Properties

Label 1872.2.d.d.287.4
Level $1872$
Weight $2$
Character 1872.287
Analytic conductor $14.948$
Analytic rank $0$
Dimension $8$
Inner twists $4$

Related objects

Downloads

Learn more

Show commands: Magma / PariGP / SageMath

Newspace parameters

comment: Compute space of new eigenforms
 
[N,k,chi] = [1872,2,Mod(287,1872)]
 
mf = mfinit([N,k,chi],0)
 
lf = mfeigenbasis(mf)
 
from sage.modular.dirichlet import DirichletCharacter
 
H = DirichletGroup(1872, base_ring=CyclotomicField(2))
 
chi = DirichletCharacter(H, H._module([1, 0, 1, 0]))
 
N = Newforms(chi, 2, names="a")
 
//Please install CHIMP (https://github.com/edgarcosta/CHIMP) if you want to run this code
 
chi := DirichletCharacter("1872.287");
 
S:= CuspForms(chi, 2);
 
N := Newforms(S);
 
Level: \( N \) \(=\) \( 1872 = 2^{4} \cdot 3^{2} \cdot 13 \)
Weight: \( k \) \(=\) \( 2 \)
Character orbit: \([\chi]\) \(=\) 1872.d (of order \(2\), degree \(1\), minimal)

Newform invariants

comment: select newform
 
sage: f = N[0] # Warning: the index may be different
 
gp: f = lf[1] \\ Warning: the index may be different
 
Self dual: no
Analytic conductor: \(14.9479952584\)
Analytic rank: \(0\)
Dimension: \(8\)
Coefficient field: 8.0.3317760000.8
comment: defining polynomial
 
gp: f.mod \\ as an extension of the character field
 
Defining polynomial: \( x^{8} + 4x^{6} + 7x^{4} + 36x^{2} + 81 \) Copy content Toggle raw display
Coefficient ring: \(\Z[a_1, \ldots, a_{11}]\)
Coefficient ring index: \( 2^{8} \)
Twist minimal: yes
Sato-Tate group: $\mathrm{SU}(2)[C_{2}]$

Embedding invariants

Embedding label 287.4
Root \(-1.40294 + 1.01575i\) of defining polynomial
Character \(\chi\) \(=\) 1872.287
Dual form 1872.2.d.d.287.5

$q$-expansion

comment: q-expansion
 
sage: f.q_expansion() # note that sage often uses an isomorphic number field
 
gp: mfcoefs(f, 20)
 
\(f(q)\) \(=\) \(q-1.41421i q^{5} +3.96812i q^{7} -3.16228 q^{11} +1.00000 q^{13} -5.47723i q^{17} -4.97615i q^{19} +5.61177 q^{23} +3.00000 q^{25} -4.24264i q^{29} +7.43222i q^{31} +5.61177 q^{35} +9.74597 q^{37} +12.3687i q^{41} +3.46410i q^{43} +6.63568 q^{47} -8.74597 q^{49} +2.64880i q^{53} +4.47214i q^{55} +7.34847 q^{59} -7.74597 q^{61} -1.41421i q^{65} +8.44025i q^{67} +13.6730 q^{71} +5.74597 q^{73} -12.5483i q^{77} -1.00803i q^{79} +7.34847 q^{83} -7.74597 q^{85} -12.3687i q^{89} +3.96812i q^{91} -7.03734 q^{95} +13.7460 q^{97} +O(q^{100})\)
\(\operatorname{Tr}(f)(q)\) \(=\) \( 8 q + 8 q^{13} + 24 q^{25} + 16 q^{37} - 8 q^{49} - 16 q^{73} + 48 q^{97}+O(q^{100}) \) Copy content Toggle raw display

Character values

We give the values of \(\chi\) on generators for \(\left(\mathbb{Z}/1872\mathbb{Z}\right)^\times\).

\(n\) \(145\) \(209\) \(469\) \(703\)
\(\chi(n)\) \(1\) \(-1\) \(1\) \(-1\)

Coefficient data

For each \(n\) we display the coefficients of the \(q\)-expansion \(a_n\), the Satake parameters \(\alpha_p\), and the Satake angles \(\theta_p = \textrm{Arg}(\alpha_p)\).



Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))
Significant digits:
\(n\) \(a_n\) \(a_n / n^{(k-1)/2}\) \( \alpha_n \) \( \theta_n \)
\(p\) \(a_p\) \(a_p / p^{(k-1)/2}\) \( \alpha_p\) \( \theta_p \)
\(2\) 0 0
\(3\) 0 0
\(4\) 0 0
\(5\) − 1.41421i − 0.632456i −0.948683 0.316228i \(-0.897584\pi\)
0.948683 0.316228i \(-0.102416\pi\)
\(6\) 0 0
\(7\) 3.96812i 1.49981i 0.661547 + 0.749904i \(0.269900\pi\)
−0.661547 + 0.749904i \(0.730100\pi\)
\(8\) 0 0
\(9\) 0 0
\(10\) 0 0
\(11\) −3.16228 −0.953463 −0.476731 0.879049i \(-0.658179\pi\)
−0.476731 + 0.879049i \(0.658179\pi\)
\(12\) 0 0
\(13\) 1.00000 0.277350
\(14\) 0 0
\(15\) 0 0
\(16\) 0 0
\(17\) − 5.47723i − 1.32842i −0.747545 0.664211i \(-0.768768\pi\)
0.747545 0.664211i \(-0.231232\pi\)
\(18\) 0 0
\(19\) − 4.97615i − 1.14161i −0.821086 0.570804i \(-0.806632\pi\)
0.821086 0.570804i \(-0.193368\pi\)
\(20\) 0 0
\(21\) 0 0
\(22\) 0 0
\(23\) 5.61177 1.17013 0.585067 0.810985i \(-0.301068\pi\)
0.585067 + 0.810985i \(0.301068\pi\)
\(24\) 0 0
\(25\) 3.00000 0.600000
\(26\) 0 0
\(27\) 0 0
\(28\) 0 0
\(29\) − 4.24264i − 0.787839i −0.919145 0.393919i \(-0.871119\pi\)
0.919145 0.393919i \(-0.128881\pi\)
\(30\) 0 0
\(31\) 7.43222i 1.33487i 0.744670 + 0.667433i \(0.232607\pi\)
−0.744670 + 0.667433i \(0.767393\pi\)
\(32\) 0 0
\(33\) 0 0
\(34\) 0 0
\(35\) 5.61177 0.948562
\(36\) 0 0
\(37\) 9.74597 1.60223 0.801114 0.598512i \(-0.204241\pi\)
0.801114 + 0.598512i \(0.204241\pi\)
\(38\) 0 0
\(39\) 0 0
\(40\) 0 0
\(41\) 12.3687i 1.93166i 0.259175 + 0.965830i \(0.416549\pi\)
−0.259175 + 0.965830i \(0.583451\pi\)
\(42\) 0 0
\(43\) 3.46410i 0.528271i 0.964486 + 0.264135i \(0.0850865\pi\)
−0.964486 + 0.264135i \(0.914913\pi\)
\(44\) 0 0
\(45\) 0 0
\(46\) 0 0
\(47\) 6.63568 0.967914 0.483957 0.875092i \(-0.339199\pi\)
0.483957 + 0.875092i \(0.339199\pi\)
\(48\) 0 0
\(49\) −8.74597 −1.24942
\(50\) 0 0
\(51\) 0 0
\(52\) 0 0
\(53\) 2.64880i 0.363840i 0.983313 + 0.181920i \(0.0582313\pi\)
−0.983313 + 0.181920i \(0.941769\pi\)
\(54\) 0 0
\(55\) 4.47214i 0.603023i
\(56\) 0 0
\(57\) 0 0
\(58\) 0 0
\(59\) 7.34847 0.956689 0.478345 0.878172i \(-0.341237\pi\)
0.478345 + 0.878172i \(0.341237\pi\)
\(60\) 0 0
\(61\) −7.74597 −0.991769 −0.495885 0.868388i \(-0.665156\pi\)
−0.495885 + 0.868388i \(0.665156\pi\)
\(62\) 0 0
\(63\) 0 0
\(64\) 0 0
\(65\) − 1.41421i − 0.175412i
\(66\) 0 0
\(67\) 8.44025i 1.03114i 0.856847 + 0.515571i \(0.172420\pi\)
−0.856847 + 0.515571i \(0.827580\pi\)
\(68\) 0 0
\(69\) 0 0
\(70\) 0 0
\(71\) 13.6730 1.62269 0.811345 0.584568i \(-0.198736\pi\)
0.811345 + 0.584568i \(0.198736\pi\)
\(72\) 0 0
\(73\) 5.74597 0.672515 0.336257 0.941770i \(-0.390839\pi\)
0.336257 + 0.941770i \(0.390839\pi\)
\(74\) 0 0
\(75\) 0 0
\(76\) 0 0
\(77\) − 12.5483i − 1.43001i
\(78\) 0 0
\(79\) − 1.00803i − 0.113413i −0.998391 0.0567064i \(-0.981940\pi\)
0.998391 0.0567064i \(-0.0180599\pi\)
\(80\) 0 0
\(81\) 0 0
\(82\) 0 0
\(83\) 7.34847 0.806599 0.403300 0.915068i \(-0.367863\pi\)
0.403300 + 0.915068i \(0.367863\pi\)
\(84\) 0 0
\(85\) −7.74597 −0.840168
\(86\) 0 0
\(87\) 0 0
\(88\) 0 0
\(89\) − 12.3687i − 1.31108i −0.755162 0.655538i \(-0.772442\pi\)
0.755162 0.655538i \(-0.227558\pi\)
\(90\) 0 0
\(91\) 3.96812i 0.415972i
\(92\) 0 0
\(93\) 0 0
\(94\) 0 0
\(95\) −7.03734 −0.722016
\(96\) 0 0
\(97\) 13.7460 1.39569 0.697846 0.716248i \(-0.254142\pi\)
0.697846 + 0.716248i \(0.254142\pi\)
\(98\) 0 0
\(99\) 0 0
\(100\) 0 0
\(101\) − 16.7909i − 1.67076i −0.549673 0.835380i \(-0.685248\pi\)
0.549673 0.835380i \(-0.314752\pi\)
\(102\) 0 0
\(103\) 1.44803i 0.142679i 0.997452 + 0.0713395i \(0.0227274\pi\)
−0.997452 + 0.0713395i \(0.977273\pi\)
\(104\) 0 0
\(105\) 0 0
\(106\) 0 0
\(107\) −7.03734 −0.680326 −0.340163 0.940367i \(-0.610482\pi\)
−0.340163 + 0.940367i \(0.610482\pi\)
\(108\) 0 0
\(109\) −3.74597 −0.358799 −0.179399 0.983776i \(-0.557415\pi\)
−0.179399 + 0.983776i \(0.557415\pi\)
\(110\) 0 0
\(111\) 0 0
\(112\) 0 0
\(113\) 16.7909i 1.57956i 0.613391 + 0.789779i \(0.289805\pi\)
−0.613391 + 0.789779i \(0.710195\pi\)
\(114\) 0 0
\(115\) − 7.93624i − 0.740058i
\(116\) 0 0
\(117\) 0 0
\(118\) 0 0
\(119\) 21.7343 1.99238
\(120\) 0 0
\(121\) −1.00000 −0.0909091
\(122\) 0 0
\(123\) 0 0
\(124\) 0 0
\(125\) − 11.3137i − 1.01193i
\(126\) 0 0
\(127\) − 14.8644i − 1.31901i −0.751702 0.659503i \(-0.770767\pi\)
