Newspace parameters
comment: Compute space of new eigenforms
[N,k,chi] = [7488,2,Mod(4031,7488)]
mf = mfinit([N,k,chi],0)
lf = mfeigenbasis(mf)
from sage.modular.dirichlet import DirichletCharacter
H = DirichletGroup(7488, base_ring=CyclotomicField(2))
chi = DirichletCharacter(H, H._module([1, 0, 1, 0]))
N = Newforms(chi, 2, names="a")
//Please install CHIMP (https://github.com/edgarcosta/CHIMP) if you want to run this code
chi := DirichletCharacter("7488.4031");
S:= CuspForms(chi, 2);
N := Newforms(S);
Level: | \( N \) | \(=\) | \( 7488 = 2^{6} \cdot 3^{2} \cdot 13 \) |
Weight: | \( k \) | \(=\) | \( 2 \) |
Character orbit: | \([\chi]\) | \(=\) | 7488.d (of order \(2\), degree \(1\), not minimal) |
Newform invariants
comment: select newform
sage: f = N[0] # Warning: the index may be different
gp: f = lf[1] \\ Warning: the index may be different
Self dual: | no |
Analytic conductor: | \(59.7919810335\) |
Analytic rank: | \(0\) |
Dimension: | \(8\) |
Coefficient field: | 8.0.3317760000.8 |
comment: defining polynomial
gp: f.mod \\ as an extension of the character field
|
|
Defining polynomial: | \( x^{8} + 4x^{6} + 7x^{4} + 36x^{2} + 81 \) |
Coefficient ring: | \(\Z[a_1, \ldots, a_{11}]\) |
Coefficient ring index: | \( 2^{8} \) |
Twist minimal: | no (minimal twist has level 1872) |
Sato-Tate group: | $\mathrm{SU}(2)[C_{2}]$ |
Embedding invariants
Embedding label | 4031.8 | ||
Root | \(-1.40294 - 1.01575i\) of defining polynomial | ||
Character | \(\chi\) | \(=\) | 7488.4031 |
Dual form | 7488.2.d.g.4031.1 |
$q$-expansion
comment: q-expansion
sage: f.q_expansion() # note that sage often uses an isomorphic number field
gp: mfcoefs(f, 20)
Character values
We give the values of \(\chi\) on generators for \(\left(\mathbb{Z}/7488\mathbb{Z}\right)^\times\).
\(n\) | \(703\) | \(5761\) | \(5825\) | \(6085\) |
\(\chi(n)\) | \(-1\) | \(1\) | \(-1\) | \(1\) |
Coefficient data
For each \(n\) we display the coefficients of the \(q\)-expansion \(a_n\), the Satake parameters \(\alpha_p\), and the Satake angles \(\theta_p = \textrm{Arg}(\alpha_p)\).
(See \(a_n\) instead)
(See \(a_n\) instead)
(See \(a_n\) instead)
(See only \(a_p\))
(See only \(a_p\))
(See only \(a_p\))
\(n\) | \(a_n\) | \(a_n / n^{(k-1)/2}\) | \( \alpha_n \) | \( \theta_n \) | ||||||
---|---|---|---|---|---|---|---|---|---|---|
\(p\) | \(a_p\) | \(a_p / p^{(k-1)/2}\) | \( \alpha_p\) | \( \theta_p \) | ||||||
\(2\) | 0 | 0 | ||||||||
\(3\) | 0 | 0 | ||||||||
\(4\) | 0 | 0 | ||||||||
\(5\) | 1.41421i | 0.632456i | 0.948683 | + | 0.316228i | \(0.102416\pi\) | ||||
−0.948683 | + | 0.316228i | \(0.897584\pi\) | |||||||
\(6\) | 0 | 0 | ||||||||
\(7\) | 3.96812i | 1.49981i | 0.661547 | + | 0.749904i | \(0.269900\pi\) | ||||
−0.661547 | + | 0.749904i | \(0.730100\pi\) | |||||||
\(8\) | 0 | 0 | ||||||||
\(9\) | 0 | 0 | ||||||||
\(10\) | 0 | 0 | ||||||||
\(11\) | 3.16228 | 0.953463 | 0.476731 | − | 0.879049i | \(-0.341821\pi\) | ||||
0.476731 | + | 0.879049i | \(0.341821\pi\) | |||||||
\(12\) | 0 | 0 | ||||||||
\(13\) | −1.00000 | −0.277350 | ||||||||
\(14\) | 0 | 0 | ||||||||
\(15\) | 0 | 0 | ||||||||
\(16\) | 0 | 0 | ||||||||
\(17\) | − 5.47723i | − 1.32842i | −0.747545 | − | 0.664211i | \(-0.768768\pi\) | ||||
0.747545 | − | 0.664211i | \(-0.231232\pi\) | |||||||
\(18\) | 0 | 0 | ||||||||
\(19\) | 4.97615i | 1.14161i | 0.821086 | + | 0.570804i | \(0.193368\pi\) | ||||
−0.821086 | + | 0.570804i | \(0.806632\pi\) | |||||||
\(20\) | 0 | 0 | ||||||||
\(21\) | 0 | 0 | ||||||||
\(22\) | 0 | 0 | ||||||||
\(23\) | 5.61177 | 1.17013 | 0.585067 | − | 0.810985i | \(-0.301068\pi\) | ||||
0.585067 | + | 0.810985i | \(0.301068\pi\) | |||||||
\(24\) | 0 | 0 | ||||||||
\(25\) | 3.00000 | 0.600000 | ||||||||
\(26\) | 0 | 0 | ||||||||
\(27\) | 0 | 0 | ||||||||
\(28\) | 0 | 0 | ||||||||
\(29\) | 4.24264i | 0.787839i | 0.919145 | + | 0.393919i | \(0.128881\pi\) | ||||
−0.919145 | + | 0.393919i | \(0.871119\pi\) | |||||||
\(30\) | 0 | 0 | ||||||||
\(31\) | 7.43222i | 1.33487i | 0.744670 | + | 0.667433i | \(0.232607\pi\) | ||||
−0.744670 | + | 0.667433i | \(0.767393\pi\) | |||||||
\(32\) | 0 | 0 | ||||||||
\(33\) | 0 | 0 | ||||||||
\(34\) | 0 | 0 | ||||||||
\(35\) | −5.61177 | −0.948562 | ||||||||
\(36\) | 0 | 0 | ||||||||
\(37\) | −9.74597 | −1.60223 | −0.801114 | − | 0.598512i | \(-0.795759\pi\) | ||||
−0.801114 | + | 0.598512i | \(0.795759\pi\) | |||||||
\(38\) | 0 | 0 | ||||||||
\(39\) | 0 | 0 | ||||||||
\(40\) | 0 | 0 | ||||||||
\(41\) | 12.3687i | 1.93166i | 0.259175 | + | 0.965830i | \(0.416549\pi\) | ||||
−0.259175 | + | 0.965830i | \(0.583451\pi\) | |||||||
\(42\) | 0 | 0 | ||||||||
\(43\) | − 3.46410i | − 0.528271i | −0.964486 | − | 0.264135i | \(-0.914913\pi\) | ||||
0.964486 | − | 0.264135i | \(-0.0850865\pi\) | |||||||
\(44\) | 0 | 0 | ||||||||
\(45\) | 0 | 0 | ||||||||
\(46\) | 0 | 0 | ||||||||
\(47\) | 6.63568 | 0.967914 | 0.483957 | − | 0.875092i | \(-0.339199\pi\) | ||||
0.483957 | + | 0.875092i | \(0.339199\pi\) | |||||||
\(48\) | 0 | 0 | ||||||||
\(49\) | −8.74597 | −1.24942 | ||||||||
\(50\) | 0 | 0 | ||||||||
\(51\) | 0 | 0 | ||||||||
\(52\) | 0 | 0 | ||||||||
\(53\) | − 2.64880i | − 0.363840i | −0.983313 | − | 0.181920i | \(-0.941769\pi\) | ||||
0.983313 | − | 0.181920i | \(-0.0582313\pi\) | |||||||
\(54\) | 0 | 0 | ||||||||
\(55\) | 4.47214i | 0.603023i | ||||||||
\(56\) | 0 | 0 | ||||||||
\(57\) | 0 | 0 | ||||||||
\(58\) | 0 | 0 | ||||||||
\(59\) | −7.34847 | −0.956689 | −0.478345 | − | 0.878172i | \(-0.658763\pi\) | ||||
−0.478345 | + | 0.878172i | \(0.658763\pi\) | |||||||
\(60\) | 0 | 0 | ||||||||
\(61\) | 7.74597 | 0.991769 | 0.495885 | − | 0.868388i | \(-0.334844\pi\) | ||||
0.495885 | + | 0.868388i | \(0.334844\pi\) | |||||||
\(62\) | 0 | 0 | ||||||||
\(63\) | 0 | 0 | ||||||||
\(64\) | 0 | 0 | ||||||||
\(65\) | − 1.41421i | − 0.175412i | ||||||||
\(66\) | 0 | 0 | ||||||||
\(67\) | − 8.44025i | − 1.03114i | −0.856847 | − | 0.515571i | \(-0.827580\pi\) | ||||
0.856847 | − | 0.515571i | \(-0.172420\pi\) | |||||||
\(68\) | 0 | 0 | ||||||||
\(69\) | 0 | 0 | ||||||||
\(70\) | 0 | 0 | ||||||||
\(71\) | 13.6730 | 1.62269 | 0.811345 | − | 0.584568i | \(-0.198736\pi\) | ||||
0.811345 | + | 0.584568i | \(0.198736\pi\) | |||||||
\(72\) | 0 | 0 | ||||||||
\(73\) | 5.74597 | 0.672515 | 0.336257 | − | 0.941770i | \(-0.390839\pi\) | ||||
0.336257 | + | 0.941770i | \(0.390839\pi\) | |||||||
\(74\) | 0 | 0 | ||||||||
\(75\) | 0 | 0 | ||||||||
\(76\) | 0 | 0 | ||||||||
