Properties

Label 1872.4.a.be.1.1
Level $1872$
Weight $4$
Character 1872.1
Self dual yes
Analytic conductor $110.452$
Analytic rank $1$
Dimension $2$
CM no
Inner twists $1$

Related objects

Downloads

Learn more

Show commands: Magma / PariGP / SageMath

Newspace parameters

comment: Compute space of new eigenforms
 
[N,k,chi] = [1872,4,Mod(1,1872)]
 
mf = mfinit([N,k,chi],0)
 
lf = mfeigenbasis(mf)
 
from sage.modular.dirichlet import DirichletCharacter
 
H = DirichletGroup(1872, base_ring=CyclotomicField(2))
 
chi = DirichletCharacter(H, H._module([0, 0, 0, 0]))
 
N = Newforms(chi, 4, names="a")
 
//Please install CHIMP (https://github.com/edgarcosta/CHIMP) if you want to run this code
 
chi := DirichletCharacter("1872.1");
 
S:= CuspForms(chi, 4);
 
N := Newforms(S);
 
Level: \( N \) \(=\) \( 1872 = 2^{4} \cdot 3^{2} \cdot 13 \)
Weight: \( k \) \(=\) \( 4 \)
Character orbit: \([\chi]\) \(=\) 1872.a (trivial)

Newform invariants

comment: select newform
 
sage: f = N[0] # Warning: the index may be different
 
gp: f = lf[1] \\ Warning: the index may be different
 
Self dual: yes
Analytic conductor: \(110.451575531\)
Analytic rank: \(1\)
Dimension: \(2\)
Coefficient field: \(\Q(\zeta_{12})^+\)
comment: defining polynomial
 
gp: f.mod \\ as an extension of the character field
 
Defining polynomial: \( x^{2} - 3 \) Copy content Toggle raw display
Coefficient ring: \(\Z[a_1, \ldots, a_{5}]\)
Coefficient ring index: \( 2 \)
Twist minimal: no (minimal twist has level 312)
Fricke sign: \(-1\)
Sato-Tate group: $\mathrm{SU}(2)$

Embedding invariants

Embedding label 1.1
Root \(-1.73205\) of defining polynomial
Character \(\chi\) \(=\) 1872.1

$q$-expansion

comment: q-expansion
 
sage: f.q_expansion() # note that sage often uses an isomorphic number field
 
gp: mfcoefs(f, 20)
 
\(f(q)\) \(=\) \(q-1.46410 q^{5} +8.39230 q^{7} +34.7846 q^{11} -13.0000 q^{13} +108.067 q^{17} -143.244 q^{19} -128.708 q^{23} -122.856 q^{25} +18.8616 q^{29} +78.5359 q^{31} -12.2872 q^{35} -327.072 q^{37} -327.587 q^{41} +336.918 q^{43} +99.2820 q^{47} -272.569 q^{49} +686.554 q^{53} -50.9282 q^{55} -242.420 q^{59} -644.851 q^{61} +19.0333 q^{65} +871.643 q^{67} +100.221 q^{71} +604.600 q^{73} +291.923 q^{77} -1070.39 q^{79} +741.672 q^{83} -158.221 q^{85} +501.577 q^{89} -109.100 q^{91} +209.723 q^{95} -1569.71 q^{97} +O(q^{100})\)
\(\operatorname{Tr}(f)(q)\) \(=\) \( 2 q + 4 q^{5} - 4 q^{7} + 28 q^{11} - 26 q^{13} + 36 q^{17} - 44 q^{19} - 8 q^{23} - 218 q^{25} + 204 q^{29} + 164 q^{31} - 80 q^{35} - 668 q^{37} + 100 q^{41} + 272 q^{43} + 60 q^{47} - 462 q^{49} + 708 q^{53}+ \cdots - 188 q^{97}+O(q^{100}) \) Copy content Toggle raw display

Coefficient data

For each \(n\) we display the coefficients of the \(q\)-expansion \(a_n\), the Satake parameters \(\alpha_p\), and the Satake angles \(\theta_p = \textrm{Arg}(\alpha_p)\).



Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))
Significant digits:
\(n\) \(a_n\) \(a_n / n^{(k-1)/2}\) \( \alpha_n \) \( \theta_n \)
\(p\) \(a_p\) \(a_p / p^{(k-1)/2}\) \( \alpha_p\) \( \theta_p \)
\(2\) 0 0
\(3\) 0 0
\(4\) 0 0
\(5\) −1.46410 −0.130953 −0.0654766 0.997854i \(-0.520857\pi\)
−0.0654766 + 0.997854i \(0.520857\pi\)
\(6\) 0 0
\(7\) 8.39230 0.453142 0.226571 0.973995i \(-0.427248\pi\)
0.226571 + 0.973995i \(0.427248\pi\)
\(8\) 0 0
\(9\) 0 0
\(10\) 0 0
\(11\) 34.7846 0.953450 0.476725 0.879052i \(-0.341824\pi\)
0.476725 + 0.879052i \(0.341824\pi\)
\(12\) 0 0
\(13\) −13.0000 −0.277350
\(14\) 0 0
\(15\) 0 0
\(16\) 0 0
\(17\) 108.067 1.54177 0.770883 0.636977i \(-0.219815\pi\)
0.770883 + 0.636977i \(0.219815\pi\)
\(18\) 0 0
\(19\) −143.244 −1.72960 −0.864798 0.502120i \(-0.832554\pi\)
−0.864798 + 0.502120i \(0.832554\pi\)
\(20\) 0 0
\(21\) 0 0
\(22\) 0 0
\(23\) −128.708 −1.16684 −0.583422 0.812169i \(-0.698287\pi\)
−0.583422 + 0.812169i \(0.698287\pi\)
\(24\) 0 0
\(25\) −122.856 −0.982851
\(26\) 0 0
\(27\) 0 0
\(28\) 0 0
\(29\) 18.8616 0.120776 0.0603880 0.998175i \(-0.480766\pi\)
0.0603880 + 0.998175i \(0.480766\pi\)
\(30\) 0 0
\(31\) 78.5359 0.455015 0.227507 0.973776i \(-0.426942\pi\)
0.227507 + 0.973776i \(0.426942\pi\)
\(32\) 0 0
\(33\) 0 0
\(34\) 0 0
\(35\) −12.2872 −0.0593404
\(36\) 0 0
\(37\) −327.072 −1.45325 −0.726625 0.687034i \(-0.758912\pi\)
−0.726625 + 0.687034i \(0.758912\pi\)
\(38\) 0 0
\(39\) 0 0
\(40\) 0 0
\(41\) −327.587 −1.24782 −0.623909 0.781497i \(-0.714456\pi\)
−0.623909 + 0.781497i \(0.714456\pi\)
\(42\) 0 0
\(43\) 336.918 1.19487 0.597436 0.801917i \(-0.296186\pi\)
0.597436 + 0.801917i \(0.296186\pi\)
\(44\) 0 0
\(45\) 0 0
\(46\) 0 0
\(47\) 99.2820 0.308123 0.154061 0.988061i \(-0.450765\pi\)
0.154061 + 0.988061i \(0.450765\pi\)
\(48\) 0 0
\(49\) −272.569 −0.794662
\(50\) 0 0
\(51\) 0 0
\(52\) 0 0
\(53\) 686.554 1.77935 0.889674 0.456597i \(-0.150932\pi\)
0.889674 + 0.456597i \(0.150932\pi\)
\(54\) 0 0
\(55\) −50.9282 −0.124857
\(56\) 0 0
\(57\) 0 0
\(58\) 0 0
\(59\) −242.420 −0.534923 −0.267462 0.963569i \(-0.586185\pi\)
−0.267462 + 0.963569i \(0.586185\pi\)
\(60\) 0 0
\(61\) −644.851 −1.35352 −0.676760 0.736204i \(-0.736617\pi\)
−0.676760 + 0.736204i \(0.736617\pi\)
\(62\) 0 0
\(63\) 0 0
\(64\) 0 0
\(65\) 19.0333 0.0363199