0.751702 0.659503i \(-0.229233\pi\)
\(128\) 0 0
\(129\) 0 0
\(130\) 0 0
\(131\) 2.13836 0.186830 0.0934149 0.995627i \(-0.470222\pi\)
0.0934149 + 0.995627i \(0.470222\pi\)
\(132\) 0 0
\(133\) 19.7460 1.71219
\(134\) 0 0
\(135\) 0 0
\(136\) 0 0
\(137\) − 4.24264i − 0.362473i −0.983440 0.181237i \(-0.941990\pi\)
0.983440 0.181237i \(-0.0580100\pi\)
\(138\) 0 0
\(139\) 19.3366i 1.64011i 0.572287 + 0.820054i \(0.306056\pi\)
−0.572287 + 0.820054i \(0.693944\pi\)
\(140\) 0 0
\(141\) 0 0
\(142\) 0 0
\(143\) −3.16228 −0.264443
\(144\) 0 0
\(145\) −6.00000 −0.498273
\(146\) 0 0
\(147\) 0 0
\(148\) 0 0
\(149\) − 9.89949i − 0.810998i −0.914095 0.405499i \(-0.867098\pi\)
0.914095 0.405499i \(-0.132902\pi\)
\(150\) 0 0
\(151\) 7.43222i 0.604826i 0.953177 + 0.302413i \(0.0977921\pi\)
−0.953177 + 0.302413i \(0.902208\pi\)
\(152\) 0 0
\(153\) 0 0
\(154\) 0 0
\(155\) 10.5107 0.844244
\(156\) 0 0
\(157\) 15.4919 1.23639 0.618195 0.786024i \(-0.287864\pi\)
0.618195 + 0.786024i \(0.287864\pi\)
\(158\) 0 0
\(159\) 0 0
\(160\) 0 0
\(161\) 22.2682i 1.75498i
\(162\) 0 0
\(163\) − 10.8963i − 0.853466i −0.904378 0.426733i \(-0.859664\pi\)
0.904378 0.426733i \(-0.140336\pi\)
\(164\) 0 0
\(165\) 0 0
\(166\) 0 0
\(167\) −17.8592 −1.38199 −0.690994 0.722861i \(-0.742827\pi\)
−0.690994 + 0.722861i \(0.742827\pi\)
\(168\) 0 0
\(169\) 1.00000 0.0769231
\(170\) 0 0
\(171\) 0 0
\(172\) 0 0
\(173\) 2.64880i 0.201384i 0.994918 + 0.100692i \(0.0321057\pi\)
−0.994918 + 0.100692i \(0.967894\pi\)
\(174\) 0 0
\(175\) 11.9044i 0.899885i
\(176\) 0 0
\(177\) 0 0
\(178\) 0 0
\(179\) −18.2609 −1.36488 −0.682441 0.730941i \(-0.739082\pi\)
−0.682441 + 0.730941i \(0.739082\pi\)
\(180\) 0 0
\(181\) 14.0000 1.04061 0.520306 0.853980i \(-0.325818\pi\)
0.520306 + 0.853980i \(0.325818\pi\)
\(182\) 0 0
\(183\) 0 0
\(184\) 0 0
\(185\) − 13.7829i − 1.01334i
\(186\) 0 0
\(187\) 17.3205i 1.26660i
\(188\) 0 0
\(189\) 0 0
\(190\) 0 0
\(191\) −15.4097 −1.11501 −0.557504 0.830174i \(-0.688241\pi\)
−0.557504 + 0.830174i \(0.688241\pi\)
\(192\) 0 0
\(193\) −11.7460 −0.845493 −0.422747 0.906248i \(-0.638934\pi\)
−0.422747 + 0.906248i \(0.638934\pi\)
\(194\) 0 0
\(195\) 0 0
\(196\) 0 0
\(197\) − 1.41421i − 0.100759i −0.998730 0.0503793i \(-0.983957\pi\)
0.998730 0.0503793i \(-0.0160430\pi\)
\(198\) 0 0
\(199\) 1.00803i 0.0714577i 0.999362 + 0.0357288i \(0.0113753\pi\)
−0.999362 + 0.0357288i \(0.988625\pi\)
\(200\) 0 0
\(201\) 0 0
\(202\) 0 0
\(203\) 16.8353 1.18161
\(204\) 0 0
\(205\) 17.4919 1.22169
\(206\) 0 0
\(207\) 0 0
\(208\) 0 0
\(209\) 15.7360i 1.08848i
\(210\) 0 0
\(211\) − 9.95231i − 0.685145i −0.939491 0.342573i \(-0.888702\pi\)
0.939491 0.342573i \(-0.111298\pi\)
\(212\) 0 0
\(213\) 0 0
\(214\) 0 0
\(215\) 4.89898 0.334108
\(216\) 0 0
\(217\) −29.4919 −2.00204
\(218\) 0 0
\(219\) 0 0
\(220\) 0 0
\(221\) − 5.47723i − 0.368438i
\(222\) 0 0
\(223\) − 9.44829i − 0.632704i −0.948642 0.316352i \(-0.897542\pi\)
0.948642 0.316352i \(-0.102458\pi\)
\(224\) 0 0
\(225\) 0 0
\(226\) 0 0
\(227\) −4.58785 −0.304507 −0.152253 0.988342i \(-0.548653\pi\)
−0.152253 + 0.988342i \(0.548653\pi\)
\(228\) 0 0
\(229\) −5.49193 −0.362917 −0.181459 0.983399i \(-0.558082\pi\)
−0.181459 + 0.983399i \(0.558082\pi\)
\(230\) 0 0
\(231\) 0 0
\(232\) 0 0
\(233\) 1.41421i 0.0926482i 0.998926 + 0.0463241i \(0.0147507\pi\)
−0.998926 + 0.0463241i \(0.985249\pi\)
\(234\) 0 0
\(235\) − 9.38427i − 0.612162i
\(236\) 0 0
\(237\) 0 0
\(238\) 0 0
\(239\) 10.1996 0.659759 0.329879 0.944023i \(-0.392992\pi\)
0.329879 + 0.944023i \(0.392992\pi\)
\(240\) 0 0
\(241\) −12.0000 −0.772988 −0.386494 0.922292i \(-0.626314\pi\)
−0.386494 + 0.922292i \(0.626314\pi\)
\(242\) 0 0
\(243\) 0 0
\(244\) 0 0
\(245\) 12.3687i 0.790205i
\(246\) 0 0
\(247\) − 4.97615i − 0.316625i
\(248\) 0 0
\(249\) 0 0
\(250\) 0 0
\(251\) 25.2982 1.59681 0.798405 0.602121i \(-0.205678\pi\)
0.798405 + 0.602121i \(0.205678\pi\)
\(252\) 0 0
\(253\) −17.7460 −1.11568
\(254\) 0 0
\(255\) 0 0
\(256\) 0 0
\(257\) − 1.05496i − 0.0658064i −0.999459 0.0329032i \(-0.989525\pi\)
0.999459 0.0329032i \(-0.0104753\pi\)
\(258\) 0 0
\(259\) 38.6732i 2.40303i
\(260\) 0 0
\(261\) 0 0
\(262\) 0 0
\(263\) 2.85115 0.175810 0.0879048 0.996129i \(-0.471983\pi\)
0.0879048 + 0.996129i \(0.471983\pi\)
\(264\) 0 0
\(265\) 3.74597 0.230113
\(266\) 0 0
\(267\) 0 0
\(268\) 0 0