\(77\) | 12.5483i | 1.43001i | ||||||||
\(78\) | 0 | 0 | ||||||||
\(79\) | − 1.00803i | − 0.113413i | −0.998391 | − | 0.0567064i | \(-0.981940\pi\) | ||||
0.998391 | − | 0.0567064i | \(-0.0180599\pi\) | |||||||
\(80\) | 0 | 0 | ||||||||
\(81\) | 0 | 0 | ||||||||
\(82\) | 0 | 0 | ||||||||
\(83\) | −7.34847 | −0.806599 | −0.403300 | − | 0.915068i | \(-0.632137\pi\) | ||||
−0.403300 | + | 0.915068i | \(0.632137\pi\) | |||||||
\(84\) | 0 | 0 | ||||||||
\(85\) | 7.74597 | 0.840168 | ||||||||
\(86\) | 0 | 0 | ||||||||
\(87\) | 0 | 0 | ||||||||
\(88\) | 0 | 0 | ||||||||
\(89\) | − 12.3687i | − 1.31108i | −0.755162 | − | 0.655538i | \(-0.772442\pi\) | ||||
0.755162 | − | 0.655538i | \(-0.227558\pi\) | |||||||
\(90\) | 0 | 0 | ||||||||
\(91\) | − 3.96812i | − 0.415972i | ||||||||
\(92\) | 0 | 0 | ||||||||
\(93\) | 0 | 0 | ||||||||
\(94\) | 0 | 0 | ||||||||
\(95\) | −7.03734 | −0.722016 | ||||||||
\(96\) | 0 | 0 | ||||||||
\(97\) | 13.7460 | 1.39569 | 0.697846 | − | 0.716248i | \(-0.254142\pi\) | ||||
0.697846 | + | 0.716248i | \(0.254142\pi\) | |||||||
\(98\) | 0 | 0 | ||||||||
\(99\) | 0 | 0 | ||||||||
\(100\) | 0 | 0 | ||||||||
\(101\) | 16.7909i | 1.67076i | 0.549673 | + | 0.835380i | \(0.314752\pi\) | ||||
−0.549673 | + | 0.835380i | \(0.685248\pi\) | |||||||
\(102\) | 0 | 0 | ||||||||
\(103\) | 1.44803i | 0.142679i | 0.997452 | + | 0.0713395i | \(0.0227274\pi\) | ||||
−0.997452 | + | 0.0713395i | \(0.977273\pi\) | |||||||
\(104\) | 0 | 0 | ||||||||
\(105\) | 0 | 0 | ||||||||
\(106\) | 0 | 0 | ||||||||
\(107\) | 7.03734 | 0.680326 | 0.340163 | − | 0.940367i | \(-0.389518\pi\) | ||||
0.340163 | + | 0.940367i | \(0.389518\pi\) | |||||||
\(108\) | 0 | 0 | ||||||||
\(109\) | 3.74597 | 0.358799 | 0.179399 | − | 0.983776i | \(-0.442585\pi\) | ||||
0.179399 | + | 0.983776i | \(0.442585\pi\) | |||||||
\(110\) | 0 | 0 | ||||||||
\(111\) | 0 | 0 | ||||||||
\(112\) | 0 | 0 | ||||||||
\(113\) | 16.7909i | 1.57956i | 0.613391 | + | 0.789779i | \(0.289805\pi\) | ||||
−0.613391 | + | 0.789779i | \(0.710195\pi\) | |||||||
\(114\) | 0 | 0 | ||||||||
\(115\) | 7.93624i | 0.740058i | ||||||||
\(116\) | 0 | 0 | ||||||||
\(117\) | 0 | 0 | ||||||||
\(118\) | 0 | 0 | ||||||||
\(119\) | 21.7343 | 1.99238 | ||||||||
\(120\) | 0 | 0 | ||||||||
\(121\) | −1.00000 | −0.0909091 | ||||||||
\(122\) | 0 | 0 | ||||||||
\(123\) | 0 | 0 | ||||||||
\(124\) | 0 | 0 | ||||||||
\(125\) | 11.3137i | 1.01193i | ||||||||
\(126\) | 0 | 0 | ||||||||
\(127\) | − 14.8644i | − 1.31901i | −0.751702 | − | 0.659503i | \(-0.770767\pi\) | ||||
0.751702 | − | 0.659503i | \(-0.229233\pi\) | |||||||
\(128\) | 0 | 0 | ||||||||
\(129\) | 0 | 0 | ||||||||
\(130\) | 0 | 0 | ||||||||
\(131\) | −2.13836 | −0.186830 | −0.0934149 | − | 0.995627i | \(-0.529778\pi\) | ||||
−0.0934149 | + | 0.995627i | \(0.529778\pi\) | |||||||
\(132\) | 0 | 0 | ||||||||
\(133\) | −19.7460 | −1.71219 | ||||||||
\(134\) | 0 | 0 | ||||||||
\(135\) | 0 | 0 | ||||||||
\(136\) | 0 | 0 | ||||||||
\(137\) | − 4.24264i | − 0.362473i | −0.983440 | − | 0.181237i | \(-0.941990\pi\) | ||||
0.983440 | − | 0.181237i | \(-0.0580100\pi\) | |||||||
\(138\) | 0 | 0 | ||||||||
\(139\) | − 19.3366i | − 1.64011i | −0.572287 | − | 0.820054i | \(-0.693944\pi\) | ||||
0.572287 | − | 0.820054i | \(-0.306056\pi\) | |||||||
\(140\) | 0 | 0 | ||||||||
\(141\) | 0 | 0 | ||||||||
\(142\) | 0 | 0 | ||||||||
\(143\) | −3.16228 | −0.264443 | ||||||||
\(144\) | 0 | 0 | ||||||||
\(145\) | −6.00000 | −0.498273 | ||||||||
\(146\) | 0 | 0 | ||||||||
\(147\) | 0 | 0 | ||||||||
\(148\) | 0 | 0 | ||||||||
\(149\) | 9.89949i | 0.810998i | 0.914095 | + | 0.405499i | \(0.132902\pi\) | ||||
−0.914095 | + | 0.405499i | \(0.867098\pi\) | |||||||
\(150\) | 0 | 0 | ||||||||
\(151\) | 7.43222i | 0.604826i | 0.953177 | + | 0.302413i | \(0.0977921\pi\) | ||||
−0.953177 | + | 0.302413i | \(0.902208\pi\) | |||||||
\(152\) | 0 | 0 | ||||||||
\(153\) | 0 | 0 | ||||||||
\(154\) | 0 | 0 | ||||||||
\(155\) | −10.5107 | −0.844244 | ||||||||
\(156\) | 0 | 0 | ||||||||
\(157\) | −15.4919 | −1.23639 | −0.618195 | − | 0.786024i | \(-0.712136\pi\) | ||||
−0.618195 | + | 0.786024i | \(0.712136\pi\) | |||||||
\(158\) | 0 | 0 | ||||||||
\(159\) | 0 | 0 | ||||||||
\(160\) | 0 | 0 | ||||||||
\(161\) | 22.2682i | 1.75498i | ||||||||
\(162\) | 0 | 0 | ||||||||
\(163\) | 10.8963i | 0.853466i | 0.904378 | + | 0.426733i | \(0.140336\pi\) | ||||
−0.904378 | + | 0.426733i | \(0.859664\pi\) | |||||||
\(164\) | 0 | 0 | ||||||||
\(165\) | 0 | 0 | ||||||||
\(166\) | 0 | 0 | ||||||||
\(167\) | −17.8592 | −1.38199 | −0.690994 | − | 0.722861i | \(-0.742827\pi\) | ||||
−0.690994 | + | 0.722861i | \(0.742827\pi\) | |||||||
\(168\) | 0 | 0 | ||||||||
\(169\) | 1.00000 | 0.0769231 | ||||||||
\(170\) | 0 | 0 | ||||||||
\(171\) | 0 | 0 | ||||||||
\(172\) | 0 | 0 | ||||||||
\(173\) | − 2.64880i | − 0.201384i | −0.994918 | − | 0.100692i | \(-0.967894\pi\) | ||||
0.994918 | − | 0.100692i | \(-0.0321057\pi\) | |||||||
\(174\) | 0 | 0 | ||||||||
\(175\) | 11.9044i | 0.899885i | ||||||||
\(176\) | 0 | 0 | ||||||||
\(177\) | 0 | 0 | ||||||||
\(178\) | 0 | 0 | ||||||||
\(179\) | 18.2609 | 1.36488 | 0.682441 | − | 0.730941i | \(-0.260918\pi\) | ||||
0.682441 | + | 0.730941i | \(0.260918\pi\) | |||||||
\(180\) | 0 | 0 | ||||||||
\(181\) | −14.0000 | −1.04061 | −0.520306 | − | 0.853980i | \(-0.674182\pi\) | ||||
−0.520306 | + | 0.853980i | \(0.674182\pi\) | |||||||
\(182\) | 0 | 0 | ||||||||
\(183\) | 0 | 0 | ||||||||
\(184\) | 0 | 0 | ||||||||
\(185\) | − 13.7829i | − 1.01334i | ||||||||
\(186\) | 0 | 0 | ||||||||
\(187\) | − 17.3205i | − 1.26660i | ||||||||
\(188\) | 0 | 0 | ||||||||
\(189\) | 0 | 0 | ||||||||
\(190\) | 0 | 0 | ||||||||
\(191\) | −15.4097 | −1.11501 | −0.557504 | − | 0.830174i | \(-0.688241\pi\) | ||||
−0.557504 | + | 0.830174i | \(0.688241\pi\) | |||||||
\(192\) | 0 | 0 | ||||||||
\(193\) | −11.7460 | −0.845493 | −0.422747 | − | 0.906248i | \(-0.638934\pi\) | ||||
−0.422747 | + | 0.906248i | \(0.638934\pi\) | |||||||
\(194\) | 0 | 0 | ||||||||
\(195\) | 0 | 0 | ||||||||
\(196\) | 0 | 0 | ||||||||
\(197\) | 1.41421i | 0.100759i | 0.998730 | + | 0.0503793i | \(0.0160430\pi\) | ||||
−0.998730 | + | 0.0503793i | \(0.983957\pi\) | |||||||
\(198\) | 0 | 0 | ||||||||
\(199\) | 1.00803i | 0.0714577i | 0.999362 | + | 0.0357288i | \(0.0113753\pi\) | ||||
−0.999362 | + | 0.0357288i | \(0.988625\pi\) | |||||||
\(200\) | 0 | 0 | ||||||||
\(201\) | 0 | 0 | ||||||||