\(66\) 0 0
\(67\) 871.643 1.58938 0.794688 0.607018i \(-0.207634\pi\)
0.794688 + 0.607018i \(0.207634\pi\)
\(68\) 0 0
\(69\) 0 0
\(70\) 0 0
\(71\) 100.221 0.167521 0.0837605 0.996486i \(-0.473307\pi\)
0.0837605 + 0.996486i \(0.473307\pi\)
\(72\) 0 0
\(73\) 604.600 0.969357 0.484678 0.874692i \(-0.338937\pi\)
0.484678 + 0.874692i \(0.338937\pi\)
\(74\) 0 0
\(75\) 0 0
\(76\) 0 0
\(77\) 291.923 0.432048
\(78\) 0 0
\(79\) −1070.39 −1.52441 −0.762204 0.647337i \(-0.775883\pi\)
−0.762204 + 0.647337i \(0.775883\pi\)
\(80\) 0 0
\(81\) 0 0
\(82\) 0 0
\(83\) 741.672 0.980832 0.490416 0.871489i \(-0.336845\pi\)
0.490416 + 0.871489i \(0.336845\pi\)
\(84\) 0 0
\(85\) −158.221 −0.201899
\(86\) 0 0
\(87\) 0 0
\(88\) 0 0
\(89\) 501.577 0.597382 0.298691 0.954350i \(-0.403450\pi\)
0.298691 + 0.954350i \(0.403450\pi\)
\(90\) 0 0
\(91\) −109.100 −0.125679
\(92\) 0 0
\(93\) 0 0
\(94\) 0 0
\(95\) 209.723 0.226496
\(96\) 0 0
\(97\) −1569.71 −1.64309 −0.821544 0.570144i \(-0.806887\pi\)
−0.821544 + 0.570144i \(0.806887\pi\)
\(98\) 0 0
\(99\) 0 0
\(100\) 0 0
\(101\) −1639.34 −1.61505 −0.807526 0.589832i \(-0.799194\pi\)
−0.807526 + 0.589832i \(0.799194\pi\)
\(102\) 0 0
\(103\) 830.333 0.794322 0.397161 0.917749i \(-0.369995\pi\)
0.397161 + 0.917749i \(0.369995\pi\)
\(104\) 0 0
\(105\) 0 0
\(106\) 0 0
\(107\) 1323.67 1.19593 0.597963 0.801523i \(-0.295977\pi\)
0.597963 + 0.801523i \(0.295977\pi\)
\(108\) 0 0
\(109\) −426.441 −0.374731 −0.187365 0.982290i \(-0.559995\pi\)
−0.187365 + 0.982290i \(0.559995\pi\)
\(110\) 0 0
\(111\) 0 0
\(112\) 0 0
\(113\) −1548.66 −1.28925 −0.644625 0.764499i \(-0.722987\pi\)
−0.644625 + 0.764499i \(0.722987\pi\)
\(114\) 0 0
\(115\) 188.441 0.152802
\(116\) 0 0
\(117\) 0 0
\(118\) 0 0
\(119\) 906.928 0.698638
\(120\) 0 0
\(121\) −121.031 −0.0909323
\(122\) 0 0
\(123\) 0 0
\(124\) 0 0
\(125\) 362.887 0.259661
\(126\) 0 0
\(127\) −1456.63 −1.01776 −0.508878 0.860839i \(-0.669940\pi\)
−0.508878 + 0.860839i \(0.669940\pi\)
\(128\) 0 0
\(129\) 0 0
\(130\) 0 0
\(131\) −1822.88 −1.21577 −0.607885 0.794025i \(-0.707982\pi\)
−0.607885 + 0.794025i \(0.707982\pi\)
\(132\) 0 0
\(133\) −1202.14 −0.783752
\(134\) 0 0
\(135\) 0 0
\(136\) 0 0
\(137\) −609.926 −0.380361 −0.190181 0.981749i \(-0.560907\pi\)
−0.190181 + 0.981749i \(0.560907\pi\)
\(138\) 0 0