\(269\) 26.5108i 1.61639i 0.588914 + 0.808196i \(0.299556\pi\)
−0.588914 + 0.808196i \(0.700444\pi\)
\(270\) 0 0
\(271\) − 15.8085i − 0.960295i −0.877188 0.480148i \(-0.840583\pi\)
0.877188 0.480148i \(-0.159417\pi\)
\(272\) 0 0
\(273\) 0 0
\(274\) 0 0
\(275\) −9.48683 −0.572078
\(276\) 0 0
\(277\) 6.25403 0.375768 0.187884 0.982191i \(-0.439837\pi\)
0.187884 + 0.982191i \(0.439837\pi\)
\(278\) 0 0
\(279\) 0 0
\(280\) 0 0
\(281\) 9.54024i 0.569123i 0.958658 + 0.284561i \(0.0918480\pi\)
−0.958658 + 0.284561i \(0.908152\pi\)
\(282\) 0 0
\(283\) − 11.8403i − 0.703835i −0.936031 0.351918i \(-0.885530\pi\)
0.936031 0.351918i \(-0.114470\pi\)
\(284\) 0 0
\(285\) 0 0
\(286\) 0 0
\(287\) −49.0803 −2.89712
\(288\) 0 0
\(289\) −13.0000 −0.764706
\(290\) 0 0
\(291\) 0 0
\(292\) 0 0
\(293\) 1.41421i 0.0826192i 0.999146 + 0.0413096i \(0.0131530\pi\)
−0.999146 + 0.0413096i \(0.986847\pi\)
\(294\) 0 0
\(295\) − 10.3923i − 0.605063i
\(296\) 0 0
\(297\) 0 0
\(298\) 0 0
\(299\) 5.61177 0.324537
\(300\) 0 0
\(301\) −13.7460 −0.792304
\(302\) 0 0
\(303\) 0 0
\(304\) 0 0
\(305\) 10.9545i 0.627250i
\(306\) 0 0
\(307\) − 23.3047i − 1.33007i −0.746813 0.665035i \(-0.768417\pi\)
0.746813 0.665035i \(-0.231583\pi\)
\(308\) 0 0
\(309\) 0 0
\(310\) 0 0
\(311\) −26.0110 −1.47495 −0.737475 0.675375i \(-0.763982\pi\)
−0.737475 + 0.675375i \(0.763982\pi\)
\(312\) 0 0
\(313\) −23.4919 −1.32784 −0.663921 0.747802i \(-0.731109\pi\)
−0.663921 + 0.747802i \(0.731109\pi\)
\(314\) 0 0
\(315\) 0 0
\(316\) 0 0
\(317\) − 9.89949i − 0.556011i −0.960579 0.278006i \(-0.910327\pi\)
0.960579 0.278006i \(-0.0896734\pi\)
\(318\) 0 0
\(319\) 13.4164i 0.751175i
\(320\) 0 0
\(321\) 0 0
\(322\) 0 0
\(323\) −27.2555 −1.51654
\(324\) 0 0
\(325\) 3.00000 0.166410
\(326\) 0 0
\(327\) 0 0
\(328\) 0 0
\(329\) 26.3312i 1.45168i
\(330\) 0 0
\(331\) 8.44025i 0.463918i 0.972726 + 0.231959i \(0.0745136\pi\)
−0.972726 + 0.231959i \(0.925486\pi\)
\(332\) 0 0
\(333\) 0 0
\(334\) 0 0
\(335\) 11.9363 0.652151
\(336\) 0 0
\(337\) 27.2379 1.48374 0.741871 0.670542i \(-0.233938\pi\)
0.741871 + 0.670542i \(0.233938\pi\)
\(338\) 0 0
\(339\) 0 0
\(340\) 0 0
\(341\) − 23.5027i − 1.27274i
\(342\) 0 0
\(343\) − 6.92820i − 0.374088i
\(344\) 0 0
\(345\) 0 0
\(346\) 0 0
\(347\) −6.94681 −0.372924 −0.186462 0.982462i \(-0.559702\pi\)
−0.186462 + 0.982462i \(0.559702\pi\)
\(348\) 0 0
\(349\) −8.00000 −0.428230 −0.214115 0.976808i \(-0.568687\pi\)
−0.214115 + 0.976808i \(0.568687\pi\)
\(350\) 0 0
\(351\) 0 0
\(352\) 0 0
\(353\) − 6.35255i − 0.338112i −0.985606 0.169056i \(-0.945928\pi\)
0.985606 0.169056i \(-0.0540719\pi\)
\(354\) 0 0
\(355\) − 19.3366i − 1.02628i
\(356\) 0 0
\(357\) 0 0
\(358\) 0 0
\(359\) 27.6572 1.45969 0.729845 0.683613i \(-0.239592\pi\)
0.729845 + 0.683613i \(0.239592\pi\)
\(360\) 0 0
\(361\) −5.76210 −0.303268
\(362\) 0 0
\(363\) 0 0
\(364\) 0 0
\(365\) − 8.12602i − 0.425336i
\(366\) 0 0
\(367\) − 20.3446i − 1.06198i −0.847378 0.530990i \(-0.821820\pi\)
0.847378 0.530990i \(-0.178180\pi\)
\(368\) 0 0
\(369\) 0 0
\(370\) 0 0
\(371\) −10.5107 −0.545691
\(372\) 0 0
\(373\) 34.9839 1.81140 0.905698 0.423924i \(-0.139347\pi\)
0.905698 + 0.423924i \(0.139347\pi\)
\(374\) 0 0
\(375\) 0 0
\(376\) 0 0
\(377\) − 4.24264i − 0.218507i
\(378\) 0 0
\(379\) − 18.8326i − 0.967364i −0.875244 0.483682i \(-0.839299\pi\)
0.875244 0.483682i \(-0.160701\pi\)
\(380\) 0 0
\(381\) 0 0
\(382\) 0 0
\(383\) −9.48683 −0.484755 −0.242377 0.970182i \(-0.577927\pi\)
−0.242377 + 0.970182i \(0.577927\pi\)
\(384\) 0 0
\(385\) −17.7460 −0.904418
\(386\) 0 0
\(387\) 0 0
\(388\) 0 0
\(389\) − 15.5563i − 0.788738i −0.918952 0.394369i \(-0.870963\pi\)
0.918952 0.394369i \(-0.129037\pi\)
\(390\) 0 0
\(391\) − 30.7369i − 1.55443i
\(392\) 0 0
\(393\) 0 0
\(394\) 0 0
\(395\) −1.42558 −0.0717285
\(396\) 0 0
\(397\) 19.4919 0.978272 0.489136 0.872208i \(-0.337312\pi\)
0.489136 + 0.872208i \(0.337312\pi\)
\(398\) 0 0
\(399\) 0 0
\(400\) 0 0
\(401\) 26.8701i 1.34183i 0.741536 + 0.670913i \(0.234098\pi\)
−0.741536 + 0.670913i \(0.765902\pi\)
\(402\) 0 0
\(403\) 7.43222i 0.370225i
\(404\) 0 0
\(405\) 0 0
\(406\) 0 0
\(407\) −30.8195 −1.52766
\(408\) 0 0
\(409\) 6.25403 0.309242 0.154621 0.987974i \(-0.450584\pi\)
0.154621 + 0.987974i \(0.450584\pi\)
\(410\) 0 0
\(411\) 0 0
\(412\) 0 0
\(413\) 29.1596i 1.43485i
\(414\) 0 0
\(415\) − 10.3923i − 0.510138i
\(416\) 0 0