\(202\) | 0 | 0 | ||||||||
\(203\) | −16.8353 | −1.18161 | ||||||||
\(204\) | 0 | 0 | ||||||||
\(205\) | −17.4919 | −1.22169 | ||||||||
\(206\) | 0 | 0 | ||||||||
\(207\) | 0 | 0 | ||||||||
\(208\) | 0 | 0 | ||||||||
\(209\) | 15.7360i | 1.08848i | ||||||||
\(210\) | 0 | 0 | ||||||||
\(211\) | 9.95231i | 0.685145i | 0.939491 | + | 0.342573i | \(0.111298\pi\) | ||||
−0.939491 | + | 0.342573i | \(0.888702\pi\) | |||||||
\(212\) | 0 | 0 | ||||||||
\(213\) | 0 | 0 | ||||||||
\(214\) | 0 | 0 | ||||||||
\(215\) | 4.89898 | 0.334108 | ||||||||
\(216\) | 0 | 0 | ||||||||
\(217\) | −29.4919 | −2.00204 | ||||||||
\(218\) | 0 | 0 | ||||||||
\(219\) | 0 | 0 | ||||||||
\(220\) | 0 | 0 | ||||||||
\(221\) | 5.47723i | 0.368438i | ||||||||
\(222\) | 0 | 0 | ||||||||
\(223\) | − 9.44829i | − 0.632704i | −0.948642 | − | 0.316352i | \(-0.897542\pi\) | ||||
0.948642 | − | 0.316352i | \(-0.102458\pi\) | |||||||
\(224\) | 0 | 0 | ||||||||
\(225\) | 0 | 0 | ||||||||
\(226\) | 0 | 0 | ||||||||
\(227\) | 4.58785 | 0.304507 | 0.152253 | − | 0.988342i | \(-0.451347\pi\) | ||||
0.152253 | + | 0.988342i | \(0.451347\pi\) | |||||||
\(228\) | 0 | 0 | ||||||||
\(229\) | 5.49193 | 0.362917 | 0.181459 | − | 0.983399i | \(-0.441918\pi\) | ||||
0.181459 | + | 0.983399i | \(0.441918\pi\) | |||||||
\(230\) | 0 | 0 | ||||||||
\(231\) | 0 | 0 | ||||||||
\(232\) | 0 | 0 | ||||||||
\(233\) | 1.41421i | 0.0926482i | 0.998926 | + | 0.0463241i | \(0.0147507\pi\) | ||||
−0.998926 | + | 0.0463241i | \(0.985249\pi\) | |||||||
\(234\) | 0 | 0 | ||||||||
\(235\) | 9.38427i | 0.612162i | ||||||||
\(236\) | 0 | 0 | ||||||||
\(237\) | 0 | 0 | ||||||||
\(238\) | 0 | 0 | ||||||||
\(239\) | 10.1996 | 0.659759 | 0.329879 | − | 0.944023i | \(-0.392992\pi\) | ||||
0.329879 | + | 0.944023i | \(0.392992\pi\) | |||||||
\(240\) | 0 | 0 | ||||||||
\(241\) | −12.0000 | −0.772988 | −0.386494 | − | 0.922292i | \(-0.626314\pi\) | ||||
−0.386494 | + | 0.922292i | \(0.626314\pi\) | |||||||
\(242\) | 0 | 0 | ||||||||
\(243\) | 0 | 0 | ||||||||
\(244\) | 0 | 0 | ||||||||
\(245\) | − 12.3687i | − 0.790205i | ||||||||
\(246\) | 0 | 0 | ||||||||
\(247\) | − 4.97615i | − 0.316625i | ||||||||
\(248\) | 0 | 0 | ||||||||
\(249\) | 0 | 0 | ||||||||
\(250\) | 0 | 0 | ||||||||
\(251\) | −25.2982 | −1.59681 | −0.798405 | − | 0.602121i | \(-0.794322\pi\) | ||||
−0.798405 | + | 0.602121i | \(0.794322\pi\) | |||||||
\(252\) | 0 | 0 | ||||||||
\(253\) | 17.7460 | 1.11568 | ||||||||
\(254\) | 0 | 0 | ||||||||
\(255\) | 0 | 0 | ||||||||
\(256\) | 0 | 0 | ||||||||
\(257\) | − 1.05496i | − 0.0658064i | −0.999459 | − | 0.0329032i | \(-0.989525\pi\) | ||||
0.999459 | − | 0.0329032i | \(-0.0104753\pi\) | |||||||
\(258\) | 0 | 0 | ||||||||
\(259\) | − 38.6732i | − 2.40303i | ||||||||
\(260\) | 0 | 0 | ||||||||
\(261\) | 0 | 0 | ||||||||
\(262\) | 0 | 0 | ||||||||
\(263\) | 2.85115 | 0.175810 | 0.0879048 | − | 0.996129i | \(-0.471983\pi\) | ||||
0.0879048 | + | 0.996129i | \(0.471983\pi\) | |||||||
\(264\) | 0 | 0 | ||||||||
\(265\) | 3.74597 | 0.230113 | ||||||||
\(266\) | 0 | 0 | ||||||||
\(267\) | 0 | 0 | ||||||||
\(268\) | 0 | 0 | ||||||||
\(269\) | − 26.5108i | − 1.61639i | −0.588914 | − | 0.808196i | \(-0.700444\pi\) | ||||
0.588914 | − | 0.808196i | \(-0.299556\pi\) | |||||||
\(270\) | 0 | 0 | ||||||||
\(271\) | − 15.8085i | − 0.960295i | −0.877188 | − | 0.480148i | \(-0.840583\pi\) | ||||
0.877188 | − | 0.480148i | \(-0.159417\pi\) | |||||||
\(272\) | 0 | 0 | ||||||||
\(273\) | 0 | 0 | ||||||||
\(274\) | 0 | 0 | ||||||||
\(275\) | 9.48683 | 0.572078 | ||||||||
\(276\) | 0 | 0 | ||||||||
\(277\) | −6.25403 | −0.375768 | −0.187884 | − | 0.982191i | \(-0.560163\pi\) | ||||
−0.187884 | + | 0.982191i | \(0.560163\pi\) | |||||||
\(278\) | 0 | 0 | ||||||||
\(279\) | 0 | 0 | ||||||||
\(280\) | 0 | 0 | ||||||||
\(281\) | 9.54024i | 0.569123i | 0.958658 | + | 0.284561i | \(0.0918480\pi\) | ||||
−0.958658 | + | 0.284561i | \(0.908152\pi\) | |||||||
\(282\) | 0 | 0 | ||||||||
\(283\) | 11.8403i | 0.703835i | 0.936031 | + | 0.351918i | \(0.114470\pi\) | ||||
−0.936031 | + | 0.351918i | \(0.885530\pi\) | |||||||
\(284\) | 0 | 0 | ||||||||
\(285\) | 0 | 0 | ||||||||
\(286\) | 0 | 0 | ||||||||
\(287\) | −49.0803 | −2.89712 | ||||||||
\(288\) | 0 | 0 | ||||||||
\(289\) | −13.0000 | −0.764706 | ||||||||
\(290\) | 0 | 0 | ||||||||
\(291\) | 0 | 0 | ||||||||
\(292\) | 0 | 0 | ||||||||
\(293\) | − 1.41421i | − 0.0826192i | −0.999146 | − | 0.0413096i | \(-0.986847\pi\) | ||||
0.999146 | − | 0.0413096i | \(-0.0131530\pi\) | |||||||
\(294\) | 0 | 0 | ||||||||
\(295\) | − 10.3923i | − 0.605063i | ||||||||
\(296\) | 0 | 0 | ||||||||
\(297\) | 0 | 0 | ||||||||
\(298\) | 0 | 0 | ||||||||
\(299\) | −5.61177 | −0.324537 | ||||||||
\(300\) | 0 | 0 | ||||||||
\(301\) | 13.7460 | 0.792304 | ||||||||
\(302\) | 0 | 0 | ||||||||
\(303\) | 0 | 0 | ||||||||
\(304\) | 0 | 0 | ||||||||
\(305\) | 10.9545i | 0.627250i | ||||||||
\(306\) | 0 | 0 | ||||||||
\(307\) | 23.3047i | 1.33007i | 0.746813 | + | 0.665035i | \(0.231583\pi\) | ||||
−0.746813 | + | 0.665035i | \(0.768417\pi\) | |||||||
\(308\) | 0 | 0 | ||||||||
\(309\) | 0 | 0 | ||||||||
\(310\) | 0 | 0 | ||||||||
\(311\) | −26.0110 | −1.47495 | −0.737475 | − | 0.675375i | \(-0.763982\pi\) | ||||
−0.737475 | + | 0.675375i | \(0.763982\pi\) | |||||||
\(312\) | 0 | 0 | ||||||||
\(313\) | −23.4919 | −1.32784 | −0.663921 | − | 0.747802i | \(-0.731109\pi\) | ||||
−0.663921 | + | 0.747802i | \(0.731109\pi\) | |||||||
\(314\) | 0 | 0 | ||||||||
\(315\) | 0 | 0 | ||||||||
\(316\) | 0 | 0 | ||||||||
\(317\) | 9.89949i | 0.556011i | 0.960579 | + | 0.278006i | \(0.0896734\pi\) | ||||
−0.960579 | + | 0.278006i | \(0.910327\pi\) | |||||||
\(318\) | 0 | 0 | ||||||||
\(319\) | 13.4164i | 0.751175i | ||||||||
\(320\) | 0 | 0 | ||||||||
\(321\) | 0 | 0 | ||||||||
\(322\) | 0 | 0 | ||||||||
\(323\) | 27.2555 | 1.51654 | ||||||||
\(324\) | 0 | 0 | ||||||||
\(325\) | −3.00000 | −0.166410 | ||||||||
\(326\) | 0 | 0 | ||||||||
\(327\) | 0 | 0 | ||||||||
\(328\) | 0 | 0 | ||||||||
\(329\) | 26.3312i | 1.45168i | ||||||||
\(330\) | 0 | 0 | ||||||||
\(331\) | − 8.44025i | − 0.463918i | −0.972726 | − | 0.231959i | \(-0.925486\pi\) | ||||
0.972726 | − | 0.231959i | \(-0.0745136\pi\) | |||||||
\(332\) | 0 | 0 | ||||||||
\(333\) | 0 | 0 | ||||||||
\(334\) | 0 | 0 | ||||||||
\(335\) | 11.9363 | 0.652151 | ||||||||
\(336\) | 0 | 0 | ||||||||
\(337\) | 27.2379 | 1.48374 | 0.741871 | − | 0.670542i | \(-0.233938\pi\) | ||||
