 0 | 0 | ||||||||
\(293\) | −10.0000 | −0.584206 | −0.292103 | − | 0.956387i | \(-0.594355\pi\) | ||||
−0.292103 | + | 0.956387i | \(0.594355\pi\) | |||||||
\(294\) | 0 | 0 | ||||||||
\(295\) | 16.0000 | 0.931556 | ||||||||
\(296\) | 0 | 0 | ||||||||
\(297\) | 0 | 0 | ||||||||
\(298\) | 0 | 0 | ||||||||
\(299\) | 0 | 0 | ||||||||
\(300\) | 0 | 0 | ||||||||
\(301\) | 0 | 0 | ||||||||
\(302\) | 0 | 0 | ||||||||
\(303\) | 0 | 0 | ||||||||
\(304\) | 0 | 0 | ||||||||
\(305\) | 4.00000 | 0.229039 | ||||||||
\(306\) | 0 | 0 | ||||||||
\(307\) | −20.0000 | −1.14146 | −0.570730 | − | 0.821138i | \(-0.693340\pi\) | ||||
−0.570730 | + | 0.821138i | \(0.693340\pi\) | |||||||
\(308\) | 0 | 0 | ||||||||
\(309\) | 0 | 0 | ||||||||
\(310\) | 0 | 0 | ||||||||
\(311\) | −16.0000 | −0.907277 | −0.453638 | − | 0.891186i | \(-0.649874\pi\) | ||||
−0.453638 | + | 0.891186i | \(0.649874\pi\) | |||||||
\(312\) | 0 | 0 | ||||||||
\(313\) | 10.0000 | 0.565233 | 0.282617 | − | 0.959233i | \(-0.408798\pi\) | ||||
0.282617 | + | 0.959233i | \(0.408798\pi\) | |||||||
\(314\) | 0 | 0 | ||||||||
\(315\) | 0 | 0 | ||||||||
\(316\) | 0 | 0 | ||||||||
\(317\) | 6.00000 | 0.336994 | 0.168497 | − | 0.985702i | \(-0.446109\pi\) | ||||
0.168497 | + | 0.985702i | \(0.446109\pi\) | |||||||
\(318\) | 0 | 0 | ||||||||
\(319\) | 0 | 0 | ||||||||
\(320\) | 0 | 0 | ||||||||
\(321\) | 0 | 0 | ||||||||
\(322\) | 0 | 0 | ||||||||
\(323\) | −8.00000 | −0.445132 | ||||||||
\(324\) | 0 | 0 | ||||||||
\(325\) | −1.00000 | −0.0554700 | ||||||||
\(326\) | 0 | 0 | ||||||||
\(327\) | 0 | 0 | ||||||||
\(328\) | 0 | 0 | ||||||||
\(329\) | 0 | 0 | ||||||||
\(330\) | 0 | 0 | ||||||||
\(331\) | 36.0000 | 1.97874 | 0.989369 | − | 0.145424i | \(-0.0464545\pi\) | ||||
0.989369 | + | 0.145424i | \(0.0464545\pi\) | |||||||
\(332\) | 0 | 0 | ||||||||
\(333\) | 0 | 0 | ||||||||
\(334\) | 0 | 0 | ||||||||
\(335\) | 8.00000 | 0.437087 | ||||||||
\(336\) | 0 | 0 | ||||||||
\(337\) | 2.00000 | 0.108947 | 0.0544735 | − | 0.998515i | \(-0.482652\pi\) | ||||
0.0544735 | + | 0.998515i | \(0.482652\pi\) | |||||||
\(338\) | 0 | 0 | ||||||||
\(339\) | 0 | 0 | ||||||||
\(340\) | 0 | 0 | ||||||||
\(341\) | 0 | 0 | ||||||||
\(342\) | 0 | 0 | ||||||||
\(343\) | 0 | 0 | ||||||||
\(344\) | 0 | 0 | ||||||||
\(345\) | 0 | 0 | ||||||||
\(346\) | 0 | 0 | ||||||||
\(347\) | 28.0000 | 1.50312 | 0.751559 | − | 0.659665i | \(-0.229302\pi\) | ||||
0.751559 | + | 0.659665i | \(0.229302\pi\) | |||||||
\(348\) | 0 | 0 | ||||||||
\(349\) | 22.0000 | 1.17763 | 0.588817 | − | 0.808267i | \(-0.299594\pi\) | ||||
0.588817 | + | 0.808267i | \(0.299594\pi\) | |||||||
\(350\) | 0 | 0 | ||||||||
\(351\) | 0 | 0 | ||||||||
\(352\) | 0 | 0 | ||||||||
\(353\) | −30.0000 | −1.59674 | −0.798369 | − | 0.602168i | \(-0.794304\pi\) | ||||
−0.798369 | + | 0.602168i | \(0.794304\pi\) | |||||||
\(354\) | 0 | 0 | ||||||||
\(355\) | 24.0000 | 1.27379 | ||||||||
\(356\) | 0 | 0 | ||||||||
\(357\) | 0 | 0 | ||||||||
\(358\) | 0 | 0 | ||||||||
\(359\) | −12.0000 | −0.633336 | −0.316668 | − | 0.948536i | \(-0.602564\pi\) | ||||
−0.316668 | + | 0.948536i | \(0.602564\pi\) | |||||||
\(360\) | 0 | 0 | ||||||||
\(361\) | −3.00000 | −0.157895 | ||||||||
\(362\) | 0 | 0 | ||||||||
\(363\) | 0 | 0 | ||||||||
\(364\) | 0 | 0 | ||||||||
\(365\) | 28.0000 | 1.46559 | ||||||||
\(366\) | 0 | 0 | ||||||||
\(367\) | −8.00000 | −0.417597 | −0.208798 | − | 0.977959i | \(-0.566955\pi\) | ||||
−0.208798 | + | 0.977959i | \(0.566955\pi\) | |||||||
\(368\) | 0 | 0 | ||||||||
\(369\) | 0 | 0 | ||||||||
\(370\) | 0 | 0 | ||||||||
\(371\) | 0 | 0 | ||||||||
\(372\) | 0 | 0 | ||||||||
\(373\) | −26.0000 | −1.34623 | −0.673114 | − | 0.739538i | \(-0.735044\pi\) | ||||
−0.673114 | + | 0.739538i | \(0.735044\pi\) | |||||||
\(374\) | 0 | 0 | ||||||||
\(375\) | 0 | 0 | ||||||||
\(376\) | 0 | 0 | ||||||||
\(377\) | −6.00000 | −0.309016 | ||||||||
\(378\) | 0 | 0 | ||||||||
\(379\) | 28.0000 | 1.43826 | 0.719132 | − | 0.694874i | \(-0.244540\pi\) | ||||
0.719132 | + | 0.694874i | \(0.244540\pi\) | |||||||
\(380\) | 0 | 0 | ||||||||
\(381\) | 0 | 0 | ||||||||
\(382\) | 0 | 0 | ||||||||
\(383\) | 4.00000 | 0.204390 | 0.102195 | − | 0.994764i | \(-0.467413\pi\) | ||||