\(139\) −548.687 −0.334813 −0.167407 0.985888i \(-0.553539\pi\)
−0.167407 + 0.985888i \(0.553539\pi\)
\(140\) 0 0
\(141\) 0 0
\(142\) 0 0
\(143\) −452.200 −0.264440
\(144\) 0 0
\(145\) −27.6152 −0.0158160
\(146\) 0 0
\(147\) 0 0
\(148\) 0 0
\(149\) −1863.89 −1.02480 −0.512402 0.858746i \(-0.671244\pi\)
−0.512402 + 0.858746i \(0.671244\pi\)
\(150\) 0 0
\(151\) 194.418 0.104778 0.0523890 0.998627i \(-0.483316\pi\)
0.0523890 + 0.998627i \(0.483316\pi\)
\(152\) 0 0
\(153\) 0 0
\(154\) 0 0
\(155\) −114.985 −0.0595857
\(156\) 0 0
\(157\) −215.939 −0.109769 −0.0548847 0.998493i \(-0.517479\pi\)
−0.0548847 + 0.998493i \(0.517479\pi\)
\(158\) 0 0
\(159\) 0 0
\(160\) 0 0
\(161\) −1080.15 −0.528746
\(162\) 0 0
\(163\) −1331.28 −0.639717 −0.319858 0.947465i \(-0.603635\pi\)
−0.319858 + 0.947465i \(0.603635\pi\)
\(164\) 0 0
\(165\) 0 0
\(166\) 0 0
\(167\) 3189.68 1.47799 0.738997 0.673709i \(-0.235300\pi\)
0.738997 + 0.673709i \(0.235300\pi\)
\(168\) 0 0
\(169\) 169.000 0.0769231
\(170\) 0 0
\(171\) 0 0
\(172\) 0 0
\(173\) 3407.54 1.49752 0.748759 0.662842i \(-0.230650\pi\)
0.748759 + 0.662842i \(0.230650\pi\)
\(174\) 0 0
\(175\) −1031.05 −0.445371
\(176\) 0 0
\(177\) 0 0
\(178\) 0 0
\(179\) 1020.46 0.426106 0.213053 0.977041i \(-0.431659\pi\)
0.213053 + 0.977041i \(0.431659\pi\)
\(180\) 0 0
\(181\) −3458.60 −1.42031 −0.710155 0.704046i \(-0.751375\pi\)
−0.710155 + 0.704046i \(0.751375\pi\)
\(182\) 0 0
\(183\) 0 0
\(184\) 0 0
\(185\) 478.866 0.190308
\(186\) 0 0
\(187\) 3759.06 1.47000
\(188\) 0 0
\(189\) 0 0
\(190\) 0 0
\(191\) −3014.88 −1.14214 −0.571071 0.820901i \(-0.693472\pi\)
−0.571071 + 0.820901i \(0.693472\pi\)
\(192\) 0 0
\(193\) 539.795 0.201323 0.100661 0.994921i \(-0.467904\pi\)
0.100661 + 0.994921i \(0.467904\pi\)
\(194\) 0 0
\(195\) 0 0
\(196\) 0 0
\(197\) −3630.70 −1.31308 −0.656541 0.754291i \(-0.727981\pi\)
−0.656541 + 0.754291i \(0.727981\pi\)
\(198\) 0 0
\(199\) 3846.40 1.37017 0.685086 0.728462i \(-0.259764\pi\)
0.685086 + 0.728462i \(0.259764\pi\)
\(200\) 0 0
\(201\) 0 0
\(202\) 0 0
\(203\) 158.292 0.0547287
\(204\) 0 0
\(205\) 479.621 0.163406
\(206\) 0 0
\(207\) 0 0
\(208\) 0 0
\(209\) −4982.67 −1.64908
\(210\) 0 0
\(211\) −993.169 −0.324041 −0.162020 0.986787i \(-0.551801\pi\)
−0.162020 + 0.986787i \(0.551801\pi\)
\(212\) 0 0
\(213\) 0 0
\(214\) 0 0
\(215\) −493.282 −0.156472
\(216\) 0 0