\(417\) 0 0
\(418\) 0 0
\(419\) −7.03734 −0.343797 −0.171898 0.985115i \(-0.554990\pi\)
−0.171898 + 0.985115i \(0.554990\pi\)
\(420\) 0 0
\(421\) 30.0000 1.46211 0.731055 0.682318i \(-0.239028\pi\)
0.731055 + 0.682318i \(0.239028\pi\)
\(422\) 0 0
\(423\) 0 0
\(424\) 0 0
\(425\) − 16.4317i − 0.797053i
\(426\) 0 0
\(427\) − 30.7369i − 1.48746i
\(428\) 0 0
\(429\) 0 0
\(430\) 0 0
\(431\) −5.21011 −0.250962 −0.125481 0.992096i \(-0.540047\pi\)
−0.125481 + 0.992096i \(0.540047\pi\)
\(432\) 0 0
\(433\) −26.0000 −1.24948 −0.624740 0.780833i \(-0.714795\pi\)
−0.624740 + 0.780833i \(0.714795\pi\)
\(434\) 0 0
\(435\) 0 0
\(436\) 0 0
\(437\) − 27.9250i − 1.33583i
\(438\) 0 0
\(439\) 3.46410i 0.165333i 0.996577 + 0.0826663i \(0.0263436\pi\)
−0.996577 + 0.0826663i \(0.973656\pi\)
\(440\) 0 0
\(441\) 0 0
\(442\) 0 0
\(443\) −35.0056 −1.66317 −0.831584 0.555399i \(-0.812566\pi\)
−0.831584 + 0.555399i \(0.812566\pi\)
\(444\) 0 0
\(445\) −17.4919 −0.829197
\(446\) 0 0
\(447\) 0 0
\(448\) 0 0
\(449\) 15.1971i 0.717195i 0.933492 + 0.358598i \(0.116745\pi\)
−0.933492 + 0.358598i \(0.883255\pi\)
\(450\) 0 0
\(451\) − 39.1132i − 1.84177i
\(452\) 0 0
\(453\) 0 0
\(454\) 0 0
\(455\) 5.61177 0.263084
\(456\) 0 0
\(457\) −1.74597 −0.0816729 −0.0408364 0.999166i \(-0.513002\pi\)
−0.0408364 + 0.999166i \(0.513002\pi\)
\(458\) 0 0
\(459\) 0 0
\(460\) 0 0
\(461\) − 12.3687i − 0.576066i −0.957620 0.288033i \(-0.906999\pi\)
0.957620 0.288033i \(-0.0930013\pi\)
\(462\) 0 0
\(463\) 34.7050i 1.61288i 0.591316 + 0.806440i \(0.298609\pi\)
−0.591316 + 0.806440i \(0.701391\pi\)
\(464\) 0 0
\(465\) 0 0
\(466\) 0 0
\(467\) 35.0962 1.62406 0.812029 0.583617i \(-0.198363\pi\)
0.812029 + 0.583617i \(0.198363\pi\)
\(468\) 0 0
\(469\) −33.4919 −1.54651
\(470\) 0 0
\(471\) 0 0
\(472\) 0 0
\(473\) − 10.9545i − 0.503686i
\(474\) 0 0
\(475\) − 14.9285i − 0.684965i
\(476\) 0 0
\(477\) 0 0
\(478\) 0 0
\(479\) −15.7209 −0.718304 −0.359152 0.933279i \(-0.616934\pi\)
−0.359152 + 0.933279i \(0.616934\pi\)
\(480\) 0 0
\(481\) 9.74597 0.444378
\(482\) 0 0
\(483\) 0 0
\(484\) 0 0
\(485\) − 19.4397i − 0.882713i
\(486\) 0 0
\(487\) 25.3208i 1.14739i 0.819068 + 0.573697i \(0.194491\pi\)
−0.819068 + 0.573697i \(0.805509\pi\)
\(488\) 0 0
\(489\) 0 0
\(490\) 0 0
\(491\) −42.0430 −1.89737 −0.948687 0.316217i \(-0.897587\pi\)
−0.948687 + 0.316217i \(0.897587\pi\)
\(492\) 0 0
\(493\) −23.2379 −1.04658
\(494\) 0 0
\(495\) 0 0
\(496\) 0 0
\(497\) 54.2562i 2.43372i
\(498\) 0 0
\(499\) 13.3524i 0.597735i 0.954295 + 0.298868i \(0.0966089\pi\)
−0.954295 + 0.298868i \(0.903391\pi\)
\(500\) 0 0
\(501\) 0 0
\(502\) 0 0
\(503\) −35.7184 −1.59261 −0.796303 0.604898i \(-0.793214\pi\)
−0.796303 + 0.604898i \(0.793214\pi\)
\(504\) 0 0
\(505\) −23.7460 −1.05668
\(506\) 0 0
\(507\) 0 0
\(508\) 0 0
\(509\) 3.88338i 0.172128i 0.996290 + 0.0860640i \(0.0274289\pi\)
−0.996290 + 0.0860640i \(0.972571\pi\)
\(510\) 0 0
\(511\) 22.8007i 1.00864i
\(512\) 0 0
\(513\) 0 0
\(514\) 0 0
\(515\) 2.04783 0.0902381
\(516\) 0 0
\(517\) −20.9839 −0.922869
\(518\) 0 0
\(519\) 0 0
\(520\) 0 0
\(521\) 17.1502i 0.751364i 0.926749 + 0.375682i \(0.122591\pi\)
−0.926749 + 0.375682i \(0.877409\pi\)
\(522\) 0 0
\(523\) 8.50427i 0.371866i 0.982562 + 0.185933i \(0.0595307\pi\)
−0.982562 + 0.185933i \(0.940469\pi\)
\(524\) 0 0
\(525\) 0 0
\(526\) 0 0
\(527\) 40.7079 1.77327
\(528\) 0 0
\(529\) 8.49193 0.369214
\(530\) 0 0
\(531\) 0 0
\(532\) 0 0
\(533\) 12.3687i 0.535746i
\(534\) 0 0
\(535\) 9.95231i 0.430276i
\(536\) 0 0
\(537\) 0 0
\(538\) 0 0
\(539\) 27.6572 1.19128
\(540\) 0 0
\(541\) 9.49193 0.408090 0.204045 0.978962i \(-0.434591\pi\)
0.204045 + 0.978962i \(0.434591\pi\)
\(542\) 0 0
\(543\) 0 0
\(544\) 0 0
\(545\) 5.29760i 0.226924i
\(546\) 0 0
\(547\) 40.2492i 1.72093i 0.509507 + 0.860466i \(0.329828\pi\)
−0.509507 + 0.860466i \(0.670172\pi\)
\(548\) 0 0
\(549\) 0 0
\(550\) 0 0
\(551\) −21.1120 −0.899403
\(552\) 0 0
\(553\) 4.00000 0.170097
\(554\) 0 0
\(555\) 0 0
\(556\) 0 0
\(557\) 24.4009i 1.03390i 0.856016 + 0.516949i \(0.172932\pi\)
−0.856016 + 0.516949i \(0.827068\pi\)
\(558\) 0 0
\(559\) 3.46410i 0.146516i
\(560\) 0 0
\(561\) 0 0
\(562\) 0 0
\(563\) −34.3834 −1.44909 −0.724544 0.689229i \(-0.757949\pi\)
−0.724544 + 0.689229i \(0.757949\pi\)
\(564\) 0 0
\(565\) 23.7460 0.999000
\(566\) 0 0
\(567\) 0 0
\(568\) 0 0