0.102195 | + | 0.994764i | \(0.467413\pi\) | |||||||
\(384\) | 0 | 0 | ||||||||
\(385\) | 0 | 0 | ||||||||
\(386\) | 0 | 0 | ||||||||
\(387\) | 0 | 0 | ||||||||
\(388\) | 0 | 0 | ||||||||
\(389\) | −6.00000 | −0.304212 | −0.152106 | − | 0.988364i | \(-0.548606\pi\) | ||||
−0.152106 | + | 0.988364i | \(0.548606\pi\) | |||||||
\(390\) | 0 | 0 | ||||||||
\(391\) | 0 | 0 | ||||||||
\(392\) | 0 | 0 | ||||||||
\(393\) | 0 | 0 | ||||||||
\(394\) | 0 | 0 | ||||||||
\(395\) | 0 | 0 | ||||||||
\(396\) | 0 | 0 | ||||||||
\(397\) | 22.0000 | 1.10415 | 0.552074 | − | 0.833795i | \(-0.313837\pi\) | ||||
0.552074 | + | 0.833795i | \(0.313837\pi\) | |||||||
\(398\) | 0 | 0 | ||||||||
\(399\) | 0 | 0 | ||||||||
\(400\) | 0 | 0 | ||||||||
\(401\) | −6.00000 | −0.299626 | −0.149813 | − | 0.988714i | \(-0.547867\pi\) | ||||
−0.149813 | + | 0.988714i | \(0.547867\pi\) | |||||||
\(402\) | 0 | 0 | ||||||||
\(403\) | 0 | 0 | ||||||||
\(404\) | 0 | 0 | ||||||||
\(405\) | 0 | 0 | ||||||||
\(406\) | 0 | 0 | ||||||||
\(407\) | 0 | 0 | ||||||||
\(408\) | 0 | 0 | ||||||||
\(409\) | −30.0000 | −1.48340 | −0.741702 | − | 0.670729i | \(-0.765981\pi\) | ||||
−0.741702 | + | 0.670729i | \(0.765981\pi\) | |||||||
\(410\) | 0 | 0 | ||||||||
\(411\) | 0 | 0 | ||||||||
\(412\) | 0 | 0 | ||||||||
\(413\) | 0 | 0 | ||||||||
\(414\) | 0 | 0 | ||||||||
\(415\) | −16.0000 | −0.785409 | ||||||||
\(416\) | 0 | 0 | ||||||||
\(417\) | 0 | 0 | ||||||||
\(418\) | 0 | 0 | ||||||||
\(419\) | 28.0000 | 1.36789 | 0.683945 | − | 0.729534i | \(-0.260263\pi\) | ||||
0.683945 | + | 0.729534i | \(0.260263\pi\) | |||||||
\(420\) | 0 | 0 | ||||||||
\(421\) | 6.00000 | 0.292422 | 0.146211 | − | 0.989253i | \(-0.453292\pi\) | ||||
0.146211 | + | 0.989253i | \(0.453292\pi\) | |||||||
\(422\) | 0 | 0 | ||||||||
\(423\) | 0 | 0 | ||||||||
\(424\) | 0 | 0 | ||||||||
\(425\) | 2.00000 | 0.0970143 | ||||||||
\(426\) | 0 | 0 | ||||||||
\(427\) | 0 | 0 | ||||||||
\(428\) | 0 | 0 | ||||||||
\(429\) | 0 | 0 | ||||||||
\(430\) | 0 | 0 | ||||||||
\(431\) | 4.00000 | 0.192673 | 0.0963366 | − | 0.995349i | \(-0.469287\pi\) | ||||
0.0963366 | + | 0.995349i | \(0.469287\pi\) | |||||||
\(432\) | 0 | 0 | ||||||||
\(433\) | 2.00000 | 0.0961139 | 0.0480569 | − | 0.998845i | \(-0.484697\pi\) | ||||
0.0480569 | + | 0.998845i | \(0.484697\pi\) | |||||||
\(434\) | 0 | 0 | ||||||||
\(435\) | 0 | 0 | ||||||||
\(436\) | 0 | 0 | ||||||||
\(437\) | 0 | 0 | ||||||||
\(438\) | 0 | 0 | ||||||||
\(439\) | 32.0000 | 1.52728 | 0.763638 | − | 0.645644i | \(-0.223411\pi\) | ||||
0.763638 | + | 0.645644i | \(0.223411\pi\) | |||||||
\(440\) | 0 | 0 | ||||||||
\(441\) | 0 | 0 | ||||||||
\(442\) | 0 | 0 | ||||||||
\(443\) | 36.0000 | 1.71041 | 0.855206 | − | 0.518289i | \(-0.173431\pi\) | ||||
0.855206 | + | 0.518289i | \(0.173431\pi\) | |||||||
\(444\) | 0 | 0 | ||||||||
\(445\) | −36.0000 | −1.70656 | ||||||||
\(446\) | 0 | 0 | ||||||||
\(447\) | 0 | 0 | ||||||||
\(448\) | 0 | 0 | ||||||||
\(449\) | −6.00000 | −0.283158 | −0.141579 | − | 0.989927i | \(-0.545218\pi\) | ||||
−0.141579 | + | 0.989927i | \(0.545218\pi\) | |||||||
\(450\) | 0 | 0 | ||||||||
\(451\) | 0 | 0 | ||||||||
\(452\) | 0 | 0 | ||||||||
\(453\) | 0 | 0 | ||||||||
\(454\) | 0 | 0 | ||||||||
\(455\) | 0 | 0 | ||||||||
\(456\) | 0 | 0 | ||||||||
\(457\) | 34.0000 | 1.59045 | 0.795226 | − | 0.606313i | \(-0.207352\pi\) | ||||
0.795226 | + | 0.606313i | \(0.207352\pi\) | |||||||
\(458\) | 0 | 0 | ||||||||
\(459\) | 0 | 0 | ||||||||
\(460\) | 0 | 0 | ||||||||
\(461\) | −42.0000 | −1.95614 | −0.978068 | − | 0.208288i | \(-0.933211\pi\) | ||||
−0.978068 | + | 0.208288i | \(0.933211\pi\) | |||||||
\(462\) | 0 | 0 | ||||||||
\(463\) | −24.0000 | −1.11537 | −0.557687 | − | 0.830051i | \(-0.688311\pi\) | ||||
−0.557687 | + | 0.830051i | \(0.688311\pi\) | |||||||
\(464\) | 0 | 0 | ||||||||
\(465\) | 0 | 0 | ||||||||
\(466\) | 0 | 0 | ||||||||
\(467\) | −20.0000 | −0.925490 | −0.462745 | − | 0.886492i | \(-0.653135\pi\) | ||||
−0.462745 | + | 0.886492i | \(0.653135\pi\) | |||||||
\(468\) | 0 | 0 | ||||||||
\(469\) | 0 | 0 | ||||||||
\(470\) | 0 | 0 | ||||||||
\(471\) | 0 | 0 | ||||||||
