Properties

Label 1872.3.l.d
Level $1872$
Weight $3$
Character orbit 1872.l
Analytic conductor $51.008$
Analytic rank $0$
Dimension $8$
Inner twists $4$

Related objects

Downloads

Learn more

Show commands: Magma / PariGP / SageMath

Newspace parameters

comment: Compute space of new eigenforms
 
[N,k,chi] = [1872,3,Mod(1169,1872)]
 
mf = mfinit([N,k,chi],0)
 
lf = mfeigenbasis(mf)
 
from sage.modular.dirichlet import DirichletCharacter
 
H = DirichletGroup(1872, base_ring=CyclotomicField(2))
 
chi = DirichletCharacter(H, H._module([0, 0, 1, 1]))
 
N = Newforms(chi, 3, names="a")
 
//Please install CHIMP (https://github.com/edgarcosta/CHIMP) if you want to run this code
 
chi := DirichletCharacter("1872.1169");
 
S:= CuspForms(chi, 3);
 
N := Newforms(S);
 
Level: \( N \) \(=\) \( 1872 = 2^{4} \cdot 3^{2} \cdot 13 \)
Weight: \( k \) \(=\) \( 3 \)
Character orbit: \([\chi]\) \(=\) 1872.l (of order \(2\), degree \(1\), not minimal)

Newform invariants

comment: select newform
 
sage: f = N[0] # Warning: the index may be different
 
gp: f = lf[1] \\ Warning: the index may be different
 
Self dual: no
Analytic conductor: \(51.0083054882\)
Analytic rank: \(0\)
Dimension: \(8\)
Coefficient field: 8.0.138169810944.5
comment: defining polynomial
 
gp: f.mod \\ as an extension of the character field
 
Defining polynomial: \( x^{8} + 2x^{6} - 3x^{4} + 18x^{2} + 81 \) Copy content Toggle raw display
Coefficient ring: \(\Z[a_1, \ldots, a_{17}]\)
Coefficient ring index: \( 2^{7}\cdot 3^{3} \)
Twist minimal: no (minimal twist has level 117)
Sato-Tate group: $\mathrm{SU}(2)[C_{2}]$

$q$-expansion

comment: q-expansion
 
sage: f.q_expansion() # note that sage often uses an isomorphic number field
 
gp: mfcoefs(f, 20)
 

Coefficients of the \(q\)-expansion are expressed in terms of a basis \(1,\beta_1,\ldots,\beta_{7}\) for the coefficient ring described below. We also show the integral \(q\)-expansion of the trace form.

\(f(q)\) \(=\) \( q + \beta_{3} q^{5} + \beta_1 q^{7} + (\beta_{4} - 3 \beta_{3}) q^{11} + (\beta_{6} - \beta_{2} - \beta_1 - 3) q^{13} + ( - \beta_{7} - \beta_{5}) q^{17} + ( - 2 \beta_{6} - 3 \beta_1) q^{19} + (\beta_{7} + 2 \beta_{5}) q^{23}+ \cdots + (9 \beta_{6} + 20 \beta_1) q^{97}+O(q^{100}) \) Copy content Toggle raw display
\(\operatorname{Tr}(f)(q)\) \(=\) \( 8 q - 24 q^{13} - 88 q^{25} - 16 q^{43} + 152 q^{49} - 304 q^{55} - 240 q^{61} - 576 q^{79} + 336 q^{91}+O(q^{100}) \) Copy content Toggle raw display

Basis of coefficient ring in terms of a root \(\nu\) of \( x^{8} + 2x^{6} - 3x^{4} + 18x^{2} + 81 \) : Copy content Toggle raw display