\(569\) 31.8084i 1.33348i 0.745292 + 0.666739i \(0.232310\pi\)
−0.745292 + 0.666739i \(0.767690\pi\)
\(570\) 0 0
\(571\) 2.89607i 0.121197i 0.998162 + 0.0605983i \(0.0193009\pi\)
−0.998162 + 0.0605983i \(0.980699\pi\)
\(572\) 0 0
\(573\) 0 0
\(574\) 0 0
\(575\) 16.8353 0.702081
\(576\) 0 0
\(577\) −33.4919 −1.39429 −0.697144 0.716931i \(-0.745546\pi\)
−0.697144 + 0.716931i \(0.745546\pi\)
\(578\) 0 0
\(579\) 0 0
\(580\) 0 0
\(581\) 29.1596i 1.20974i
\(582\) 0 0
\(583\) − 8.37624i − 0.346908i
\(584\) 0 0
\(585\) 0 0
\(586\) 0 0
\(587\) −24.8966 −1.02759 −0.513795 0.857913i \(-0.671761\pi\)
−0.513795 + 0.857913i \(0.671761\pi\)
\(588\) 0 0
\(589\) 36.9839 1.52389
\(590\) 0 0
\(591\) 0 0
\(592\) 0 0
\(593\) − 15.1971i − 0.624070i −0.950071 0.312035i \(-0.898989\pi\)
0.950071 0.312035i \(-0.101011\pi\)
\(594\) 0 0
\(595\) − 30.7369i − 1.26009i
\(596\) 0 0
\(597\) 0 0
\(598\) 0 0
\(599\) 5.70230 0.232990 0.116495 0.993191i \(-0.462834\pi\)
0.116495 + 0.993191i \(0.462834\pi\)
\(600\) 0 0
\(601\) 27.4919 1.12142 0.560710 0.828012i \(-0.310528\pi\)
0.560710 + 0.828012i \(0.310528\pi\)
\(602\) 0 0
\(603\) 0 0
\(604\) 0 0
\(605\) 1.41421i 0.0574960i
\(606\) 0 0
\(607\) − 37.2251i − 1.51092i −0.655194 0.755461i \(-0.727413\pi\)
0.655194 0.755461i \(-0.272587\pi\)
\(608\) 0 0
\(609\) 0 0
\(610\) 0 0
\(611\) 6.63568 0.268451
\(612\) 0 0
\(613\) 5.74597 0.232077 0.116039 0.993245i \(-0.462980\pi\)
0.116039 + 0.993245i \(0.462980\pi\)
\(614\) 0 0
\(615\) 0 0
\(616\) 0 0
\(617\) − 28.9800i − 1.16669i −0.812225 0.583345i \(-0.801744\pi\)
0.812225 0.583345i \(-0.198256\pi\)
\(618\) 0 0
\(619\) 26.2008i 1.05310i 0.850145 + 0.526549i \(0.176514\pi\)
−0.850145 + 0.526549i \(0.823486\pi\)
\(620\) 0 0
\(621\) 0 0
\(622\) 0 0
\(623\) 49.0803 1.96636
\(624\) 0 0
\(625\) −1.00000 −0.0400000
\(626\) 0 0
\(627\) 0 0
\(628\) 0 0
\(629\) − 53.3809i − 2.12843i
\(630\) 0 0
\(631\) − 26.3288i − 1.04813i −0.851677 0.524066i \(-0.824414\pi\)
0.851677 0.524066i \(-0.175586\pi\)
\(632\) 0 0
\(633\) 0 0
\(634\) 0 0
\(635\) −21.0215 −0.834213
\(636\) 0 0
\(637\) −8.74597 −0.346528
\(638\) 0 0
\(639\) 0 0
\(640\) 0 0
\(641\) 11.8526i 0.468149i 0.972219 + 0.234075i \(0.0752060\pi\)
−0.972219 + 0.234075i \(0.924794\pi\)
\(642\) 0 0
\(643\) 3.40008i 0.134086i 0.997750 + 0.0670431i \(0.0213565\pi\)
−0.997750 + 0.0670431i \(0.978644\pi\)
\(644\) 0 0
\(645\) 0 0
\(646\) 0 0
\(647\) 33.0484 1.29926 0.649632 0.760248i \(-0.274923\pi\)
0.649632 + 0.760248i \(0.274923\pi\)
\(648\) 0 0
\(649\) −23.2379 −0.912167
\(650\) 0 0
\(651\) 0 0
\(652\) 0 0
\(653\) 37.1060i 1.45207i 0.687658 + 0.726035i \(0.258639\pi\)
−0.687658 + 0.726035i \(0.741361\pi\)
\(654\) 0 0
\(655\) − 3.02410i − 0.118161i
\(656\) 0 0
\(657\) 0 0
\(658\) 0 0
\(659\) −43.4686 −1.69329 −0.846647 0.532154i \(-0.821383\pi\)
−0.846647 + 0.532154i \(0.821383\pi\)
\(660\) 0 0
\(661\) −22.2540 −0.865582 −0.432791 0.901494i \(-0.642471\pi\)
−0.432791 + 0.901494i \(0.642471\pi\)
\(662\) 0 0
\(663\) 0 0
\(664\) 0 0
\(665\) − 27.9250i − 1.08289i
\(666\) 0 0
\(667\) − 23.8087i − 0.921877i
\(668\) 0 0
\(669\) 0 0
\(670\) 0 0
\(671\) 24.4949 0.945615
\(672\) 0 0
\(673\) −33.2379 −1.28123 −0.640613 0.767864i \(-0.721320\pi\)
−0.640613 + 0.767864i \(0.721320\pi\)
\(674\) 0 0
\(675\) 0 0
\(676\) 0 0
\(677\) 10.7748i 0.414110i 0.978329 + 0.207055i \(0.0663879\pi\)
−0.978329 + 0.207055i \(0.933612\pi\)
\(678\) 0 0
\(679\) 54.5456i 2.09327i
\(680\) 0 0
\(681\) 0 0
\(682\) 0 0
\(683\) −48.0564 −1.83883 −0.919414 0.393291i \(-0.871336\pi\)
−0.919414 + 0.393291i \(0.871336\pi\)
\(684\) 0 0
\(685\) −6.00000 −0.229248
\(686\) 0 0
\(687\) 0 0
\(688\) 0 0
\(689\) 2.64880i 0.100911i
\(690\) 0 0
\(691\) 33.2570i 1.26516i 0.774497 + 0.632578i \(0.218003\pi\)
−0.774497 + 0.632578i \(0.781997\pi\)
\(692\) 0 0
\(693\) 0 0
\(694\) 0 0
\(695\) 27.3460 1.03729
\(696\) 0 0
\(697\) 67.7460 2.56606
\(698\) 0 0
\(699\) 0 0
\(700\) 0 0
\(701\) 9.89949i 0.373899i 0.982370 + 0.186949i \(0.0598600\pi\)
−0.982370 + 0.186949i \(0.940140\pi\)
\(702\) 0 0
\(703\) − 48.4974i − 1.82911i
\(704\) 0 0
\(705\) 0 0
\(706\) 0 0
\(707\) 66.6284 2.50582
\(708\) 0 0
\(709\) 41.4919 1.55826 0.779131 0.626861i \(-0.215661\pi\)
0.779131 + 0.626861i \(0.215661\pi\)
\(710\) 0 0
\(711\) 0 0
\(712\) 0 0
\(713\) 41.7079i 1.56197i
\(714\) 0 0
\(715\) 4.47214i 0.167248i
\(716\) 0 0
\(717\) 0 0