\(472\) | 0 | 0 | ||||||||
\(473\) | 0 | 0 | ||||||||
\(474\) | 0 | 0 | ||||||||
\(475\) | −4.00000 | −0.183533 | ||||||||
\(476\) | 0 | 0 | ||||||||
\(477\) | 0 | 0 | ||||||||
\(478\) | 0 | 0 | ||||||||
\(479\) | 36.0000 | 1.64488 | 0.822441 | − | 0.568850i | \(-0.192612\pi\) | ||||
0.822441 | + | 0.568850i | \(0.192612\pi\) | |||||||
\(480\) | 0 | 0 | ||||||||
\(481\) | −2.00000 | −0.0911922 | ||||||||
\(482\) | 0 | 0 | ||||||||
\(483\) | 0 | 0 | ||||||||
\(484\) | 0 | 0 | ||||||||
\(485\) | 12.0000 | 0.544892 | ||||||||
\(486\) | 0 | 0 | ||||||||
\(487\) | 8.00000 | 0.362515 | 0.181257 | − | 0.983436i | \(-0.441983\pi\) | ||||
0.181257 | + | 0.983436i | \(0.441983\pi\) | |||||||
\(488\) | 0 | 0 | ||||||||
\(489\) | 0 | 0 | ||||||||
\(490\) | 0 | 0 | ||||||||
\(491\) | −12.0000 | −0.541552 | −0.270776 | − | 0.962642i | \(-0.587280\pi\) | ||||
−0.270776 | + | 0.962642i | \(0.587280\pi\) | |||||||
\(492\) | 0 | 0 | ||||||||
\(493\) | 12.0000 | 0.540453 | ||||||||
\(494\) | 0 | 0 | ||||||||
\(495\) | 0 | 0 | ||||||||
\(496\) | 0 | 0 | ||||||||
\(497\) | 0 | 0 | ||||||||
\(498\) | 0 | 0 | ||||||||
\(499\) | −4.00000 | −0.179065 | −0.0895323 | − | 0.995984i | \(-0.528537\pi\) | ||||
−0.0895323 | + | 0.995984i | \(0.528537\pi\) | |||||||
\(500\) | 0 | 0 | ||||||||
\(501\) | 0 | 0 | ||||||||
\(502\) | 0 | 0 | ||||||||
\(503\) | 32.0000 | 1.42681 | 0.713405 | − | 0.700752i | \(-0.247152\pi\) | ||||
0.713405 | + | 0.700752i | \(0.247152\pi\) | |||||||
\(504\) | 0 | 0 | ||||||||
\(505\) | 28.0000 | 1.24598 | ||||||||
\(506\) | 0 | 0 | ||||||||
\(507\) | 0 | 0 | ||||||||
\(508\) | 0 | 0 | ||||||||
\(509\) | 22.0000 | 0.975133 | 0.487566 | − | 0.873086i | \(-0.337885\pi\) | ||||
0.487566 | + | 0.873086i | \(0.337885\pi\) | |||||||
\(510\) | 0 | 0 | ||||||||
\(511\) | 0 | 0 | ||||||||
\(512\) | 0 | 0 | ||||||||
\(513\) | 0 | 0 | ||||||||
\(514\) | 0 | 0 | ||||||||
\(515\) | 32.0000 | 1.41009 | ||||||||
\(516\) | 0 | 0 | ||||||||
\(517\) | 0 | 0 | ||||||||
\(518\) | 0 | 0 | ||||||||
\(519\) | 0 | 0 | ||||||||
\(520\) | 0 | 0 | ||||||||
\(521\) | 14.0000 | 0.613351 | 0.306676 | − | 0.951814i | \(-0.400783\pi\) | ||||
0.306676 | + | 0.951814i | \(0.400783\pi\) | |||||||
\(522\) | 0 | 0 | ||||||||
\(523\) | 12.0000 | 0.524723 | 0.262362 | − | 0.964970i | \(-0.415499\pi\) | ||||
0.262362 | + | 0.964970i | \(0.415499\pi\) | |||||||
\(524\) | 0 | 0 | ||||||||
\(525\) | 0 | 0 | ||||||||
\(526\) | 0 | 0 | ||||||||
\(527\) | 0 | 0 | ||||||||
\(528\) | 0 | 0 | ||||||||
\(529\) | −23.0000 | −1.00000 | ||||||||
\(530\) | 0 | 0 | ||||||||
\(531\) | 0 | 0 | ||||||||
\(532\) | 0 | 0 | ||||||||
\(533\) | −6.00000 | −0.259889 | ||||||||
\(534\) | 0 | 0 | ||||||||
\(535\) | −8.00000 | −0.345870 | ||||||||
\(536\) | 0 | 0 | ||||||||
\(537\) | 0 | 0 | ||||||||
\(538\) | 0 | 0 | ||||||||
\(539\) | 0 | 0 | ||||||||
\(540\) | 0 | 0 | ||||||||
\(541\) | −34.0000 | −1.46177 | −0.730887 | − | 0.682498i | \(-0.760893\pi\) | ||||
−0.730887 | + | 0.682498i | \(0.760893\pi\) | |||||||
\(542\) | 0 | 0 | ||||||||
\(543\) | 0 | 0 | ||||||||
\(544\) | 0 | 0 | ||||||||
\(545\) | 4.00000 | 0.171341 | ||||||||
\(546\) | 0 | 0 | ||||||||
\(547\) | 20.0000 | 0.855138 | 0.427569 | − | 0.903983i | \(-0.359370\pi\) | ||||
0.427569 | + | 0.903983i | \(0.359370\pi\) | |||||||
\(548\) | 0 | 0 | ||||||||
\(549\) | 0 | 0 | ||||||||
\(550\) | 0 | 0 | ||||||||
\(551\) | −24.0000 | −1.02243 | ||||||||
\(552\) | 0 | 0 | ||||||||
\(553\) | 0 | 0 | ||||||||
\(554\) | 0 | 0 | ||||||||
\(555\) | 0 | 0 | ||||||||
\(556\) | 0 | 0 | ||||||||
\(557\) | 30.0000 | 1.27114 | 0.635570 | − | 0.772043i | \(-0.280765\pi\) | ||||
0.635570 | + | 0.772043i | \(0.280765\pi\) | |||||||
\(558\) | 0 | 0 | ||||||||
\(559\) | 12.0000 | 0.507546 | ||||||||
\(560\) | 0 | 0 | ||||||||
\(561\) | 0 | 0 | ||||||||
\(562\) | 0 | 0 | ||||||||
\(563\) | 36.0000 | 1.51722 | 0.758610 | − | 0.651546i | \(-0.225879\pi\) | ||||
0.758610 | + | 0.651546i | \(0.225879\pi\) | |||||||
\(564\) | 0 | 0 | ||||||||
\(565\) | −12.0000 | −0.504844 | ||||||||
\(566\) | 0 | 0 | ||||||||
\(567\) | 0 | 0 | ||||||||
\(568\) | 0 | 0 | ||||||||
\(569\) | 30.0000 | 1.25767 | 0.628833 | − | 0.777541i | \(-0.283533\pi\) | ||||