\(\beta_{1}\)\(=\) \( ( -2\nu^{7} - \nu^{5} + 21\nu^{3} - 81\nu ) / 27 \) Copy content Toggle raw display
\(\beta_{2}\)\(=\) \( ( -\nu^{6} - 2\nu^{4} + 12\nu^{2} - 9 ) / 9 \) Copy content Toggle raw display
\(\beta_{3}\)\(=\) \( ( 2\nu^{7} - 5\nu^{5} + 3\nu^{3} + 63\nu ) / 27 \) Copy content Toggle raw display
\(\beta_{4}\)\(=\) \( ( -2\nu^{7} - 4\nu^{5} + 6\nu^{3} + 18\nu ) / 27 \) Copy content Toggle raw display
\(\beta_{5}\)\(=\) \( ( -\nu^{6} + 4\nu^{4} + 6\nu^{2} - 27 ) / 9 \) Copy content Toggle raw display
\(\beta_{6}\)\(=\) \( ( 2\nu^{7} + 10\nu^{5} + 24\nu^{3} + 108\nu ) / 27 \) Copy content Toggle raw display
\(\beta_{7}\)\(=\) \( ( 8\nu^{6} + 4\nu^{4} + 24\nu^{2} + 162 ) / 9 \) Copy content Toggle raw display
\(\nu\)\(=\) \( ( \beta_{6} + 3\beta_{4} - 2\beta_1 ) / 12 \) Copy content Toggle raw display
\(\nu^{2}\)\(=\) \( ( \beta_{7} + 2\beta_{5} + 6\beta_{2} - 6 ) / 12 \) Copy content Toggle raw display
\(\nu^{3}\)\(=\) \( ( 2\beta_{6} + 3\beta_{3} + 5\beta_1 ) / 6 \) Copy content Toggle raw display
\(\nu^{4}\)\(=\) \( ( \beta_{7} + 20\beta_{5} - 12\beta_{2} + 30 ) / 12 \) Copy content Toggle raw display
\(\nu^{5}\)\(=\) \( ( 13\beta_{6} - 9\beta_{4} - 30\beta_{3} - 8\beta_1 ) / 12 \) Copy content Toggle raw display
\(\nu^{6}\)\(=\) \( ( 5\beta_{7} - 8\beta_{5} - 6\beta_{2} - 120 ) / 6 \) Copy content Toggle raw display
\(\nu^{7}\)\(=\) \( ( -5\beta_{6} - 117\beta_{4} + 78\beta_{3} + 28\beta_1 ) / 12 \) Copy content Toggle raw display

Character values

We give the values of \(\chi\) on generators for \(\left(\mathbb{Z}/1872\mathbb{Z}\right)^\times\).

\(n\) \(145\) \(209\) \(469\) \(703\)
\(\chi(n)\) \(-1\) \(-1\) \(1\) \(1\)

Embeddings

For each embedding \(\iota_m\) of the coefficient field, the values \(\iota_m(a_n)\) are shown below.

For more information on an embedded modular form you can click on its label.

comment: embeddings in the coefficient field
 
gp: mfembed(f)
 
Label   \(\iota_m(\nu)\) \( a_{2} \) \( a_{3} \) \( a_{4} \) \( a_{5} \) \( a_{6} \) \( a_{7} \) \( a_{8} \) \( a_{9} \) \( a_{10} \)
1169.1
0.278201 + 1.70956i
0.278201 1.70956i
−1.55647 0.759866i
−1.55647 + 0.759866i
1.55647 0.759866i
1.55647 + 0.759866i
−0.278201 + 1.70956i
−0.278201 1.70956i
0 0 0 −4.83537 0 7.62512i 0 0 0
1169.2 0 0 0 −4.83537 0 7.62512i 0 0 0
1169.3 0 0 0 −2.14923 0 1.36290i 0 0 0
1169.4 0 0 0 −2.14923 0 1.36290i 0 0 0
1169.5 0 0 0 2.14923 0 1.36290i 0 0 0
1169.6 0 0 0 2.14923 0 1.36290i 0 0 0
1169.7 0 0 0 4.83537 0 7.62512i 0 0 0
1169.8 0 0 0 4.83537 0 7.62512i 0 0 0
\(n\): e.g. 2-40 or 990-1000
Embeddings: e.g. 1-3 or 1169.8
Significant digits:
Format:

Inner twists

Char Parity Ord Mult Type
1.a even 1 1 trivial
3.b odd 2 1 inner
13.b even 2 1 inner
39.d odd 2 1 inner