0.741871 | + | 0.670542i | \(0.233938\pi\) | |||||||
\(338\) | 0 | 0 | ||||||||
\(339\) | 0 | 0 | ||||||||
\(340\) | 0 | 0 | ||||||||
\(341\) | 23.5027i | 1.27274i | ||||||||
\(342\) | 0 | 0 | ||||||||
\(343\) | − 6.92820i | − 0.374088i | ||||||||
\(344\) | 0 | 0 | ||||||||
\(345\) | 0 | 0 | ||||||||
\(346\) | 0 | 0 | ||||||||
\(347\) | 6.94681 | 0.372924 | 0.186462 | − | 0.982462i | \(-0.440298\pi\) | ||||
0.186462 | + | 0.982462i | \(0.440298\pi\) | |||||||
\(348\) | 0 | 0 | ||||||||
\(349\) | 8.00000 | 0.428230 | 0.214115 | − | 0.976808i | \(-0.431313\pi\) | ||||
0.214115 | + | 0.976808i | \(0.431313\pi\) | |||||||
\(350\) | 0 | 0 | ||||||||
\(351\) | 0 | 0 | ||||||||
\(352\) | 0 | 0 | ||||||||
\(353\) | − 6.35255i | − 0.338112i | −0.985606 | − | 0.169056i | \(-0.945928\pi\) | ||||
0.985606 | − | 0.169056i | \(-0.0540719\pi\) | |||||||
\(354\) | 0 | 0 | ||||||||
\(355\) | 19.3366i | 1.02628i | ||||||||
\(356\) | 0 | 0 | ||||||||
\(357\) | 0 | 0 | ||||||||
\(358\) | 0 | 0 | ||||||||
\(359\) | 27.6572 | 1.45969 | 0.729845 | − | 0.683613i | \(-0.239592\pi\) | ||||
0.729845 | + | 0.683613i | \(0.239592\pi\) | |||||||
\(360\) | 0 | 0 | ||||||||
\(361\) | −5.76210 | −0.303268 | ||||||||
\(362\) | 0 | 0 | ||||||||
\(363\) | 0 | 0 | ||||||||
\(364\) | 0 | 0 | ||||||||
\(365\) | 8.12602i | 0.425336i | ||||||||
\(366\) | 0 | 0 | ||||||||
\(367\) | − 20.3446i | − 1.06198i | −0.847378 | − | 0.530990i | \(-0.821820\pi\) | ||||
0.847378 | − | 0.530990i | \(-0.178180\pi\) | |||||||
\(368\) | 0 | 0 | ||||||||
\(369\) | 0 | 0 | ||||||||
\(370\) | 0 | 0 | ||||||||
\(371\) | 10.5107 | 0.545691 | ||||||||
\(372\) | 0 | 0 | ||||||||
\(373\) | −34.9839 | −1.81140 | −0.905698 | − | 0.423924i | \(-0.860653\pi\) | ||||
−0.905698 | + | 0.423924i | \(0.860653\pi\) | |||||||
\(374\) | 0 | 0 | ||||||||
\(375\) | 0 | 0 | ||||||||
\(376\) | 0 | 0 | ||||||||
\(377\) | − 4.24264i | − 0.218507i | ||||||||
\(378\) | 0 | 0 | ||||||||
\(379\) | 18.8326i | 0.967364i | 0.875244 | + | 0.483682i | \(0.160701\pi\) | ||||
−0.875244 | + | 0.483682i | \(0.839299\pi\) | |||||||
\(380\) | 0 | 0 | ||||||||
\(381\) | 0 | 0 | ||||||||
\(382\) | 0 | 0 | ||||||||
\(383\) | −9.48683 | −0.484755 | −0.242377 | − | 0.970182i | \(-0.577927\pi\) | ||||
−0.242377 | + | 0.970182i | \(0.577927\pi\) | |||||||
\(384\) | 0 | 0 | ||||||||
\(385\) | −17.7460 | −0.904418 | ||||||||
\(386\) | 0 | 0 | ||||||||
\(387\) | 0 | 0 | ||||||||
\(388\) | 0 | 0 | ||||||||
\(389\) | 15.5563i | 0.788738i | 0.918952 | + | 0.394369i | \(0.129037\pi\) | ||||
−0.918952 | + | 0.394369i | \(0.870963\pi\) | |||||||
\(390\) | 0 | 0 | ||||||||
\(391\) | − 30.7369i | − 1.55443i | ||||||||
\(392\) | 0 | 0 | ||||||||
\(393\) | 0 | 0 | ||||||||
\(394\) | 0 | 0 | ||||||||
\(395\) | 1.42558 | 0.0717285 | ||||||||
\(396\) | 0 | 0 | ||||||||
\(397\) | −19.4919 | −0.978272 | −0.489136 | − | 0.872208i | \(-0.662688\pi\) | ||||
−0.489136 | + | 0.872208i | \(0.662688\pi\) | |||||||
\(398\) | 0 | 0 | ||||||||
\(399\) | 0 | 0 | ||||||||
\(400\) | 0 | 0 | ||||||||
\(401\) | 26.8701i | 1.34183i | 0.741536 | + | 0.670913i | \(0.234098\pi\) | ||||
−0.741536 | + | 0.670913i | \(0.765902\pi\) | |||||||
\(402\) | 0 | 0 | ||||||||
\(403\) | − 7.43222i | − 0.370225i | ||||||||
\(404\) | 0 | 0 | ||||||||
\(405\) | 0 | 0 | ||||||||
\(406\) | 0 | 0 | ||||||||
\(407\) | −30.8195 | −1.52766 | ||||||||
\(408\) | 0 | 0 | ||||||||
\(409\) | 6.25403 | 0.309242 | 0.154621 | − | 0.987974i | \(-0.450584\pi\) | ||||
0.154621 | + | 0.987974i | \(0.450584\pi\) | |||||||
\(410\) | 0 | 0 | ||||||||
\(411\) | 0 | 0 | ||||||||
\(412\) | 0 | 0 | ||||||||
\(413\) | − 29.1596i | − 1.43485i | ||||||||
\(414\) | 0 | 0 | ||||||||
\(415\) | − 10.3923i | − 0.510138i | ||||||||
\(416\) | 0 | 0 | ||||||||
\(417\) | 0 | 0 | ||||||||
\(418\) | 0 | 0 | ||||||||
\(419\) | 7.03734 | 0.343797 | 0.171898 | − | 0.985115i | \(-0.445010\pi\) | ||||
0.171898 | + | 0.985115i | \(0.445010\pi\) | |||||||
\(420\) | 0 | 0 | ||||||||
\(421\) | −30.0000 | −1.46211 | −0.731055 | − | 0.682318i | \(-0.760972\pi\) | ||||
−0.731055 | + | 0.682318i | \(0.760972\pi\) | |||||||
\(422\) | 0 | 0 | ||||||||
\(423\) | 0 | 0 | ||||||||
\(424\) | 0 | 0 | ||||||||
\(425\) | − 16.4317i | − 0.797053i | ||||||||
\(426\) | 0 | 0 | ||||||||
\(427\) | 30.7369i | 1.48746i | ||||||||
\(428\) | 0 | 0 | ||||||||
\(429\) | 0 | 0 | ||||||||
\(430\) | 0 | 0 | ||||||||
\(431\) | −5.21011 | −0.250962 | −0.125481 | − | 0.992096i | \(-0.540047\pi\) | ||||
−0.125481 | + | 0.992096i | \(0.540047\pi\) | |||||||
\(432\) | 0 | 0 | ||||||||
\(433\) | −26.0000 | −1.24948 | −0.624740 | − | 0.780833i | \(-0.714795\pi\) | ||||
−0.624740 | + | 0.780833i | \(0.714795\pi\) | |||||||
\(434\) | 0 | 0 | ||||||||
\(435\) | 0 | 0 | ||||||||
\(436\) | 0 | 0 | ||||||||
\(437\) | 27.9250i | 1.33583i | ||||||||
\(438\) | 0 | 0 | ||||||||
\(439\) | 3.46410i | 0.165333i | 0.996577 | + | 0.0826663i | \(0.0263436\pi\) | ||||
−0.996577 | + | 0.0826663i | \(0.973656\pi\) | |||||||
\(440\) | 0 | 0 | ||||||||
\(441\) | 0 | 0 | ||||||||
\(442\) | 0 | 0 | ||||||||
\(443\) | 35.0056 | 1.66317 | 0.831584 | − | 0.555399i | \(-0.187434\pi\) | ||||
0.831584 | + | 0.555399i | \(0.187434\pi\) | |||||||
\(444\) | 0 | 0 | ||||||||
\(445\) | 17.4919 | 0.829197 | ||||||||
\(446\) | 0 | 0 | ||||||||
\(447\) | 0 | 0 | ||||||||
\(448\) | 0 | 0 | ||||||||
\(449\) | 15.1971i | 0.717195i | 0.933492 | + | 0.358598i | \(0.116745\pi\) | ||||
−0.933492 | + | 0.358598i | \(0.883255\pi\) | |||||||
\(450\) | 0 | 0 | ||||||||
\(451\) | 39.1132i | 1.84177i | ||||||||
\(452\) | 0 | 0 | ||||||||
\(453\) | 0 | 0 | ||||||||
\(454\) | 0 | 0 | ||||||||
\(455\) | 5.61177 | 0.263084 | ||||||||
\(456\) | 0 | 0 | ||||||||
\(457\) | −1.74597 | −0.0816729 | −0.0408364 | − | 0.999166i | \(-0.513002\pi\) | ||||
−0.0408364 | + | 0.999166i | \(0.513002\pi\) | |||||||
\(458\) | 0 | 0 | ||||||||
\(459\) | 0 | 0 | ||||||||
\(460\) | 0 | 0 | ||||||||
\(461\) | 12.3687i | 0.576066i | 0.957620 | + | 0.288033i | \(0.0930013\pi\) | ||||
−0.957620 | + | 0.288033i | \(0.906999\pi\) | |||||||
\(462\) | 0 | 0 | ||||||||
\(463\) | 34.7050i | 1.61288i | 0.591316 | + | 0.806440i | \(0.298609\pi\) | ||||
−0.591316 | + | 0.806440i | \(0.701391\pi\) | |||||||
\(464\) | 0 | 0 | ||||||||
\(465\) | 0 | 0 | ||||||||
\(466\) | 0 | 0 | ||||||||
\(467\) | −35.0962 | −1.62406 | −0.812029 | − | 0.583617i | \(-0.801637\pi\) | ||||
−0.812029 | + | 0.583617i | \(0.801637\pi\) | |||||||