0.628833 | + | 0.777541i | \(0.283533\pi\) | |||||||
\(570\) | 0 | 0 | ||||||||
\(571\) | −28.0000 | −1.17176 | −0.585882 | − | 0.810397i | \(-0.699252\pi\) | ||||
−0.585882 | + | 0.810397i | \(0.699252\pi\) | |||||||
\(572\) | 0 | 0 | ||||||||
\(573\) | 0 | 0 | ||||||||
\(574\) | 0 | 0 | ||||||||
\(575\) | 0 | 0 | ||||||||
\(576\) | 0 | 0 | ||||||||
\(577\) | 18.0000 | 0.749350 | 0.374675 | − | 0.927156i | \(-0.377754\pi\) | ||||
0.374675 | + | 0.927156i | \(0.377754\pi\) | |||||||
\(578\) | 0 | 0 | ||||||||
\(579\) | 0 | 0 | ||||||||
\(580\) | 0 | 0 | ||||||||
\(581\) | 0 | 0 | ||||||||
\(582\) | 0 | 0 | ||||||||
\(583\) | 0 | 0 | ||||||||
\(584\) | 0 | 0 | ||||||||
\(585\) | 0 | 0 | ||||||||
\(586\) | 0 | 0 | ||||||||
\(587\) | −16.0000 | −0.660391 | −0.330195 | − | 0.943913i | \(-0.607115\pi\) | ||||
−0.330195 | + | 0.943913i | \(0.607115\pi\) | |||||||
\(588\) | 0 | 0 | ||||||||
\(589\) | 0 | 0 | ||||||||
\(590\) | 0 | 0 | ||||||||
\(591\) | 0 | 0 | ||||||||
\(592\) | 0 | 0 | ||||||||
\(593\) | −6.00000 | −0.246390 | −0.123195 | − | 0.992382i | \(-0.539314\pi\) | ||||
−0.123195 | + | 0.992382i | \(0.539314\pi\) | |||||||
\(594\) | 0 | 0 | ||||||||
\(595\) | 0 | 0 | ||||||||
\(596\) | 0 | 0 | ||||||||
\(597\) | 0 | 0 | ||||||||
\(598\) | 0 | 0 | ||||||||
\(599\) | −16.0000 | −0.653742 | −0.326871 | − | 0.945069i | \(-0.605994\pi\) | ||||
−0.326871 | + | 0.945069i | \(0.605994\pi\) | |||||||
\(600\) | 0 | 0 | ||||||||
\(601\) | 10.0000 | 0.407909 | 0.203954 | − | 0.978980i | \(-0.434621\pi\) | ||||
0.203954 | + | 0.978980i | \(0.434621\pi\) | |||||||
\(602\) | 0 | 0 | ||||||||
\(603\) | 0 | 0 | ||||||||
\(604\) | 0 | 0 | ||||||||
\(605\) | 22.0000 | 0.894427 | ||||||||
\(606\) | 0 | 0 | ||||||||
\(607\) | 8.00000 | 0.324710 | 0.162355 | − | 0.986732i | \(-0.448091\pi\) | ||||
0.162355 | + | 0.986732i | \(0.448091\pi\) | |||||||
\(608\) | 0 | 0 | ||||||||
\(609\) | 0 | 0 | ||||||||
\(610\) | 0 | 0 | ||||||||
\(611\) | −4.00000 | −0.161823 | ||||||||
\(612\) | 0 | 0 | ||||||||
\(613\) | −34.0000 | −1.37325 | −0.686624 | − | 0.727013i | \(-0.740908\pi\) | ||||
−0.686624 | + | 0.727013i | \(0.740908\pi\) | |||||||
\(614\) | 0 | 0 | ||||||||
\(615\) | 0 | 0 | ||||||||
\(616\) | 0 | 0 | ||||||||
\(617\) | −6.00000 | −0.241551 | −0.120775 | − | 0.992680i | \(-0.538538\pi\) | ||||
−0.120775 | + | 0.992680i | \(0.538538\pi\) | |||||||
\(618\) | 0 | 0 | ||||||||
\(619\) | 20.0000 | 0.803868 | 0.401934 | − | 0.915669i | \(-0.368338\pi\) | ||||
0.401934 | + | 0.915669i | \(0.368338\pi\) | |||||||
\(620\) | 0 | 0 | ||||||||
\(621\) | 0 | 0 | ||||||||
\(622\) | 0 | 0 | ||||||||
\(623\) | 0 | 0 | ||||||||
\(624\) | 0 | 0 | ||||||||
\(625\) | −19.0000 | −0.760000 | ||||||||
\(626\) | 0 | 0 | ||||||||
\(627\) | 0 | 0 | ||||||||
\(628\) | 0 | 0 | ||||||||
\(629\) | 4.00000 | 0.159490 | ||||||||
\(630\) | 0 | 0 | ||||||||
\(631\) | 8.00000 | 0.318475 | 0.159237 | − | 0.987240i | \(-0.449096\pi\) | ||||
0.159237 | + | 0.987240i | \(0.449096\pi\) | |||||||
\(632\) | 0 | 0 | ||||||||
\(633\) | 0 | 0 | ||||||||
\(634\) | 0 | 0 | ||||||||
\(635\) | 32.0000 | 1.26988 | ||||||||
\(636\) | 0 | 0 | ||||||||
\(637\) | −7.00000 | −0.277350 | ||||||||
\(638\) | 0 | 0 | ||||||||
\(639\) | 0 | 0 | ||||||||
\(640\) | 0 | 0 | ||||||||
\(641\) | −34.0000 | −1.34292 | −0.671460 | − | 0.741041i | \(-0.734332\pi\) | ||||
−0.671460 | + | 0.741041i | \(0.734332\pi\) | |||||||
\(642\) | 0 | 0 | ||||||||
\(643\) | −4.00000 | −0.157745 | −0.0788723 | − | 0.996885i | \(-0.525132\pi\) | ||||
−0.0788723 | + | 0.996885i | \(0.525132\pi\) | |||||||
\(644\) | 0 | 0 | ||||||||
\(645\) | 0 | 0 | ||||||||
\(646\) | 0 | 0 | ||||||||
\(647\) | −24.0000 | −0.943537 | −0.471769 | − | 0.881722i | \(-0.656384\pi\) | ||||
−0.471769 | + | 0.881722i | \(0.656384\pi\) | |||||||
\(648\) | 0 | 0 | ||||||||
\(649\) | 0 | 0 | ||||||||
\(650\) | 0 | 0 | ||||||||
\(651\) | 0 | 0 | ||||||||
\(652\) | 0 | 0 | ||||||||
\(653\) | 42.0000 | 1.64359 | 0.821794 | − | 0.569785i | \(-0.192974\pi\) | ||||
0.821794 | + | 0.569785i | \(0.192974\pi\) | |||||||
\(654\) | 0 | 0 | ||||||||
\(655\) | −24.0000 | −0.937758 | ||||||||