\(217\) 659.097 0.206186
\(218\) 0 0
\(219\) 0 0
\(220\) 0 0
\(221\) −1404.87 −0.427609
\(222\) 0 0
\(223\) −3813.70 −1.14522 −0.572610 0.819828i \(-0.694069\pi\)
−0.572610 + 0.819828i \(0.694069\pi\)
\(224\) 0 0
\(225\) 0 0
\(226\) 0 0
\(227\) −3002.36 −0.877859 −0.438929 0.898522i \(-0.644642\pi\)
−0.438929 + 0.898522i \(0.644642\pi\)
\(228\) 0 0
\(229\) −3848.06 −1.11042 −0.555212 0.831709i \(-0.687363\pi\)
−0.555212 + 0.831709i \(0.687363\pi\)
\(230\) 0 0
\(231\) 0 0
\(232\) 0 0
\(233\) −2014.59 −0.566438 −0.283219 0.959055i \(-0.591402\pi\)
−0.283219 + 0.959055i \(0.591402\pi\)
\(234\) 0 0
\(235\) −145.359 −0.0403497
\(236\) 0 0
\(237\) 0 0
\(238\) 0 0
\(239\) −5499.39 −1.48839 −0.744196 0.667961i \(-0.767167\pi\)
−0.744196 + 0.667961i \(0.767167\pi\)
\(240\) 0 0
\(241\) 197.872 0.0528883 0.0264441 0.999650i \(-0.491582\pi\)
0.0264441 + 0.999650i \(0.491582\pi\)
\(242\) 0 0
\(243\) 0 0
\(244\) 0 0
\(245\) 399.069 0.104064
\(246\) 0 0
\(247\) 1862.17 0.479704
\(248\) 0 0
\(249\) 0 0
\(250\) 0 0
\(251\) −1708.87 −0.429733 −0.214867 0.976643i \(-0.568932\pi\)
−0.214867 + 0.976643i \(0.568932\pi\)
\(252\) 0 0
\(253\) −4477.05 −1.11253
\(254\) 0 0
\(255\) 0 0
\(256\) 0 0
\(257\) −5410.23 −1.31316 −0.656578 0.754258i \(-0.727997\pi\)
−0.656578 + 0.754258i \(0.727997\pi\)
\(258\) 0 0
\(259\) −2744.89 −0.658529
\(260\) 0 0
\(261\) 0 0
\(262\) 0 0
\(263\) −3232.63 −0.757917 −0.378959 0.925414i \(-0.623718\pi\)
−0.378959 + 0.925414i \(0.623718\pi\)
\(264\) 0 0
\(265\) −1005.18 −0.233011
\(266\) 0 0
\(267\) 0 0
\(268\) 0 0
\(269\) 6804.99 1.54241 0.771204 0.636588i \(-0.219655\pi\)
0.771204 + 0.636588i \(0.219655\pi\)
\(270\) 0 0
\(271\) 7650.61 1.71491 0.857456 0.514557i \(-0.172044\pi\)
0.857456 + 0.514557i \(0.172044\pi\)
\(272\) 0 0
\(273\) 0 0
\(274\) 0 0
\(275\) −4273.51 −0.937100
\(276\) 0 0
\(277\) 5246.78 1.13808 0.569040 0.822310i \(-0.307315\pi\)
0.569040 + 0.822310i \(0.307315\pi\)
\(278\) 0 0
\(279\) 0 0
\(280\) 0 0
\(281\) −3794.60 −0.805576 −0.402788 0.915293i \(-0.631959\pi\)
−0.402788 + 0.915293i \(0.631959\pi\)
\(282\) 0 0
\(283\) −471.574 −0.0990536 −0.0495268 0.998773i \(-0.515771\pi\)
−0.0495268 + 0.998773i \(0.515771\pi\)
\(284\) 0 0
\(285\) 0 0
\(286\) 0 0
\(287\) −2749.21 −0.565438
\(288\) 0 0
\(289\) 6765.40 1.37704
\(290\) 0 0
\(291\) 0 0
\(292\) 0 0