\(468\) | 0 | 0 | ||||||||
\(469\) | 33.4919 | 1.54651 | ||||||||
\(470\) | 0 | 0 | ||||||||
\(471\) | 0 | 0 | ||||||||
\(472\) | 0 | 0 | ||||||||
\(473\) | − 10.9545i | − 0.503686i | ||||||||
\(474\) | 0 | 0 | ||||||||
\(475\) | 14.9285i | 0.684965i | ||||||||
\(476\) | 0 | 0 | ||||||||
\(477\) | 0 | 0 | ||||||||
\(478\) | 0 | 0 | ||||||||
\(479\) | −15.7209 | −0.718304 | −0.359152 | − | 0.933279i | \(-0.616934\pi\) | ||||
−0.359152 | + | 0.933279i | \(0.616934\pi\) | |||||||
\(480\) | 0 | 0 | ||||||||
\(481\) | 9.74597 | 0.444378 | ||||||||
\(482\) | 0 | 0 | ||||||||
\(483\) | 0 | 0 | ||||||||
\(484\) | 0 | 0 | ||||||||
\(485\) | 19.4397i | 0.882713i | ||||||||
\(486\) | 0 | 0 | ||||||||
\(487\) | 25.3208i | 1.14739i | 0.819068 | + | 0.573697i | \(0.194491\pi\) | ||||
−0.819068 | + | 0.573697i | \(0.805509\pi\) | |||||||
\(488\) | 0 | 0 | ||||||||
\(489\) | 0 | 0 | ||||||||
\(490\) | 0 | 0 | ||||||||
\(491\) | 42.0430 | 1.89737 | 0.948687 | − | 0.316217i | \(-0.102413\pi\) | ||||
0.948687 | + | 0.316217i | \(0.102413\pi\) | |||||||
\(492\) | 0 | 0 | ||||||||
\(493\) | 23.2379 | 1.04658 | ||||||||
\(494\) | 0 | 0 | ||||||||
\(495\) | 0 | 0 | ||||||||
\(496\) | 0 | 0 | ||||||||
\(497\) | 54.2562i | 2.43372i | ||||||||
\(498\) | 0 | 0 | ||||||||
\(499\) | − 13.3524i | − 0.597735i | −0.954295 | − | 0.298868i | \(-0.903391\pi\) | ||||
0.954295 | − | 0.298868i | \(-0.0966089\pi\) | |||||||
\(500\) | 0 | 0 | ||||||||
\(501\) | 0 | 0 | ||||||||
\(502\) | 0 | 0 | ||||||||
\(503\) | −35.7184 | −1.59261 | −0.796303 | − | 0.604898i | \(-0.793214\pi\) | ||||
−0.796303 | + | 0.604898i | \(0.793214\pi\) | |||||||
\(504\) | 0 | 0 | ||||||||
\(505\) | −23.7460 | −1.05668 | ||||||||
\(506\) | 0 | 0 | ||||||||
\(507\) | 0 | 0 | ||||||||
\(508\) | 0 | 0 | ||||||||
\(509\) | − 3.88338i | − 0.172128i | −0.996290 | − | 0.0860640i | \(-0.972571\pi\) | ||||
0.996290 | − | 0.0860640i | \(-0.0274289\pi\) | |||||||
\(510\) | 0 | 0 | ||||||||
\(511\) | 22.8007i | 1.00864i | ||||||||
\(512\) | 0 | 0 | ||||||||
\(513\) | 0 | 0 | ||||||||
\(514\) | 0 | 0 | ||||||||
\(515\) | −2.04783 | −0.0902381 | ||||||||
\(516\) | 0 | 0 | ||||||||
\(517\) | 20.9839 | 0.922869 | ||||||||
\(518\) | 0 | 0 | ||||||||
\(519\) | 0 | 0 | ||||||||
\(520\) | 0 | 0 | ||||||||
\(521\) | 17.1502i | 0.751364i | 0.926749 | + | 0.375682i | \(0.122591\pi\) | ||||
−0.926749 | + | 0.375682i | \(0.877409\pi\) | |||||||
\(522\) | 0 | 0 | ||||||||
\(523\) | − 8.50427i | − 0.371866i | −0.982562 | − | 0.185933i | \(-0.940469\pi\) | ||||
0.982562 | − | 0.185933i | \(-0.0595307\pi\) | |||||||
\(524\) | 0 | 0 | ||||||||
\(525\) | 0 | 0 | ||||||||
\(526\) | 0 | 0 | ||||||||
\(527\) | 40.7079 | 1.77327 | ||||||||
\(528\) | 0 | 0 | ||||||||
\(529\) | 8.49193 | 0.369214 | ||||||||
\(530\) | 0 | 0 | ||||||||
\(531\) | 0 | 0 | ||||||||
\(532\) | 0 | 0 | ||||||||
\(533\) | − 12.3687i | − 0.535746i | ||||||||
\(534\) | 0 | 0 | ||||||||
\(535\) | 9.95231i | 0.430276i | ||||||||
\(536\) | 0 | 0 | ||||||||
\(537\) | 0 | 0 | ||||||||
\(538\) | 0 | 0 | ||||||||
\(539\) | −27.6572 | −1.19128 | ||||||||
\(540\) | 0 | 0 | ||||||||
\(541\) | −9.49193 | −0.408090 | −0.204045 | − | 0.978962i | \(-0.565409\pi\) | ||||
−0.204045 | + | 0.978962i | \(0.565409\pi\) | |||||||
\(542\) | 0 | 0 | ||||||||
\(543\) | 0 | 0 | ||||||||
\(544\) | 0 | 0 | ||||||||
\(545\) | 5.29760i | 0.226924i | ||||||||
\(546\) | 0 | 0 | ||||||||
\(547\) | − 40.2492i | − 1.72093i | −0.509507 | − | 0.860466i | \(-0.670172\pi\) | ||||
0.509507 | − | 0.860466i | \(-0.329828\pi\) | |||||||
\(548\) | 0 | 0 | ||||||||
\(549\) | 0 | 0 | ||||||||
\(550\) | 0 | 0 | ||||||||
\(551\) | −21.1120 | −0.899403 | ||||||||
\(552\) | 0 | 0 | ||||||||
\(553\) | 4.00000 | 0.170097 | ||||||||
\(554\) | 0 | 0 | ||||||||
\(555\) | 0 | 0 | ||||||||
\(556\) | 0 | 0 | ||||||||
\(557\) | − 24.4009i | − 1.03390i | −0.856016 | − | 0.516949i | \(-0.827068\pi\) | ||||
0.856016 | − | 0.516949i | \(-0.172932\pi\) | |||||||
\(558\) | 0 | 0 | ||||||||
\(559\) | 3.46410i | 0.146516i | ||||||||
\(560\) | 0 | 0 | ||||||||
\(561\) | 0 | 0 | ||||||||
\(562\) | 0 | 0 | ||||||||
\(563\) | 34.3834 | 1.44909 | 0.724544 | − | 0.689229i | \(-0.242051\pi\) | ||||
0.724544 | + | 0.689229i | \(0.242051\pi\) | |||||||
\(564\) | 0 | 0 | ||||||||
\(565\) | −23.7460 | −0.999000 | ||||||||
\(566\) | 0 | 0 | ||||||||
\(567\) | 0 | 0 | ||||||||
\(568\) | 0 | 0 | ||||||||
\(569\) | 31.8084i | 1.33348i | 0.745292 | + | 0.666739i | \(0.232310\pi\) | ||||
−0.745292 | + | 0.666739i | \(0.767690\pi\) | |||||||
\(570\) | 0 | 0 | ||||||||
\(571\) | − 2.89607i | − 0.121197i | −0.998162 | − | 0.0605983i | \(-0.980699\pi\) | ||||
0.998162 | − | 0.0605983i | \(-0.0193009\pi\) | |||||||
\(572\) | 0 | 0 | ||||||||
\(573\) | 0 | 0 | ||||||||
\(574\) | 0 | 0 | ||||||||
\(575\) | 16.8353 | 0.702081 | ||||||||
\(576\) | 0 | 0 | ||||||||
\(577\) | −33.4919 | −1.39429 | −0.697144 | − | 0.716931i | \(-0.745546\pi\) | ||||
−0.697144 | + | 0.716931i | \(0.745546\pi\) | |||||||
\(578\) | 0 | 0 | ||||||||
\(579\) | 0 | 0 | ||||||||
\(580\) | 0 | 0 | ||||||||
\(581\) | − 29.1596i | − 1.20974i | ||||||||
\(582\) | 0 | 0 | ||||||||
\(583\) | − 8.37624i | − 0.346908i | ||||||||
\(584\) | 0 | 0 | ||||||||
\(585\) | 0 | 0 | ||||||||
\(586\) | 0 | 0 | ||||||||
\(587\) | 24.8966 | 1.02759 | 0.513795 | − | 0.857913i | \(-0.328239\pi\) | ||||
0.513795 | + | 0.857913i | \(0.328239\pi\) | |||||||
\(588\) | 0 | 0 | ||||||||
\(589\) | −36.9839 | −1.52389 | ||||||||
\(590\) | 0 | 0 | ||||||||
\(591\) | 0 | 0 | ||||||||
\(592\) | 0 | 0 | ||||||||
\(593\) | − 15.1971i | − 0.624070i | −0.950071 | − | 0.312035i | \(-0.898989\pi\) | ||||
0.950071 | − | 0.312035i | \(-0.101011\pi\) | |||||||
\(594\) | 0 | 0 | ||||||||
\(595\) | 30.7369i | 1.26009i | ||||||||
\(596\) | 0 | 0 | ||||||||
\(597\) | 0 | 0 | ||||||||
\(598\) | 0 | 0 | ||||||||
\(599\) | 5.70230 | 0.232990 | 0.116495 | − | 0.993191i | \(-0.462834\pi\) | ||||
0.116495 | + | 0.993191i | \(0.462834\pi\) | |||||||
\(600\) | 0 | 0 | ||||||||
\(601\) | 27.4919 | 1.12142 | 0.560710 | − | 0.828012i | \(-0.310528\pi\) | ||||
0.560710 | + | 0.828012i | \(0.310528\pi\) | |||||||
\(602\) | 0 | 0 | ||||||||
\(603\) | 0 | 0 | ||||||||
\(604\) | 0 | 0 | ||||||||
\(605\) | − 1.41421i | − 0.0574960i | ||||||||
\(606\) | 0 | 0 | ||||||||
\(607\) | − 37.2251i | − 1.51092i | −0.655194 | − | 0.755461i | \(-0.727413\pi\) | ||||