\(656\) | 0 | 0 | ||||||||
\(657\) | 0 | 0 | ||||||||
\(658\) | 0 | 0 | ||||||||
\(659\) | 4.00000 | 0.155818 | 0.0779089 | − | 0.996960i | \(-0.475176\pi\) | ||||
0.0779089 | + | 0.996960i | \(0.475176\pi\) | |||||||
\(660\) | 0 | 0 | ||||||||
\(661\) | 14.0000 | 0.544537 | 0.272268 | − | 0.962221i | \(-0.412226\pi\) | ||||
0.272268 | + | 0.962221i | \(0.412226\pi\) | |||||||
\(662\) | 0 | 0 | ||||||||
\(663\) | 0 | 0 | ||||||||
\(664\) | 0 | 0 | ||||||||
\(665\) | 0 | 0 | ||||||||
\(666\) | 0 | 0 | ||||||||
\(667\) | 0 | 0 | ||||||||
\(668\) | 0 | 0 | ||||||||
\(669\) | 0 | 0 | ||||||||
\(670\) | 0 | 0 | ||||||||
\(671\) | 0 | 0 | ||||||||
\(672\) | 0 | 0 | ||||||||
\(673\) | −30.0000 | −1.15642 | −0.578208 | − | 0.815890i | \(-0.696248\pi\) | ||||
−0.578208 | + | 0.815890i | \(0.696248\pi\) | |||||||
\(674\) | 0 | 0 | ||||||||
\(675\) | 0 | 0 | ||||||||
\(676\) | 0 | 0 | ||||||||
\(677\) | 10.0000 | 0.384331 | 0.192166 | − | 0.981363i | \(-0.438449\pi\) | ||||
0.192166 | + | 0.981363i | \(0.438449\pi\) | |||||||
\(678\) | 0 | 0 | ||||||||
\(679\) | 0 | 0 | ||||||||
\(680\) | 0 | 0 | ||||||||
\(681\) | 0 | 0 | ||||||||
\(682\) | 0 | 0 | ||||||||
\(683\) | −16.0000 | −0.612223 | −0.306111 | − | 0.951996i | \(-0.599028\pi\) | ||||
−0.306111 | + | 0.951996i | \(0.599028\pi\) | |||||||
\(684\) | 0 | 0 | ||||||||
\(685\) | 12.0000 | 0.458496 | ||||||||
\(686\) | 0 | 0 | ||||||||
\(687\) | 0 | 0 | ||||||||
\(688\) | 0 | 0 | ||||||||
\(689\) | −6.00000 | −0.228582 | ||||||||
\(690\) | 0 | 0 | ||||||||
\(691\) | 28.0000 | 1.06517 | 0.532585 | − | 0.846376i | \(-0.321221\pi\) | ||||
0.532585 | + | 0.846376i | \(0.321221\pi\) | |||||||
\(692\) | 0 | 0 | ||||||||
\(693\) | 0 | 0 | ||||||||
\(694\) | 0 | 0 | ||||||||
\(695\) | 8.00000 | 0.303457 | ||||||||
\(696\) | 0 | 0 | ||||||||
\(697\) | 12.0000 | 0.454532 | ||||||||
\(698\) | 0 | 0 | ||||||||
\(699\) | 0 | 0 | ||||||||
\(700\) | 0 | 0 | ||||||||
\(701\) | −14.0000 | −0.528773 | −0.264386 | − | 0.964417i | \(-0.585169\pi\) | ||||
−0.264386 | + | 0.964417i | \(0.585169\pi\) | |||||||
\(702\) | 0 | 0 | ||||||||
\(703\) | −8.00000 | −0.301726 | ||||||||
\(704\) | 0 | 0 | ||||||||
\(705\) | 0 | 0 | ||||||||
\(706\) | 0 | 0 | ||||||||
\(707\) | 0 | 0 | ||||||||
\(708\) | 0 | 0 | ||||||||
\(709\) | −10.0000 | −0.375558 | −0.187779 | − | 0.982211i | \(-0.560129\pi\) | ||||
−0.187779 | + | 0.982211i | \(0.560129\pi\) | |||||||
\(710\) | 0 | 0 | ||||||||
\(711\) | 0 | 0 | ||||||||
\(712\) | 0 | 0 | ||||||||
\(713\) | 0 | 0 | ||||||||
\(714\) | 0 | 0 | ||||||||
\(715\) | 0 | 0 | ||||||||
\(716\) | 0 | 0 | ||||||||
\(717\) | 0 | 0 | ||||||||
\(718\) | 0 | 0 | ||||||||
\(719\) | −8.00000 | −0.298350 | −0.149175 | − | 0.988811i | \(-0.547662\pi\) | ||||
−0.149175 | + | 0.988811i | \(0.547662\pi\) | |||||||
\(720\) | 0 | 0 | ||||||||
\(721\) | 0 | 0 | ||||||||
\(722\) | 0 | 0 | ||||||||
\(723\) | 0 | 0 | ||||||||
\(724\) | 0 | 0 | ||||||||
\(725\) | 6.00000 | 0.222834 | ||||||||
\(726\) | 0 | 0 | ||||||||
\(727\) | −40.0000 | −1.48352 | −0.741759 | − | 0.670667i | \(-0.766008\pi\) | ||||
−0.741759 | + | 0.670667i | \(0.766008\pi\) | |||||||
\(728\) | 0 | 0 | ||||||||
\(729\) | 0 | 0 | ||||||||
\(730\) | 0 | 0 | ||||||||
\(731\) | −24.0000 | −0.887672 | ||||||||
\(732\) | 0 | 0 | ||||||||
\(733\) | −18.0000 | −0.664845 | −0.332423 | − | 0.943131i | \(-0.607866\pi\) | ||||
−0.332423 | + | 0.943131i | \(0.607866\pi\) | |||||||
\(734\) | 0 | 0 | ||||||||
\(735\) | 0 | 0 | ||||||||
\(736\) | 0 | 0 | ||||||||
\(737\) | 0 | 0 | ||||||||
\(738\) | 0 | 0 | ||||||||
\(739\) | −4.00000 | −0.147142 | −0.0735712 | − | 0.997290i | \(-0.523440\pi\) | ||||
−0.0735712 | + | 0.997290i | \(0.523440\pi\) | |||||||
\(740\) | 0 | 0 | ||||||||
\(741\) | 0 | 0 | ||||||||
\(742\) | 0 | 0 | ||||||||
\(743\) | −44.0000 | −1.61420 | −0.807102 | − | 0.590412i | \(-0.798965\pi\) | ||||
−0.807102 | + | 0.590412i | \(0.798965\pi\) | |||||||
\(744\) | 0 | 0 | ||||||||
\(745\) | 20.0000 | 0.732743 | ||||||||
\(746\) | 0 | 0 | ||||||||
\(747\) | 0 | 0 | ||||||||
\(748\) | 0 | 0 | ||||||||
\(749\) | 0 | 0 | ||||||||
\(750\) | 0 | 0 | ||||||||