\(718\) 0 0
\(719\) 22.3565 0.833758 0.416879 0.908962i \(-0.363124\pi\)
0.416879 + 0.908962i \(0.363124\pi\)
\(720\) 0 0
\(721\) −5.74597 −0.213991
\(722\) 0 0
\(723\) 0 0
\(724\) 0 0
\(725\) − 12.7279i − 0.472703i
\(726\) 0 0
\(727\) 18.7685i 0.696087i 0.937478 + 0.348043i \(0.113154\pi\)
−0.937478 + 0.348043i \(0.886846\pi\)
\(728\) 0 0
\(729\) 0 0
\(730\) 0 0
\(731\) 18.9737 0.701766
\(732\) 0 0
\(733\) 19.2379 0.710568 0.355284 0.934758i \(-0.384384\pi\)
0.355284 + 0.934758i \(0.384384\pi\)
\(734\) 0 0
\(735\) 0 0
\(736\) 0 0
\(737\) − 26.6904i − 0.983155i
\(738\) 0 0
\(739\) − 19.2726i − 0.708953i −0.935065 0.354476i \(-0.884659\pi\)
0.935065 0.354476i \(-0.115341\pi\)
\(740\) 0 0
\(741\) 0 0
\(742\) 0 0
\(743\) −16.5242 −0.606213 −0.303107 0.952957i \(-0.598024\pi\)
−0.303107 + 0.952957i \(0.598024\pi\)
\(744\) 0 0
\(745\) −14.0000 −0.512920
\(746\) 0 0
\(747\) 0 0
\(748\) 0 0
\(749\) − 27.9250i − 1.02036i
\(750\) 0 0
\(751\) 34.2010i 1.24801i 0.781419 + 0.624006i \(0.214496\pi\)
−0.781419 + 0.624006i \(0.785504\pi\)
\(752\) 0 0
\(753\) 0 0
\(754\) 0 0
\(755\) 10.5107 0.382525
\(756\) 0 0
\(757\) −39.4919 −1.43536 −0.717679 0.696374i \(-0.754796\pi\)
−0.717679 + 0.696374i \(0.754796\pi\)
\(758\) 0 0
\(759\) 0 0
\(760\) 0 0
\(761\) − 46.3098i − 1.67873i −0.543569 0.839364i \(-0.682927\pi\)
0.543569 0.839364i \(-0.317073\pi\)
\(762\) 0 0
\(763\) − 14.8644i − 0.538129i
\(764\) 0 0
\(765\) 0 0
\(766\) 0 0
\(767\) 7.34847 0.265338
\(768\) 0 0
\(769\) 39.7460 1.43328 0.716638 0.697445i \(-0.245680\pi\)
0.716638 + 0.697445i \(0.245680\pi\)
\(770\) 0 0
\(771\) 0 0
\(772\) 0 0
\(773\) − 15.5563i − 0.559523i −0.960070 0.279761i \(-0.909745\pi\)
0.960070 0.279761i \(-0.0902554\pi\)
\(774\) 0 0
\(775\) 22.2967i 0.800920i
\(776\) 0 0
\(777\) 0 0
\(778\) 0 0
\(779\) 61.5484 2.20520
\(780\) 0 0
\(781\) −43.2379 −1.54717
\(782\) 0 0
\(783\) 0 0
\(784\) 0 0
\(785\) − 21.9089i − 0.781962i
\(786\) 0 0
\(787\) 10.4563i 0.372728i 0.982481 + 0.186364i \(0.0596703\pi\)
−0.982481 + 0.186364i \(0.940330\pi\)
\(788\) 0 0
\(789\) 0 0
\(790\) 0 0
\(791\) −66.6284 −2.36903
\(792\) 0 0
\(793\) −7.74597 −0.275067
\(794\) 0 0
\(795\) 0 0
\(796\) 0 0
\(797\) − 29.3392i − 1.03925i −0.854395 0.519624i \(-0.826072\pi\)
0.854395 0.519624i \(-0.173928\pi\)
\(798\) 0 0
\(799\) − 36.3451i − 1.28580i
\(800\) 0 0
\(801\) 0 0
\(802\) 0 0
\(803\) −18.1703 −0.641217
\(804\) 0 0
\(805\) 31.4919 1.10994
\(806\) 0 0
\(807\) 0 0
\(808\) 0 0
\(809\) − 19.9786i − 0.702411i −0.936298 0.351205i \(-0.885772\pi\)
0.936298 0.351205i \(-0.114228\pi\)
\(810\) 0 0
\(811\) 23.8727i 0.838285i 0.907920 + 0.419142i \(0.137669\pi\)
−0.907920 + 0.419142i \(0.862331\pi\)
\(812\) 0 0
\(813\) 0 0
\(814\) 0 0
\(815\) −15.4097 −0.539779
\(816\) 0 0
\(817\) 17.2379 0.603078
\(818\) 0 0
\(819\) 0 0
\(820\) 0 0
\(821\) − 51.9666i − 1.81365i −0.421509 0.906824i \(-0.638499\pi\)
0.421509 0.906824i \(-0.361501\pi\)
\(822\) 0 0
\(823\) − 25.2567i − 0.880395i −0.897901 0.440197i \(-0.854908\pi\)
0.897901 0.440197i \(-0.145092\pi\)
\(824\) 0 0
\(825\) 0 0
\(826\) 0 0
\(827\) −24.9871 −0.868886 −0.434443 0.900699i \(-0.643055\pi\)
−0.434443 + 0.900699i \(0.643055\pi\)
\(828\) 0 0
\(829\) 16.0000 0.555703 0.277851 0.960624i \(-0.410378\pi\)
0.277851 + 0.960624i \(0.410378\pi\)
\(830\) 0 0
\(831\) 0 0
\(832\) 0 0
\(833\) 47.9036i 1.65976i
\(834\) 0 0
\(835\) 25.2567i 0.874046i
\(836\) 0 0
\(837\) 0 0
\(838\) 0 0
\(839\) 7.97072 0.275180 0.137590 0.990489i \(-0.456064\pi\)
0.137590 + 0.990489i \(0.456064\pi\)
\(840\) 0 0
\(841\) 11.0000 0.379310
\(842\) 0 0
\(843\) 0 0
\(844\) 0 0
\(845\) − 1.41421i − 0.0486504i
\(846\) 0 0
\(847\) − 3.96812i − 0.136346i
\(848\) 0 0
\(849\) 0 0
\(850\) 0 0
\(851\) 54.6921 1.87482
\(852\) 0 0
\(853\) 21.7460 0.744568 0.372284 0.928119i \(-0.378575\pi\)
0.372284 + 0.928119i \(0.378575\pi\)
\(854\) 0 0
\(855\) 0 0
\(856\) 0 0
\(857\) − 21.5725i − 0.736901i −0.929647 0.368451i \(-0.879888\pi\)
0.929647 0.368451i \(-0.120112\pi\)
\(858\) 0 0
\(859\) − 40.6892i − 1.38830i −0.719831 0.694149i \(-0.755781\pi\)
0.719831 0.694149i \(-0.244219\pi\)
\(860\) 0 0
\(861\) 0 0
\(862\) 0 0
\(863\) −13.7636 −0.468517 −0.234259 0.972174i \(-0.575266\pi\)
−0.234259 + 0.972174i \(0.575266\pi\)
\(864\) 0 0
\(865\) 3.74597 0.127367
\(866\) 0 0
\(867\) 0 0
\(868\) 0 0
\(869\) 3.18768i 0.108135i