0.655194 | − | 0.755461i | \(-0.272587\pi\) | |||||||
\(608\) | 0 | 0 | ||||||||
\(609\) | 0 | 0 | ||||||||
\(610\) | 0 | 0 | ||||||||
\(611\) | −6.63568 | −0.268451 | ||||||||
\(612\) | 0 | 0 | ||||||||
\(613\) | −5.74597 | −0.232077 | −0.116039 | − | 0.993245i | \(-0.537020\pi\) | ||||
−0.116039 | + | 0.993245i | \(0.537020\pi\) | |||||||
\(614\) | 0 | 0 | ||||||||
\(615\) | 0 | 0 | ||||||||
\(616\) | 0 | 0 | ||||||||
\(617\) | − 28.9800i | − 1.16669i | −0.812225 | − | 0.583345i | \(-0.801744\pi\) | ||||
0.812225 | − | 0.583345i | \(-0.198256\pi\) | |||||||
\(618\) | 0 | 0 | ||||||||
\(619\) | − 26.2008i | − 1.05310i | −0.850145 | − | 0.526549i | \(-0.823486\pi\) | ||||
0.850145 | − | 0.526549i | \(-0.176514\pi\) | |||||||
\(620\) | 0 | 0 | ||||||||
\(621\) | 0 | 0 | ||||||||
\(622\) | 0 | 0 | ||||||||
\(623\) | 49.0803 | 1.96636 | ||||||||
\(624\) | 0 | 0 | ||||||||
\(625\) | −1.00000 | −0.0400000 | ||||||||
\(626\) | 0 | 0 | ||||||||
\(627\) | 0 | 0 | ||||||||
\(628\) | 0 | 0 | ||||||||
\(629\) | 53.3809i | 2.12843i | ||||||||
\(630\) | 0 | 0 | ||||||||
\(631\) | − 26.3288i | − 1.04813i | −0.851677 | − | 0.524066i | \(-0.824414\pi\) | ||||
0.851677 | − | 0.524066i | \(-0.175586\pi\) | |||||||
\(632\) | 0 | 0 | ||||||||
\(633\) | 0 | 0 | ||||||||
\(634\) | 0 | 0 | ||||||||
\(635\) | 21.0215 | 0.834213 | ||||||||
\(636\) | 0 | 0 | ||||||||
\(637\) | 8.74597 | 0.346528 | ||||||||
\(638\) | 0 | 0 | ||||||||
\(639\) | 0 | 0 | ||||||||
\(640\) | 0 | 0 | ||||||||
\(641\) | 11.8526i | 0.468149i | 0.972219 | + | 0.234075i | \(0.0752060\pi\) | ||||
−0.972219 | + | 0.234075i | \(0.924794\pi\) | |||||||
\(642\) | 0 | 0 | ||||||||
\(643\) | − 3.40008i | − 0.134086i | −0.997750 | − | 0.0670431i | \(-0.978644\pi\) | ||||
0.997750 | − | 0.0670431i | \(-0.0213565\pi\) | |||||||
\(644\) | 0 | 0 | ||||||||
\(645\) | 0 | 0 | ||||||||
\(646\) | 0 | 0 | ||||||||
\(647\) | 33.0484 | 1.29926 | 0.649632 | − | 0.760248i | \(-0.274923\pi\) | ||||
0.649632 | + | 0.760248i | \(0.274923\pi\) | |||||||
\(648\) | 0 | 0 | ||||||||
\(649\) | −23.2379 | −0.912167 | ||||||||
\(650\) | 0 | 0 | ||||||||
\(651\) | 0 | 0 | ||||||||
\(652\) | 0 | 0 | ||||||||
\(653\) | − 37.1060i | − 1.45207i | −0.687658 | − | 0.726035i | \(-0.741361\pi\) | ||||
0.687658 | − | 0.726035i | \(-0.258639\pi\) | |||||||
\(654\) | 0 | 0 | ||||||||
\(655\) | − 3.02410i | − 0.118161i | ||||||||
\(656\) | 0 | 0 | ||||||||
\(657\) | 0 | 0 | ||||||||
\(658\) | 0 | 0 | ||||||||
\(659\) | 43.4686 | 1.69329 | 0.846647 | − | 0.532154i | \(-0.178617\pi\) | ||||
0.846647 | + | 0.532154i | \(0.178617\pi\) | |||||||
\(660\) | 0 | 0 | ||||||||
\(661\) | 22.2540 | 0.865582 | 0.432791 | − | 0.901494i | \(-0.357529\pi\) | ||||
0.432791 | + | 0.901494i | \(0.357529\pi\) | |||||||
\(662\) | 0 | 0 | ||||||||
\(663\) | 0 | 0 | ||||||||
\(664\) | 0 | 0 | ||||||||
\(665\) | − 27.9250i | − 1.08289i | ||||||||
\(666\) | 0 | 0 | ||||||||
\(667\) | 23.8087i | 0.921877i | ||||||||
\(668\) | 0 | 0 | ||||||||
\(669\) | 0 | 0 | ||||||||
\(670\) | 0 | 0 | ||||||||
\(671\) | 24.4949 | 0.945615 | ||||||||
\(672\) | 0 | 0 | ||||||||
\(673\) | −33.2379 | −1.28123 | −0.640613 | − | 0.767864i | \(-0.721320\pi\) | ||||
−0.640613 | + | 0.767864i | \(0.721320\pi\) | |||||||
\(674\) | 0 | 0 | ||||||||
\(675\) | 0 | 0 | ||||||||
\(676\) | 0 | 0 | ||||||||
\(677\) | − 10.7748i | − 0.414110i | −0.978329 | − | 0.207055i | \(-0.933612\pi\) | ||||
0.978329 | − | 0.207055i | \(-0.0663879\pi\) | |||||||
\(678\) | 0 | 0 | ||||||||
\(679\) | 54.5456i | 2.09327i | ||||||||
\(680\) | 0 | 0 | ||||||||
\(681\) | 0 | 0 | ||||||||
\(682\) | 0 | 0 | ||||||||
\(683\) | 48.0564 | 1.83883 | 0.919414 | − | 0.393291i | \(-0.128664\pi\) | ||||
0.919414 | + | 0.393291i | \(0.128664\pi\) | |||||||
\(684\) | 0 | 0 | ||||||||
\(685\) | 6.00000 | 0.229248 | ||||||||
\(686\) | 0 | 0 | ||||||||
\(687\) | 0 | 0 | ||||||||
\(688\) | 0 | 0 | ||||||||
\(689\) | 2.64880i | 0.100911i | ||||||||
\(690\) | 0 | 0 | ||||||||
\(691\) | − 33.2570i | − 1.26516i | −0.774497 | − | 0.632578i | \(-0.781997\pi\) | ||||
0.774497 | − | 0.632578i | \(-0.218003\pi\) | |||||||
\(692\) | 0 | 0 | ||||||||
\(693\) | 0 | 0 | ||||||||
\(694\) | 0 | 0 | ||||||||
\(695\) | 27.3460 | 1.03729 | ||||||||
\(696\) | 0 | 0 | ||||||||
\(697\) | 67.7460 | 2.56606 | ||||||||
\(698\) | 0 | 0 | ||||||||
\(699\) | 0 | 0 | ||||||||
\(700\) | 0 | 0 | ||||||||
\(701\) | − 9.89949i | − 0.373899i | −0.982370 | − | 0.186949i | \(-0.940140\pi\) | ||||
0.982370 | − | 0.186949i | \(-0.0598600\pi\) | |||||||
\(702\) | 0 | 0 | ||||||||
\(703\) | − 48.4974i | − 1.82911i | ||||||||
\(704\) | 0 | 0 | ||||||||
\(705\) | 0 | 0 | ||||||||
\(706\) | 0 | 0 | ||||||||
\(707\) | −66.6284 | −2.50582 | ||||||||
\(708\) | 0 | 0 | ||||||||
\(709\) | −41.4919 | −1.55826 | −0.779131 | − | 0.626861i | \(-0.784339\pi\) | ||||
−0.779131 | + | 0.626861i | \(0.784339\pi\) | |||||||
\(710\) | 0 | 0 | ||||||||
\(711\) | 0 | 0 | ||||||||
\(712\) | 0 | 0 | ||||||||
\(713\) | 41.7079i | 1.56197i | ||||||||
\(714\) | 0 | 0 | ||||||||
\(715\) | − 4.47214i | − 0.167248i | ||||||||
\(716\) | 0 | 0 | ||||||||
\(717\) | 0 | 0 | ||||||||
\(718\) | 0 | 0 | ||||||||
\(719\) | 22.3565 | 0.833758 | 0.416879 | − | 0.908962i | \(-0.363124\pi\) | ||||
0.416879 | + | 0.908962i | \(0.363124\pi\) | |||||||
\(720\) | 0 | 0 | ||||||||
\(721\) | −5.74597 | −0.213991 | ||||||||
\(722\) | 0 | 0 | ||||||||
\(723\) | 0 | 0 | ||||||||
\(724\) | 0 | 0 | ||||||||
\(725\) | 12.7279i | 0.472703i | ||||||||
\(726\) | 0 | 0 | ||||||||
\(727\) | 18.7685i | 0.696087i | 0.937478 | + | 0.348043i | \(0.113154\pi\) | ||||
−0.937478 | + | 0.348043i | \(0.886846\pi\) | |||||||
\(728\) | 0 | 0 | ||||||||
\(729\) | 0 | 0 | ||||||||
\(730\) | 0 | 0 | ||||||||
\(731\) | −18.9737 | −0.701766 | ||||||||
\(732\) | 0 | 0 | ||||||||
\(733\) | −19.2379 | −0.710568 | −0.355284 | − | 0.934758i | \(-0.615616\pi\) | ||||
−0.355284 | + | 0.934758i | \(0.615616\pi\) | |||||||
\(734\) | 0 | 0 | ||||||||
\(735\) | 0 | 0 | ||||||||
\(736\) | 0 | 0 | ||||||||
\(737\) | − 26.6904i | − 0.983155i | ||||||||
\(738\) | 0 | 0 | ||||||||
\(739\) | 19.2726i | 0.708953i | 0.935065 | + | 0.354476i | \(0.115341\pi\) | ||||
−0.935065 | + | 0.354476i | \(0.884659\pi\) | |||||||
\(740\) | 0 | 0 | ||||||||
\(741\) | 0 | 0 | ||||||||
\(742\) | 0 | 0 | ||||||||
\(743\) | −16.5242 | −0.606213 | −0.303107 | − | 0.952957i | \(-0.598024\pi\) | ||||
−0.303107 | + | 0.952957i | \(0.598024\pi\) | |||||||