\(293\) −30.5867 −0.00609862 −0.00304931 0.999995i \(-0.500971\pi\)
−0.00304931 + 0.999995i \(0.500971\pi\)
\(294\) 0 0
\(295\) 354.928 0.0700499
\(296\) 0 0
\(297\) 0 0
\(298\) 0 0
\(299\) 1673.20 0.323624
\(300\) 0 0
\(301\) 2827.52 0.541447
\(302\) 0 0
\(303\) 0 0
\(304\) 0 0
\(305\) 944.128 0.177248
\(306\) 0 0
\(307\) 7700.81 1.43162 0.715811 0.698294i \(-0.246057\pi\)
0.715811 + 0.698294i \(0.246057\pi\)
\(308\) 0 0
\(309\) 0 0
\(310\) 0 0
\(311\) −2903.37 −0.529374 −0.264687 0.964334i \(-0.585269\pi\)
−0.264687 + 0.964334i \(0.585269\pi\)
\(312\) 0 0
\(313\) −5645.42 −1.01948 −0.509742 0.860328i \(-0.670259\pi\)
−0.509742 + 0.860328i \(0.670259\pi\)
\(314\) 0 0
\(315\) 0 0
\(316\) 0 0
\(317\) −1066.77 −0.189008 −0.0945041 0.995524i \(-0.530127\pi\)
−0.0945041 + 0.995524i \(0.530127\pi\)
\(318\) 0 0
\(319\) 656.092 0.115154
\(320\) 0 0
\(321\) 0 0
\(322\) 0 0
\(323\) −15479.9 −2.66663
\(324\) 0 0
\(325\) 1597.13 0.272594
\(326\) 0 0
\(327\) 0 0
\(328\) 0 0
\(329\) 833.205 0.139623
\(330\) 0 0
\(331\) −2205.86 −0.366300 −0.183150 0.983085i \(-0.558629\pi\)
−0.183150 + 0.983085i \(0.558629\pi\)
\(332\) 0 0
\(333\) 0 0
\(334\) 0 0
\(335\) −1276.17 −0.208134
\(336\) 0 0
\(337\) −439.466 −0.0710363 −0.0355182 0.999369i \(-0.511308\pi\)
−0.0355182 + 0.999369i \(0.511308\pi\)
\(338\) 0 0
\(339\) 0 0
\(340\) 0 0
\(341\) 2731.84 0.433834
\(342\) 0 0
\(343\) −5166.04 −0.813237
\(344\) 0 0
\(345\) 0 0
\(346\) 0 0
\(347\) 5767.97 0.892336 0.446168 0.894949i \(-0.352788\pi\)
0.446168 + 0.894949i \(0.352788\pi\)
\(348\) 0 0
\(349\) −2582.12 −0.396039 −0.198020 0.980198i \(-0.563451\pi\)
−0.198020 + 0.980198i \(0.563451\pi\)
\(350\) 0 0
\(351\) 0 0
\(352\) 0 0
\(353\) −8065.93 −1.21616 −0.608082 0.793874i \(-0.708061\pi\)
−0.608082 + 0.793874i \(0.708061\pi\)
\(354\) 0 0
\(355\) −146.733 −0.0219374
\(356\) 0 0
\(357\) 0 0
\(358\) 0 0
\(359\) 315.815 0.0464292 0.0232146 0.999731i \(-0.492610\pi\)
0.0232146 + 0.999731i \(0.492610\pi\)
\(360\) 0 0
\(361\) 13659.7 1.99150
\(362\) 0 0
\(363\) 0 0
\(364\) 0 0
\(365\) −885.196 −0.126940
\(366\) 0 0
\(367\) −5183.06 −0.737203 −0.368601 0.929588i \(-0.620163\pi\)
−0.368601 + 0.929588i \(0.620163\pi\)
\(368\) 0 0
\(369\) 0 0
\(370\) 0 0
\(371\) 5761.77 0.806297
\(372\) 0 0
\(373\) −1691.00 −0.234737 −0.117368 0.993088i \(-0.537446\pi\)