\(870\) 0 0
\(871\) 8.44025i 0.285987i
\(872\) 0 0
\(873\) 0 0
\(874\) 0 0
\(875\) 44.8941 1.51770
\(876\) 0 0
\(877\) −53.2379 −1.79772 −0.898858 0.438240i \(-0.855602\pi\)
−0.898858 + 0.438240i \(0.855602\pi\)
\(878\) 0 0
\(879\) 0 0
\(880\) 0 0
\(881\) 7.43033i 0.250334i 0.992136 + 0.125167i \(0.0399467\pi\)
−0.992136 + 0.125167i \(0.960053\pi\)
\(882\) 0 0
\(883\) 33.7610i 1.13615i 0.822977 + 0.568074i \(0.192311\pi\)
−0.822977 + 0.568074i \(0.807689\pi\)
\(884\) 0 0
\(885\) 0 0
\(886\) 0 0
\(887\) −6.41509 −0.215398 −0.107699 0.994184i \(-0.534348\pi\)
−0.107699 + 0.994184i \(0.534348\pi\)
\(888\) 0 0
\(889\) 58.9839 1.97826
\(890\) 0 0
\(891\) 0 0
\(892\) 0 0
\(893\) − 33.0202i − 1.10498i
\(894\) 0 0
\(895\) 25.8248i 0.863227i
\(896\) 0 0
\(897\) 0 0
\(898\) 0 0
\(899\) 31.5322 1.05166
\(900\) 0 0
\(901\) 14.5081 0.483334
\(902\) 0 0
\(903\) 0 0
\(904\) 0 0
\(905\) − 19.7990i − 0.658141i
\(906\) 0 0
\(907\) − 5.04017i − 0.167356i −0.996493 0.0836781i \(-0.973333\pi\)
0.996493 0.0836781i \(-0.0266667\pi\)
\(908\) 0 0
\(909\) 0 0
\(910\) 0 0
\(911\) −51.1282 −1.69395 −0.846976 0.531632i \(-0.821579\pi\)
−0.846976 + 0.531632i \(0.821579\pi\)
\(912\) 0 0
\(913\) −23.2379 −0.769062
\(914\) 0 0
\(915\) 0 0
\(916\) 0 0
\(917\) 8.48528i 0.280209i
\(918\) 0 0
\(919\) − 25.6967i − 0.847657i −0.905742 0.423829i \(-0.860686\pi\)
0.905742 0.423829i \(-0.139314\pi\)
\(920\) 0 0
\(921\) 0 0
\(922\) 0 0
\(923\) 13.6730 0.450053
\(924\) 0 0
\(925\) 29.2379 0.961336
\(926\) 0 0
\(927\) 0 0
\(928\) 0 0
\(929\) − 21.5725i − 0.707769i −0.935289 0.353885i \(-0.884861\pi\)
0.935289 0.353885i \(-0.115139\pi\)
\(930\) 0 0
\(931\) 43.5213i 1.42635i
\(932\) 0 0
\(933\) 0 0
\(934\) 0 0
\(935\) 24.4949 0.801069
\(936\) 0 0
\(937\) 24.9839 0.816187 0.408094 0.912940i \(-0.366194\pi\)
0.408094 + 0.912940i \(0.366194\pi\)
\(938\) 0 0
\(939\) 0 0
\(940\) 0 0
\(941\) − 4.96116i − 0.161729i −0.996725 0.0808645i \(-0.974232\pi\)
0.996725 0.0808645i \(-0.0257681\pi\)
\(942\) 0 0
\(943\) 69.4101i 2.26030i
\(944\) 0 0
\(945\) 0 0
\(946\) 0 0
\(947\) 25.6999 0.835134 0.417567 0.908646i \(-0.362883\pi\)
0.417567 + 0.908646i \(0.362883\pi\)
\(948\) 0 0
\(949\) 5.74597 0.186522
\(950\) 0 0
\(951\) 0 0
\(952\) 0 0
\(953\) 3.88338i 0.125795i 0.998020 + 0.0628976i \(0.0200341\pi\)
−0.998020 + 0.0628976i \(0.979966\pi\)
\(954\) 0 0
\(955\) 21.7926i 0.705193i
\(956\) 0 0
\(957\) 0 0
\(958\) 0 0
\(959\) 16.8353 0.543640
\(960\) 0 0
\(961\) −24.2379 −0.781868
\(962\) 0 0
\(963\) 0 0
\(964\) 0 0
\(965\) 16.6113i 0.534737i
\(966\) 0 0
\(967\) − 11.4644i − 0.368669i −0.982864 0.184334i \(-0.940987\pi\)
0.982864 0.184334i \(-0.0590130\pi\)
\(968\) 0 0
\(969\) 0 0
\(970\) 0 0
\(971\) 30.1972 0.969074 0.484537 0.874771i \(-0.338988\pi\)
0.484537 + 0.874771i \(0.338988\pi\)
\(972\) 0 0
\(973\) −76.7298 −2.45985
\(974\) 0 0
\(975\) 0 0
\(976\) 0 0
\(977\) 42.7628i 1.36810i 0.729433 + 0.684052i \(0.239784\pi\)
−0.729433 + 0.684052i \(0.760216\pi\)
\(978\) 0 0
\(979\) 39.1132i 1.25006i
\(980\) 0 0
\(981\) 0 0
\(982\) 0 0
\(983\) 53.6682 1.71175 0.855875 0.517183i \(-0.173019\pi\)
0.855875 + 0.517183i \(0.173019\pi\)
\(984\) 0 0
\(985\) −2.00000 −0.0637253
\(986\) 0 0
\(987\) 0 0
\(988\) 0 0
\(989\) 19.4397i 0.618148i
\(990\) 0 0
\(991\) − 54.1056i − 1.71872i −0.511369 0.859361i \(-0.670862\pi\)
0.511369 0.859361i \(-0.329138\pi\)
\(992\) 0 0
\(993\) 0 0
\(994\) 0 0
\(995\) 1.42558 0.0451938
\(996\) 0 0
\(997\) −44.9839 −1.42465 −0.712327 0.701848i \(-0.752359\pi\)
−0.712327 + 0.701848i \(0.752359\pi\)
\(998\) 0 0
\(999\) 0 0
Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))

Twists

       By twisting character
Char Parity Ord Type Twist Min Dim
1.1 even 1 trivial 1872.2.d.d.287.4 yes 8
3.2 odd 2 inner 1872.2.d.d.287.8 yes 8
4.3 odd 2 inner 1872.2.d.d.287.1 8
8.3 odd 2 7488.2.d.g.4031.5 8
8.5 even 2 7488.2.d.g.4031.8 8
12.11 even 2 inner 1872.2.d.d.287.5 yes 8
24.5 odd 2 7488.2.d.g.4031.4 8
24.11 even 2 7488.2.d.g.4031.1 8
    
        By twisted newform
Twist Min Dim Char Parity Ord Type
1872.2.d.d.287.1 8 4.3 odd 2 inner
1872.2.d.d.287.4 yes 8 1.1 even 1 trivial
1872.2.d.d.287.5 yes 8 12.11 even 2 inner
1872.2.d.d.287.8 yes 8 3.2 odd 2 inner
7488.2.d.g.4031.1 8 24.11 even 2
7488.2.d.g.4031.4 8 24.5 odd 2
7488.2.d.g.4031.5 8 8.3 odd 2
7488.2.d.g.4031.8 8 8.5 even 2