\(744\) | 0 | 0 | ||||||||
\(745\) | −14.0000 | −0.512920 | ||||||||
\(746\) | 0 | 0 | ||||||||
\(747\) | 0 | 0 | ||||||||
\(748\) | 0 | 0 | ||||||||
\(749\) | 27.9250i | 1.02036i | ||||||||
\(750\) | 0 | 0 | ||||||||
\(751\) | 34.2010i | 1.24801i | 0.781419 | + | 0.624006i | \(0.214496\pi\) | ||||
−0.781419 | + | 0.624006i | \(0.785504\pi\) | |||||||
\(752\) | 0 | 0 | ||||||||
\(753\) | 0 | 0 | ||||||||
\(754\) | 0 | 0 | ||||||||
\(755\) | −10.5107 | −0.382525 | ||||||||
\(756\) | 0 | 0 | ||||||||
\(757\) | 39.4919 | 1.43536 | 0.717679 | − | 0.696374i | \(-0.245204\pi\) | ||||
0.717679 | + | 0.696374i | \(0.245204\pi\) | |||||||
\(758\) | 0 | 0 | ||||||||
\(759\) | 0 | 0 | ||||||||
\(760\) | 0 | 0 | ||||||||
\(761\) | − 46.3098i | − 1.67873i | −0.543569 | − | 0.839364i | \(-0.682927\pi\) | ||||
0.543569 | − | 0.839364i | \(-0.317073\pi\) | |||||||
\(762\) | 0 | 0 | ||||||||
\(763\) | 14.8644i | 0.538129i | ||||||||
\(764\) | 0 | 0 | ||||||||
\(765\) | 0 | 0 | ||||||||
\(766\) | 0 | 0 | ||||||||
\(767\) | 7.34847 | 0.265338 | ||||||||
\(768\) | 0 | 0 | ||||||||
\(769\) | 39.7460 | 1.43328 | 0.716638 | − | 0.697445i | \(-0.245680\pi\) | ||||
0.716638 | + | 0.697445i | \(0.245680\pi\) | |||||||
\(770\) | 0 | 0 | ||||||||
\(771\) | 0 | 0 | ||||||||
\(772\) | 0 | 0 | ||||||||
\(773\) | 15.5563i | 0.559523i | 0.960070 | + | 0.279761i | \(0.0902554\pi\) | ||||
−0.960070 | + | 0.279761i | \(0.909745\pi\) | |||||||
\(774\) | 0 | 0 | ||||||||
\(775\) | 22.2967i | 0.800920i | ||||||||
\(776\) | 0 | 0 | ||||||||
\(777\) | 0 | 0 | ||||||||
\(778\) | 0 | 0 | ||||||||
\(779\) | −61.5484 | −2.20520 | ||||||||
\(780\) | 0 | 0 | ||||||||
\(781\) | 43.2379 | 1.54717 | ||||||||
\(782\) | 0 | 0 | ||||||||
\(783\) | 0 | 0 | ||||||||
\(784\) | 0 | 0 | ||||||||
\(785\) | − 21.9089i | − 0.781962i | ||||||||
\(786\) | 0 | 0 | ||||||||
\(787\) | − 10.4563i | − 0.372728i | −0.982481 | − | 0.186364i | \(-0.940330\pi\) | ||||
0.982481 | − | 0.186364i | \(-0.0596703\pi\) | |||||||
\(788\) | 0 | 0 | ||||||||
\(789\) | 0 | 0 | ||||||||
\(790\) | 0 | 0 | ||||||||
\(791\) | −66.6284 | −2.36903 | ||||||||
\(792\) | 0 | 0 | ||||||||
\(793\) | −7.74597 | −0.275067 | ||||||||
\(794\) | 0 | 0 | ||||||||
\(795\) | 0 | 0 | ||||||||
\(796\) | 0 | 0 | ||||||||
\(797\) | 29.3392i | 1.03925i | 0.854395 | + | 0.519624i | \(0.173928\pi\) | ||||
−0.854395 | + | 0.519624i | \(0.826072\pi\) | |||||||
\(798\) | 0 | 0 | ||||||||
\(799\) | − 36.3451i | − 1.28580i | ||||||||
\(800\) | 0 | 0 | ||||||||
\(801\) | 0 | 0 | ||||||||
\(802\) | 0 | 0 | ||||||||
\(803\) | 18.1703 | 0.641217 | ||||||||
\(804\) | 0 | 0 | ||||||||
\(805\) | −31.4919 | −1.10994 | ||||||||
\(806\) | 0 | 0 | ||||||||
\(807\) | 0 | 0 | ||||||||
\(808\) | 0 | 0 | ||||||||
\(809\) | − 19.9786i | − 0.702411i | −0.936298 | − | 0.351205i | \(-0.885772\pi\) | ||||
0.936298 | − | 0.351205i | \(-0.114228\pi\) | |||||||
\(810\) | 0 | 0 | ||||||||
\(811\) | − 23.8727i | − 0.838285i | −0.907920 | − | 0.419142i | \(-0.862331\pi\) | ||||
0.907920 | − | 0.419142i | \(-0.137669\pi\) | |||||||
\(812\) | 0 | 0 | ||||||||
\(813\) | 0 | 0 | ||||||||
\(814\) | 0 | 0 | ||||||||
\(815\) | −15.4097 | −0.539779 | ||||||||
\(816\) | 0 | 0 | ||||||||
\(817\) | 17.2379 | 0.603078 | ||||||||
\(818\) | 0 | 0 | ||||||||
\(819\) | 0 | 0 | ||||||||
\(820\) | 0 | 0 | ||||||||
\(821\) | 51.9666i | 1.81365i | 0.421509 | + | 0.906824i | \(0.361501\pi\) | ||||
−0.421509 | + | 0.906824i | \(0.638499\pi\) | |||||||
\(822\) | 0 | 0 | ||||||||
\(823\) | − 25.2567i | − 0.880395i | −0.897901 | − | 0.440197i | \(-0.854908\pi\) | ||||
0.897901 | − | 0.440197i | \(-0.145092\pi\) | |||||||
\(824\) | 0 | 0 | ||||||||
\(825\) | 0 | 0 | ||||||||
\(826\) | 0 | 0 | ||||||||
\(827\) | 24.9871 | 0.868886 | 0.434443 | − | 0.900699i | \(-0.356945\pi\) | ||||
0.434443 | + | 0.900699i | \(0.356945\pi\) | |||||||
\(828\) | 0 | 0 | ||||||||
\(829\) | −16.0000 | −0.555703 | −0.277851 | − | 0.960624i | \(-0.589622\pi\) | ||||
−0.277851 | + | 0.960624i | \(0.589622\pi\) | |||||||
\(830\) | 0 | 0 | ||||||||
\(831\) | 0 | 0 | ||||||||
\(832\) | 0 | 0 | ||||||||
\(833\) | 47.9036i | 1.65976i | ||||||||
\(834\) | 0 | 0 | ||||||||
\(835\) | − 25.2567i | − 0.874046i | ||||||||
\(836\) | 0 | 0 | ||||||||
\(837\) | 0 | 0 | ||||||||
\(838\) | 0 | 0 | ||||||||
\(839\) | 7.97072 | 0.275180 | 0.137590 | − | 0.990489i | \(-0.456064\pi\) | ||||
0.137590 | + | 0.990489i | \(0.456064\pi\) | |||||||
\(840\) | 0 | 0 | ||||||||
\(841\) | 11.0000 | 0.379310 | ||||||||
\(842\) | 0 | 0 | ||||||||
\(843\) | 0 | 0 | ||||||||
\(844\) | 0 | 0 | ||||||||
\(845\) | 1.41421i | 0.0486504i | ||||||||
\(846\) | 0 | 0 | ||||||||
\(847\) | − 3.96812i | − 0.136346i | ||||||||
\(848\) | 0 | 0 | ||||||||
\(849\) | 0 | 0 | ||||||||
\(850\) | 0 | 0 | ||||||||
\(851\) | −54.6921 | −1.87482 | ||||||||
\(852\) | 0 | 0 | ||||||||
\(853\) | −21.7460 | −0.744568 | −0.372284 | − | 0.928119i | \(-0.621425\pi\) | ||||
−0.372284 | + | 0.928119i | \(0.621425\pi\) | |||||||
\(854\) | 0 | 0 | ||||||||
\(855\) | 0 | 0 | ||||||||
\(856\) | 0 | 0 | ||||||||
\(857\) | − 21.5725i | − 0.736901i | −0.929647 | − | 0.368451i | \(-0.879888\pi\) | ||||
0.929647 | − | 0.368451i | \(-0.120112\pi\) | |||||||
\(858\) | 0 | 0 | ||||||||
\(859\) | 40.6892i | 1.38830i | 0.719831 | + | 0.694149i | \(0.244219\pi\) | ||||
−0.719831 | + | 0.694149i | \(0.755781\pi\) | |||||||
\(860\) | 0 | 0 | ||||||||
\(861\) | 0 | 0 | ||||||||
\(862\) | 0 | 0 | ||||||||
\(863\) | −13.7636 | −0.468517 | −0.234259 | − | 0.972174i | \(-0.575266\pi\) | ||||
−0.234259 | + | 0.972174i | \(0.575266\pi\) | |||||||
\(864\) | 0 | 0 | ||||||||
\(865\) | 3.74597 | 0.127367 | ||||||||
\(866\) | 0 | 0 | ||||||||
\(867\) | 0 | 0 | ||||||||
\(868\) | 0 | 0 | ||||||||
\(869\) | − 3.18768i | − 0.108135i | ||||||||
\(870\) | 0 | 0 | ||||||||
\(871\) | 8.44025i | 0.285987i | ||||||||
\(872\) | 0 | 0 | ||||||||
\(873\) | 0 | 0 | ||||||||
\(874\) | 0 | 0 | ||||||||
\(875\) | −44.8941 | −1.51770 | ||||||||
\(876\) | 0 | 0 | ||||||||
\(877\) | 53.2379 | 1.79772 | 0.898858 | − | 0.438240i | \(-0.144398\pi\) | ||||
0.898858 | + | 0.438240i | \(0.144398\pi\) | |||||||
\(878\) | 0 | 0 | ||||||||
\(879\) | 0 | 0 | ||||||||
\(880\) | 0 | 0 | ||||||||
\(881\) | 7.43033i | 0.250334i | 0.992136 | + | 0.125167i | \(0.0399467\pi\) | ||||
−0.992136 | + | 0.125167i | \(0.960053\pi\) | |||||||
\(882\) | 0 | 0 | ||||||||
\(883\) | − 33.7610i | − 1.13615i | −0.822977 | − | 0.568074i | \(-0.807689\pi\) | ||||