Twists

       By twisting character orbit
Char Parity Ord Mult Type Twist Min Dim
1.a even 1 1 trivial 1872.3.l.d 8
3.b odd 2 1 inner 1872.3.l.d 8
4.b odd 2 1 117.3.d.a 8
12.b even 2 1 117.3.d.a 8
13.b even 2 1 inner 1872.3.l.d 8
39.d odd 2 1 inner 1872.3.l.d 8
52.b odd 2 1 117.3.d.a 8
156.h even 2 1 117.3.d.a 8
    
        By twisted newform orbit
Twist Min Dim Char Parity Ord Mult Type
117.3.d.a 8 4.b odd 2 1
117.3.d.a 8 12.b even 2 1
117.3.d.a 8 52.b odd 2 1
117.3.d.a 8 156.h even 2 1
1872.3.l.d 8 1.a even 1 1 trivial
1872.3.l.d 8 3.b odd 2 1 inner
1872.3.l.d 8 13.b even 2 1 inner
1872.3.l.d 8 39.d odd 2 1 inner

Hecke kernels

This newform subspace can be constructed as the intersection of the kernels of the following linear operators acting on \(S_{3}^{\mathrm{new}}(1872, [\chi])\):

\( T_{5}^{4} - 28T_{5}^{2} + 108 \) Copy content Toggle raw display
\( T_{7}^{4} + 60T_{7}^{2} + 108 \) Copy content Toggle raw display

Hecke characteristic polynomials

$p$ $F_p(T)$
$2$ \( T^{8} \) Copy content Toggle raw display
$3$ \( T^{8} \) Copy content Toggle raw display
$5$ \( (T^{4} - 28 T^{2} + 108)^{2} \) Copy content Toggle raw display
$7$ \( (T^{4} + 60 T^{2} + 108)^{2} \) Copy content Toggle raw display
$11$ \( (T^{4} - 244 T^{2} + 12)^{2} \) Copy content Toggle raw display
$13$ \( (T^{4} + 12 T^{3} + \cdots + 28561)^{2} \) Copy content Toggle raw display
$17$ \( (T^{4} + 828 T^{2} + 142884)^{2} \) Copy content Toggle raw display
$19$ \( (T^{4} + 924 T^{2} + 117612)^{2} \) Copy content Toggle raw display
$23$ \( (T^{4} + 936 T^{2} + 104976)^{2} \) Copy content Toggle raw display
$29$ \( (T^{4} + 3492 T^{2} + 2022084)^{2} \) Copy content Toggle raw display
$31$ \( (T^{4} + 1428 T^{2} + 375948)^{2} \) Copy content Toggle raw display
$37$ \( (T^{4} + 2040 T^{2} + 657072)^{2} \) Copy content Toggle raw display
$41$ \( (T^{4} - 220 T^{2} + 1452)^{2} \) Copy content Toggle raw display
$43$ \( (T^{2} + 4 T - 788)^{4} \) Copy content Toggle raw display
$47$ \( (T^{4} - 6580 T^{2} + 2312652)^{2} \) Copy content Toggle raw display
$53$ \( (T^{4} + 5148 T^{2} + 3175524)^{2} \) Copy content Toggle raw display
$59$ \( (T^{4} - 3484 T^{2} + 2027052)^{2} \) Copy content Toggle raw display
$61$ \( (T^{2} + 60 T + 548)^{4} \) Copy content Toggle raw display
$67$ \( (T^{4} + 11412 T^{2} + 32551308)^{2} \) Copy content Toggle raw display
$71$ \( (T^{4} - 23452 T^{2} + 100433388)^{2} \) Copy content Toggle raw display
$73$ \( (T^{4} + 17064 T^{2} + 29428272)^{2} \) Copy content Toggle raw display
$79$ \( (T^{2} + 144 T + 5096)^{4} \) Copy content Toggle raw display
$83$ \( (T^{4} - 17596 T^{2} + 77358252)^{2} \) Copy content Toggle raw display
$89$ \( (T^{4} - 11068 T^{2} + 4869228)^{2} \) Copy content Toggle raw display
$97$ \( (T^{4} + 28968 T^{2} + 197998128)^{2} \) Copy content Toggle raw display
show more
show less