\(751\) | 8.00000 | 0.291924 | 0.145962 | − | 0.989290i | \(-0.453372\pi\) | ||||
0.145962 | + | 0.989290i | \(0.453372\pi\) | |||||||
\(752\) | 0 | 0 | ||||||||
\(753\) | 0 | 0 | ||||||||
\(754\) | 0 | 0 | ||||||||
\(755\) | 16.0000 | 0.582300 | ||||||||
\(756\) | 0 | 0 | ||||||||
\(757\) | −42.0000 | −1.52652 | −0.763258 | − | 0.646094i | \(-0.776401\pi\) | ||||
−0.763258 | + | 0.646094i | \(0.776401\pi\) | |||||||
\(758\) | 0 | 0 | ||||||||
\(759\) | 0 | 0 | ||||||||
\(760\) | 0 | 0 | ||||||||
\(761\) | 10.0000 | 0.362500 | 0.181250 | − | 0.983437i | \(-0.441986\pi\) | ||||
0.181250 | + | 0.983437i | \(0.441986\pi\) | |||||||
\(762\) | 0 | 0 | ||||||||
\(763\) | 0 | 0 | ||||||||
\(764\) | 0 | 0 | ||||||||
\(765\) | 0 | 0 | ||||||||
\(766\) | 0 | 0 | ||||||||
\(767\) | −8.00000 | −0.288863 | ||||||||
\(768\) | 0 | 0 | ||||||||
\(769\) | −14.0000 | −0.504853 | −0.252426 | − | 0.967616i | \(-0.581229\pi\) | ||||
−0.252426 | + | 0.967616i | \(0.581229\pi\) | |||||||
\(770\) | 0 | 0 | ||||||||
\(771\) | 0 | 0 | ||||||||
\(772\) | 0 | 0 | ||||||||
\(773\) | −42.0000 | −1.51064 | −0.755318 | − | 0.655359i | \(-0.772517\pi\) | ||||
−0.755318 | + | 0.655359i | \(0.772517\pi\) | |||||||
\(774\) | 0 | 0 | ||||||||
\(775\) | 0 | 0 | ||||||||
\(776\) | 0 | 0 | ||||||||
\(777\) | 0 | 0 | ||||||||
\(778\) | 0 | 0 | ||||||||
\(779\) | −24.0000 | −0.859889 | ||||||||
\(780\) | 0 | 0 | ||||||||
\(781\) | 0 | 0 | ||||||||
\(782\) | 0 | 0 | ||||||||
\(783\) | 0 | 0 | ||||||||
\(784\) | 0 | 0 | ||||||||
\(785\) | −28.0000 | −0.999363 | ||||||||
\(786\) | 0 | 0 | ||||||||
\(787\) | −52.0000 | −1.85360 | −0.926800 | − | 0.375555i | \(-0.877452\pi\) | ||||
−0.926800 | + | 0.375555i | \(0.877452\pi\) | |||||||
\(788\) | 0 | 0 | ||||||||
\(789\) | 0 | 0 | ||||||||
\(790\) | 0 | 0 | ||||||||
\(791\) | 0 | 0 | ||||||||
\(792\) | 0 | 0 | ||||||||
\(793\) | −2.00000 | −0.0710221 | ||||||||
\(794\) | 0 | 0 | ||||||||
\(795\) | 0 | 0 | ||||||||
\(796\) | 0 | 0 | ||||||||
\(797\) | −30.0000 | −1.06265 | −0.531327 | − | 0.847167i | \(-0.678307\pi\) | ||||
−0.531327 | + | 0.847167i | \(0.678307\pi\) | |||||||
\(798\) | 0 | 0 | ||||||||
\(799\) | 8.00000 | 0.283020 | ||||||||
\(800\) | 0 | 0 | ||||||||
\(801\) | 0 | 0 | ||||||||
\(802\) | 0 | 0 | ||||||||
\(803\) | 0 | 0 | ||||||||
\(804\) | 0 | 0 | ||||||||
\(805\) | 0 | 0 | ||||||||
\(806\) | 0 | 0 | ||||||||
\(807\) | 0 | 0 | ||||||||
\(808\) | 0 | 0 | ||||||||
\(809\) | −34.0000 | −1.19538 | −0.597688 | − | 0.801729i | \(-0.703914\pi\) | ||||
−0.597688 | + | 0.801729i | \(0.703914\pi\) | |||||||
\(810\) | 0 | 0 | ||||||||
\(811\) | −20.0000 | −0.702295 | −0.351147 | − | 0.936320i | \(-0.614208\pi\) | ||||
−0.351147 | + | 0.936320i | \(0.614208\pi\) | |||||||
\(812\) | 0 | 0 | ||||||||
\(813\) | 0 | 0 | ||||||||
\(814\) | 0 | 0 | ||||||||
\(815\) | 24.0000 | 0.840683 | ||||||||
\(816\) | 0 | 0 | ||||||||
\(817\) | 48.0000 | 1.67931 | ||||||||
\(818\) | 0 | 0 | ||||||||
\(819\) | 0 | 0 | ||||||||
\(820\) | 0 | 0 | ||||||||
\(821\) | 22.0000 | 0.767805 | 0.383903 | − | 0.923374i | \(-0.374580\pi\) | ||||
0.383903 | + | 0.923374i | \(0.374580\pi\) | |||||||
\(822\) | 0 | 0 | ||||||||
\(823\) | −16.0000 | −0.557725 | −0.278862 | − | 0.960331i | \(-0.589957\pi\) | ||||
−0.278862 | + | 0.960331i | \(0.589957\pi\) | |||||||
\(824\) | 0 | 0 | ||||||||
\(825\) | 0 | 0 | ||||||||
\(826\) | 0 | 0 | ||||||||
\(827\) | −32.0000 | −1.11275 | −0.556375 | − | 0.830932i | \(-0.687808\pi\) | ||||
−0.556375 | + | 0.830932i | \(0.687808\pi\) | |||||||
\(828\) | 0 | 0 | ||||||||
\(829\) | 30.0000 | 1.04194 | 0.520972 | − | 0.853574i | \(-0.325570\pi\) | ||||
0.520972 | + | 0.853574i | \(0.325570\pi\) | |||||||
\(830\) | 0 | 0 | ||||||||
\(831\) | 0 | 0 | ||||||||
\(832\) | 0 | 0 | ||||||||
\(833\) | 14.0000 | 0.485071 | ||||||||
\(834\) | 0 | 0 | ||||||||
\(835\) | 24.0000 | 0.830554 | ||||||||
\(836\) | 0 | 0 | ||||||||
\(837\) | 0 | 0 | ||||||||
\(838\) | 0 | 0 | ||||||||
\(839\) | 12.0000 | 0.414286 | 0.207143 | − | 0.978311i | \(-0.433583\pi\) | ||||
0.207143 | + | 0.978311i | \(0.433583\pi\) | |||||||
\(840\) | 0 | 0 | ||||||||
\(841\) | 7.00000 | 0.241379 | ||||||||
\(842\) | 0 | 0 | ||||||||
\(843\) | 0 | 0 | ||||||||