0.822977 | − | 0.568074i | \(-0.192311\pi\) | |||||||
\(884\) | 0 | 0 | ||||||||
\(885\) | 0 | 0 | ||||||||
\(886\) | 0 | 0 | ||||||||
\(887\) | −6.41509 | −0.215398 | −0.107699 | − | 0.994184i | \(-0.534348\pi\) | ||||
−0.107699 | + | 0.994184i | \(0.534348\pi\) | |||||||
\(888\) | 0 | 0 | ||||||||
\(889\) | 58.9839 | 1.97826 | ||||||||
\(890\) | 0 | 0 | ||||||||
\(891\) | 0 | 0 | ||||||||
\(892\) | 0 | 0 | ||||||||
\(893\) | 33.0202i | 1.10498i | ||||||||
\(894\) | 0 | 0 | ||||||||
\(895\) | 25.8248i | 0.863227i | ||||||||
\(896\) | 0 | 0 | ||||||||
\(897\) | 0 | 0 | ||||||||
\(898\) | 0 | 0 | ||||||||
\(899\) | −31.5322 | −1.05166 | ||||||||
\(900\) | 0 | 0 | ||||||||
\(901\) | −14.5081 | −0.483334 | ||||||||
\(902\) | 0 | 0 | ||||||||
\(903\) | 0 | 0 | ||||||||
\(904\) | 0 | 0 | ||||||||
\(905\) | − 19.7990i | − 0.658141i | ||||||||
\(906\) | 0 | 0 | ||||||||
\(907\) | 5.04017i | 0.167356i | 0.996493 | + | 0.0836781i | \(0.0266667\pi\) | ||||
−0.996493 | + | 0.0836781i | \(0.973333\pi\) | |||||||
\(908\) | 0 | 0 | ||||||||
\(909\) | 0 | 0 | ||||||||
\(910\) | 0 | 0 | ||||||||
\(911\) | −51.1282 | −1.69395 | −0.846976 | − | 0.531632i | \(-0.821579\pi\) | ||||
−0.846976 | + | 0.531632i | \(0.821579\pi\) | |||||||
\(912\) | 0 | 0 | ||||||||
\(913\) | −23.2379 | −0.769062 | ||||||||
\(914\) | 0 | 0 | ||||||||
\(915\) | 0 | 0 | ||||||||
\(916\) | 0 | 0 | ||||||||
\(917\) | − 8.48528i | − 0.280209i | ||||||||
\(918\) | 0 | 0 | ||||||||
\(919\) | − 25.6967i | − 0.847657i | −0.905742 | − | 0.423829i | \(-0.860686\pi\) | ||||
0.905742 | − | 0.423829i | \(-0.139314\pi\) | |||||||
\(920\) | 0 | 0 | ||||||||
\(921\) | 0 | 0 | ||||||||
\(922\) | 0 | 0 | ||||||||
\(923\) | −13.6730 | −0.450053 | ||||||||
\(924\) | 0 | 0 | ||||||||
\(925\) | −29.2379 | −0.961336 | ||||||||
\(926\) | 0 | 0 | ||||||||
\(927\) | 0 | 0 | ||||||||
\(928\) | 0 | 0 | ||||||||
\(929\) | − 21.5725i | − 0.707769i | −0.935289 | − | 0.353885i | \(-0.884861\pi\) | ||||
0.935289 | − | 0.353885i | \(-0.115139\pi\) | |||||||
\(930\) | 0 | 0 | ||||||||
\(931\) | − 43.5213i | − 1.42635i | ||||||||
\(932\) | 0 | 0 | ||||||||
\(933\) | 0 | 0 | ||||||||
\(934\) | 0 | 0 | ||||||||
\(935\) | 24.4949 | 0.801069 | ||||||||
\(936\) | 0 | 0 | ||||||||
\(937\) | 24.9839 | 0.816187 | 0.408094 | − | 0.912940i | \(-0.366194\pi\) | ||||
0.408094 | + | 0.912940i | \(0.366194\pi\) | |||||||
\(938\) | 0 | 0 | ||||||||
\(939\) | 0 | 0 | ||||||||
\(940\) | 0 | 0 | ||||||||
\(941\) | 4.96116i | 0.161729i | 0.996725 | + | 0.0808645i | \(0.0257681\pi\) | ||||
−0.996725 | + | 0.0808645i | \(0.974232\pi\) | |||||||
\(942\) | 0 | 0 | ||||||||
\(943\) | 69.4101i | 2.26030i | ||||||||
\(944\) | 0 | 0 | ||||||||
\(945\) | 0 | 0 | ||||||||
\(946\) | 0 | 0 | ||||||||
\(947\) | −25.6999 | −0.835134 | −0.417567 | − | 0.908646i | \(-0.637117\pi\) | ||||
−0.417567 | + | 0.908646i | \(0.637117\pi\) | |||||||
\(948\) | 0 | 0 | ||||||||
\(949\) | −5.74597 | −0.186522 | ||||||||
\(950\) | 0 | 0 | ||||||||
\(951\) | 0 | 0 | ||||||||
\(952\) | 0 | 0 | ||||||||
\(953\) | 3.88338i | 0.125795i | 0.998020 | + | 0.0628976i | \(0.0200341\pi\) | ||||
−0.998020 | + | 0.0628976i | \(0.979966\pi\) | |||||||
\(954\) | 0 | 0 | ||||||||
\(955\) | − 21.7926i | − 0.705193i | ||||||||
\(956\) | 0 | 0 | ||||||||
\(957\) | 0 | 0 | ||||||||
\(958\) | 0 | 0 | ||||||||
\(959\) | 16.8353 | 0.543640 | ||||||||
\(960\) | 0 | 0 | ||||||||
\(961\) | −24.2379 | −0.781868 | ||||||||
\(962\) | 0 | 0 | ||||||||
\(963\) | 0 | 0 | ||||||||
\(964\) | 0 | 0 | ||||||||
\(965\) | − 16.6113i | − 0.534737i | ||||||||
\(966\) | 0 | 0 | ||||||||
\(967\) | − 11.4644i | − 0.368669i | −0.982864 | − | 0.184334i | \(-0.940987\pi\) | ||||
0.982864 | − | 0.184334i | \(-0.0590130\pi\) | |||||||
\(968\) | 0 | 0 | ||||||||
\(969\) | 0 | 0 | ||||||||
\(970\) | 0 | 0 | ||||||||
\(971\) | −30.1972 | −0.969074 | −0.484537 | − | 0.874771i | \(-0.661012\pi\) | ||||
−0.484537 | + | 0.874771i | \(0.661012\pi\) | |||||||
\(972\) | 0 | 0 | ||||||||
\(973\) | 76.7298 | 2.45985 | ||||||||
\(974\) | 0 | 0 | ||||||||
\(975\) | 0 | 0 | ||||||||
\(976\) | 0 | 0 | ||||||||
\(977\) | 42.7628i | 1.36810i | 0.729433 | + | 0.684052i | \(0.239784\pi\) | ||||
−0.729433 | + | 0.684052i | \(0.760216\pi\) | |||||||
\(978\) | 0 | 0 | ||||||||
\(979\) | − 39.1132i | − 1.25006i | ||||||||
\(980\) | 0 | 0 | ||||||||
\(981\) | 0 | 0 | ||||||||
\(982\) | 0 | 0 | ||||||||
\(983\) | 53.6682 | 1.71175 | 0.855875 | − | 0.517183i | \(-0.173019\pi\) | ||||
0.855875 | + | 0.517183i | \(0.173019\pi\) | |||||||
\(984\) | 0 | 0 | ||||||||
\(985\) | −2.00000 | −0.0637253 | ||||||||
\(986\) | 0 | 0 | ||||||||
\(987\) | 0 | 0 | ||||||||
\(988\) | 0 | 0 | ||||||||
\(989\) | − 19.4397i | − 0.618148i | ||||||||
\(990\) | 0 | 0 | ||||||||
\(991\) | − 54.1056i | − 1.71872i | −0.511369 | − | 0.859361i | \(-0.670862\pi\) | ||||
0.511369 | − | 0.859361i | \(-0.329138\pi\) | |||||||
\(992\) | 0 | 0 | ||||||||
\(993\) | 0 | 0 | ||||||||
\(994\) | 0 | 0 | ||||||||
\(995\) | −1.42558 | −0.0451938 | ||||||||
\(996\) | 0 | 0 | ||||||||
\(997\) | 44.9839 | 1.42465 | 0.712327 | − | 0.701848i | \(-0.247641\pi\) | ||||
0.712327 | + | 0.701848i | \(0.247641\pi\) | |||||||
\(998\) | 0 | 0 | ||||||||
\(999\) | 0 | 0 |
(See \(a_n\) instead)
(See \(a_n\) instead)
(See \(a_n\) instead)
(See only \(a_p\))
(See only \(a_p\))
(See only \(a_p\))
Twists
By twisting character | |||||||
---|---|---|---|---|---|---|---|
Char | Parity | Ord | Type | Twist | Min | Dim | |
1.1 | even | 1 | trivial | 7488.2.d.g.4031.8 | 8 | ||
3.2 | odd | 2 | inner | 7488.2.d.g.4031.4 | 8 | ||
4.3 | odd | 2 | inner | 7488.2.d.g.4031.5 | 8 | ||
8.3 | odd | 2 | 1872.2.d.d.287.1 | ✓ | 8 | ||
8.5 | even | 2 | 1872.2.d.d.287.4 | yes | 8 | ||
12.11 | even | 2 | inner | 7488.2.d.g.4031.1 | 8 | ||
24.5 | odd | 2 | 1872.2.d.d.287.8 | yes | 8 | ||
24.11 | even | 2 | 1872.2.d.d.287.5 | yes | 8 |
By twisted newform | |||||||
---|---|---|---|---|---|---|---|
Twist | Min | Dim | Char | Parity | Ord | Type | |
1872.2.d.d.287.1 | ✓ | 8 | 8.3 | odd | 2 | ||
1872.2.d.d.287.4 | yes | 8 | 8.5 | even | 2 | ||
1872.2.d.d.287.5 | yes | 8 | 24.11 | even | 2 | ||
1872.2.d.d.287.8 | yes | 8 | 24.5 | odd | 2 | ||
7488.2.d.g.4031.1 | 8 | 12.11 | even | 2 | inner | ||
7488.2.d.g.4031.4 | 8 | 3.2 | odd | 2 | inner | ||
7488.2.d.g.4031.5 | 8 | 4.3 | odd | 2 | inner | ||
7488.2.d.g.4031.8 | 8 | 1.1 | even | 1 | trivial |