\(844\) | 0 | 0 | ||||||||
\(845\) | −2.00000 | −0.0688021 | ||||||||
\(846\) | 0 | 0 | ||||||||
\(847\) | 0 | 0 | ||||||||
\(848\) | 0 | 0 | ||||||||
\(849\) | 0 | 0 | ||||||||
\(850\) | 0 | 0 | ||||||||
\(851\) | 0 | 0 | ||||||||
\(852\) | 0 | 0 | ||||||||
\(853\) | 46.0000 | 1.57501 | 0.787505 | − | 0.616308i | \(-0.211372\pi\) | ||||
0.787505 | + | 0.616308i | \(0.211372\pi\) | |||||||
\(854\) | 0 | 0 | ||||||||
\(855\) | 0 | 0 | ||||||||
\(856\) | 0 | 0 | ||||||||
\(857\) | 14.0000 | 0.478231 | 0.239115 | − | 0.970991i | \(-0.423143\pi\) | ||||
0.239115 | + | 0.970991i | \(0.423143\pi\) | |||||||
\(858\) | 0 | 0 | ||||||||
\(859\) | 4.00000 | 0.136478 | 0.0682391 | − | 0.997669i | \(-0.478262\pi\) | ||||
0.0682391 | + | 0.997669i | \(0.478262\pi\) | |||||||
\(860\) | 0 | 0 | ||||||||
\(861\) | 0 | 0 | ||||||||
\(862\) | 0 | 0 | ||||||||
\(863\) | −44.0000 | −1.49778 | −0.748889 | − | 0.662696i | \(-0.769412\pi\) | ||||
−0.748889 | + | 0.662696i | \(0.769412\pi\) | |||||||
\(864\) | 0 | 0 | ||||||||
\(865\) | 12.0000 | 0.408012 | ||||||||
\(866\) | 0 | 0 | ||||||||
\(867\) | 0 | 0 | ||||||||
\(868\) | 0 | 0 | ||||||||
\(869\) | 0 | 0 | ||||||||
\(870\) | 0 | 0 | ||||||||
\(871\) | −4.00000 | −0.135535 | ||||||||
\(872\) | 0 | 0 | ||||||||
\(873\) | 0 | 0 | ||||||||
\(874\) | 0 | 0 | ||||||||
\(875\) | 0 | 0 | ||||||||
\(876\) | 0 | 0 | ||||||||
\(877\) | 38.0000 | 1.28317 | 0.641584 | − | 0.767052i | \(-0.278277\pi\) | ||||
0.641584 | + | 0.767052i | \(0.278277\pi\) | |||||||
\(878\) | 0 | 0 | ||||||||
\(879\) | 0 | 0 | ||||||||
\(880\) | 0 | 0 | ||||||||
\(881\) | 6.00000 | 0.202145 | 0.101073 | − | 0.994879i | \(-0.467773\pi\) | ||||
0.101073 | + | 0.994879i | \(0.467773\pi\) | |||||||
\(882\) | 0 | 0 | ||||||||
\(883\) | −52.0000 | −1.74994 | −0.874970 | − | 0.484178i | \(-0.839119\pi\) | ||||
−0.874970 | + | 0.484178i | \(0.839119\pi\) | |||||||
\(884\) | 0 | 0 | ||||||||
\(885\) | 0 | 0 | ||||||||
\(886\) | 0 | 0 | ||||||||
\(887\) | −24.0000 | −0.805841 | −0.402921 | − | 0.915235i | \(-0.632005\pi\) | ||||
−0.402921 | + | 0.915235i | \(0.632005\pi\) | |||||||
\(888\) | 0 | 0 | ||||||||
\(889\) | 0 | 0 | ||||||||
\(890\) | 0 | 0 | ||||||||
\(891\) | 0 | 0 | ||||||||
\(892\) | 0 | 0 | ||||||||
\(893\) | −16.0000 | −0.535420 | ||||||||
\(894\) | 0 | 0 | ||||||||
\(895\) | −40.0000 | −1.33705 | ||||||||
\(896\) | 0 | 0 | ||||||||
\(897\) | 0 | 0 | ||||||||
\(898\) | 0 | 0 | ||||||||
\(899\) | 0 | 0 | ||||||||
\(900\) | 0 | 0 | ||||||||
\(901\) | 12.0000 | 0.399778 | ||||||||
\(902\) | 0 | 0 | ||||||||
\(903\) | 0 | 0 | ||||||||
\(904\) | 0 | 0 | ||||||||
\(905\) | −44.0000 | −1.46261 | ||||||||
\(906\) | 0 | 0 | ||||||||
\(907\) | 52.0000 | 1.72663 | 0.863316 | − | 0.504664i | \(-0.168384\pi\) | ||||
0.863316 | + | 0.504664i | \(0.168384\pi\) | |||||||
\(908\) | 0 | 0 | ||||||||
\(909\) | 0 | 0 | ||||||||
\(910\) | 0 | 0 | ||||||||
\(911\) | −16.0000 | −0.530104 | −0.265052 | − | 0.964234i | \(-0.585389\pi\) | ||||
−0.265052 | + | 0.964234i | \(0.585389\pi\) | |||||||
\(912\) | 0 | 0 | ||||||||
\(913\) | 0 | 0 | ||||||||
\(914\) | 0 | 0 | ||||||||
\(915\) | 0 | 0 | ||||||||
\(916\) | 0 | 0 | ||||||||
\(917\) | 0 | 0 | ||||||||
\(918\) | 0 | 0 | ||||||||
\(919\) | 24.0000 | 0.791687 | 0.395843 | − | 0.918318i | \(-0.370452\pi\) | ||||
0.395843 | + | 0.918318i | \(0.370452\pi\) | |||||||
\(920\) | 0 | 0 | ||||||||
\(921\) | 0 | 0 | ||||||||
\(922\) | 0 | 0 | ||||||||
\(923\) | −12.0000 | −0.394985 | ||||||||
\(924\) | 0 | 0 | ||||||||
\(925\) | 2.00000 | 0.0657596 | ||||||||
\(926\) | 0 | 0 | ||||||||
\(927\) | 0 | 0 | ||||||||
\(928\) | 0 | 0 | ||||||||
\(929\) | −14.0000 | −0.459325 | −0.229663 | − | 0.973270i | \(-0.573762\pi\) | ||||
−0.229663 | + | 0.973270i | \(0.573762\pi\) | |||||||
\(930\) | 0 | 0 | ||||||||
\(931\) | −28.0000 | −0.917663 | ||||||||
\(932\) | 0 | 0 | ||||||||
\(933\) | 0 | 0 | ||||||||
\(934\) | 0 | 0 | ||||||||
\(935\) | 0 | 0 | ||||||||
\(936\) | 0 | 0 | ||||||||
\(937\) | 26.0000 | 0.849383 | 0.424691 | − | 0.905338i | \(-0.360383\pi\) | ||||
0.424691 | + | 0.905338i | \(0.360383\pi\) | |||||||
\(938\) | 0 | 0 | ||||||||
\(939\) | 0 | 0 | ||||||||
\(940\) | 0 | 0 | ||||||||
\(941\) | −18.0000 | −0.586783 | −0.293392 | − | 0.955992i | \(-0.594784\pi\) | ||||
−0.293392 | + | 0.955992i | \(0.594784\pi\) | |||||||
\(942\) | 0 | 0 | ||||||||
\(943\) | 0 | 0 | ||||||||
\(944\) | 0 | 0 | ||||||||
\(945\) | 0 | 0 | ||||||||
\(946\) | 0 | 0 | ||||||||
\(947\) | 0 | 0 | − | 1.00000i | \(-0.5\pi\) | |||||
1.00000i | \(0.5\pi\) | |||||||||
\(948\) | 0 | 0 | ||||||||
\(949\) | −14.0000 | −0.454459 | ||||||||
\(950\) | 0 | 0 | ||||||||
\(951\) | 0 | 0 | ||||||||
\(952\) | 0 | 0 | ||||||||
\(953\) | −2.00000 | −0.0647864 | −0.0323932 | − | 0.999475i | \(-0.510313\pi\) | ||||
−0.0323932 | + | 0.999475i | \(0.510313\pi\) | |||||||
\(954\) | 0 | 0 | ||||||||
\(955\) | −32.0000 | −1.03550 | ||||||||
\(956\) | 0 | 0 | ||||||||
\(957\) | 0 | 0 | ||||||||
\(958\) | 0 | 0 | ||||||||
\(959\) | 0 | 0 | ||||||||
\(960\) | 0 | 0 | ||||||||
\(961\) | −31.0000 | −1.00000 | ||||||||
\(962\) | 0 | 0 | ||||||||
\(963\) | 0 | 0 | ||||||||
\(964\) | 0 | 0 | ||||||||
\(965\) | −4.00000 | −0.128765 | ||||||||
\(966\) | 0 | 0 | ||||||||
\(967\) | −40.0000 | −1.28631 | −0.643157 | − | 0.765735i | \(-0.722376\pi\) | ||||
−0.643157 | + | 0.765735i | \(0.722376\pi\) | |||||||
\(968\) | 0 | 0 | ||||||||
\(969\) | 0 | 0 | ||||||||
\(970\) | 0 | 0 | ||||||||
\(971\) | −36.0000 | −1.15529 | −0.577647 | − | 0.816286i | \(-0.696029\pi\) | ||||
−0.577647 | + | 0.816286i | \(0.696029\pi\) | |||||||
\(972\) | 0 | 0 | ||||||||
\(973\) | 0 | 0 | ||||||||
\(974\) | 0 | 0 | ||||||||
\(975\) | 0 | 0 | ||||||||
\(976\) | 0 | 0 | ||||||||
\(977\) | −6.00000 | −0.191957 | −0.0959785 | − | 0.995383i | \(-0.530598\pi\) | ||||
−0.0959785 | + | 0.995383i | \(0.530598\pi\) | |||||||
\(978\) | 0 | 0 | ||||||||
\(979\) | 0 | 0 | ||||||||
\(980\) | 0 | 0 | ||||||||
\(981\) | 0 | 0 | ||||||||
\(982\) | 0 | 0 | ||||||||
\(983\) | −20.0000 | −0.637901 | −0.318950 | − | 0.947771i | \(-0.603330\pi\) | ||||
−0.318950 | + | 0.947771i | \(0.603330\pi\) | |||||||
\(984\) | 0 | 0 | ||||||||
\(985\) | 4.00000 | 0.127451 | ||||||||
\(986\) | 0 | 0 | ||||||||
\(987\) | 0 | 0 | ||||||||
\(988\) | 0 | 0 | ||||||||
\(989\) | 0 | 0 | ||||||||
\(990\) | 0 | 0 | ||||||||
\(991\) | 24.0000 | 0.762385 | 0.381193 | − | 0.924496i | \(-0.375513\pi\) | ||||
0.381193 | + | 0.924496i | \(0.375513\pi\) | |||||||
\(992\) | 0 | 0 | ||||||||
\(993\) | 0 | 0 | ||||||||
\(994\) | 0 | 0 | ||||||||
\(995\) | −48.0000 | −1.52170 | ||||||||
\(996\) | 0 | 0 | ||||||||
\(997\) | 38.0000 | 1.20347 | 0.601736 | − | 0.798695i | \(-0.294476\pi\) | ||||
0.601736 | + | 0.798695i | \(0.294476\pi\) | |||||||
\(998\) | 0 | 0 | ||||||||
\(999\) | 0 | 0 |
(See \(a_n\) instead)
(See \(a_n\) instead)
(See \(a_n\) instead)
(See only \(a_p\))
(See only \(a_p\))
(See only \(a_p\))
Twists
By twisting character | |||||||
---|---|---|---|---|---|---|---|
Char | Parity | Ord | Type | Twist | Min | Dim | |
1.1 | even | 1 | trivial | 1872.2.a.e.1.1 | 1 | ||
3.2 | odd | 2 | 624.2.a.d.1.1 | 1 | |||
4.3 | odd | 2 | 936.2.a.b.1.1 | 1 | |||
8.3 | odd | 2 | 7488.2.a.bs.1.1 | 1 | |||
8.5 | even | 2 | 7488.2.a.br.1.1 | 1 | |||
12.11 | even | 2 | 312.2.a.f.1.1 | ✓ | 1 | ||
24.5 | odd | 2 | 2496.2.a.s.1.1 | 1 | |||
24.11 | even | 2 | 2496.2.a.c.1.1 | 1 | |||
39.38 | odd | 2 | 8112.2.a.f.1.1 | 1 | |||
60.59 | even | 2 | 7800.2.a.d.1.1 | 1 | |||
156.47 | odd | 4 | 4056.2.c.h.337.2 | 2 | |||
156.83 | odd | 4 | 4056.2.c.h.337.1 | 2 | |||
156.155 | even | 2 | 4056.2.a.m.1.1 | 1 |
By twisted newform | |||||||
---|---|---|---|---|---|---|---|
Twist | Min | Dim | Char | Parity | Ord | Type | |
312.2.a.f.1.1 | ✓ | 1 | 12.11 | even | 2 | ||
624.2.a.d.1.1 | 1 | 3.2 | odd | 2 | |||
936.2.a.b.1.1 | 1 | 4.3 | odd | 2 | |||
1872.2.a.e.1.1 | 1 | 1.1 | even | 1 | trivial | ||
2496.2.a.c.1.1 | 1 | 24.11 | even | 2 | |||
2496.2.a.s.1.1 | 1 | 24.5 | odd | 2 | |||
4056.2.a.m.1.1 | 1 | 156.155 | even | 2 | |||
4056.2.c.h.337.1 | 2 | 156.83 | odd | 4 | |||
4056.2.c.h.337.2 | 2 | 156.47 | odd | 4 | |||
7488.2.a.br.1.1 | 1 | 8.5 | even | 2 | |||
7488.2.a.bs.1.1 | 1 | 8.3 | odd | 2 | |||
7800.2.a.d.1.1 | 1 | 60.59 | even | 2 | |||
8112.2.a.f.1.1 | 1 | 39.38 | odd | 2 |