−0.117368 + 0.993088i \(0.537446\pi\)
\(374\) 0 0
\(375\) 0 0
\(376\) 0 0
\(377\) −245.200 −0.0334972
\(378\) 0 0
\(379\) −4562.78 −0.618402 −0.309201 0.950997i \(-0.600062\pi\)
−0.309201 + 0.950997i \(0.600062\pi\)
\(380\) 0 0
\(381\) 0 0
\(382\) 0 0
\(383\) −4896.69 −0.653287 −0.326644 0.945148i \(-0.605918\pi\)
−0.326644 + 0.945148i \(0.605918\pi\)
\(384\) 0 0
\(385\) −427.405 −0.0565781
\(386\) 0 0
\(387\) 0 0
\(388\) 0 0
\(389\) −1611.91 −0.210096 −0.105048 0.994467i \(-0.533500\pi\)
−0.105048 + 0.994467i \(0.533500\pi\)
\(390\) 0 0
\(391\) −13909.0 −1.79900
\(392\) 0 0
\(393\) 0 0
\(394\) 0 0
\(395\) 1567.16 0.199626
\(396\) 0 0
\(397\) 1744.95 0.220595 0.110298 0.993899i \(-0.464820\pi\)
0.110298 + 0.993899i \(0.464820\pi\)
\(398\) 0 0
\(399\) 0 0
\(400\) 0 0
\(401\) 283.494 0.0353042 0.0176521 0.999844i \(-0.494381\pi\)
0.0176521 + 0.999844i \(0.494381\pi\)
\(402\) 0 0
\(403\) −1020.97 −0.126198
\(404\) 0 0
\(405\) 0 0
\(406\) 0 0
\(407\) −11377.1 −1.38560
\(408\) 0 0
\(409\) 8619.44 1.04206 0.521032 0.853537i \(-0.325547\pi\)
0.521032 + 0.853537i \(0.325547\pi\)
\(410\) 0 0
\(411\) 0 0
\(412\) 0 0
\(413\) −2034.47 −0.242396
\(414\) 0 0
\(415\) −1085.88 −0.128443
\(416\) 0 0
\(417\) 0 0
\(418\) 0 0
\(419\) 10146.0 1.18297 0.591483 0.806318i \(-0.298543\pi\)
0.591483 + 0.806318i \(0.298543\pi\)
\(420\) 0 0
\(421\) −5435.09 −0.629193 −0.314597 0.949225i \(-0.601869\pi\)
−0.314597 + 0.949225i \(0.601869\pi\)
\(422\) 0 0
\(423\) 0 0
\(424\) 0 0
\(425\) −13276.7 −1.51533
\(426\) 0 0
\(427\) −5411.79 −0.613337
\(428\) 0 0
\(429\) 0 0
\(430\) 0 0
\(431\) −4851.97 −0.542253 −0.271127 0.962544i \(-0.587396\pi\)
−0.271127 + 0.962544i \(0.587396\pi\)
\(432\) 0 0
\(433\) −14096.0 −1.56446 −0.782230 0.622990i \(-0.785918\pi\)
−0.782230 + 0.622990i \(0.785918\pi\)
\(434\) 0 0
\(435\) 0 0
\(436\) 0 0
\(437\) 18436.5 2.01817
\(438\) 0 0
\(439\) −6431.04 −0.699173 −0.349586 0.936904i \(-0.613678\pi\)
−0.349586 + 0.936904i \(0.613678\pi\)
\(440\) 0 0
\(441\) 0 0
\(442\) 0 0
\(443\) 13281.3 1.42441 0.712205 0.701972i \(-0.247697\pi\)
0.712205 + 0.701972i \(0.247697\pi\)
\(444\) 0 0
\(445\) −734.359 −0.0782292
\(446\) 0 0
\(447\) 0 0
\(448\) 0 0
\(449\) −2227.04 −0.234077 −0.117038 0.993127i \(-0.537340\pi\)
−0.117038 + 0.993127i \(0.537340\pi\)
\(450\) 0 0
\(451\) −11395.0 −1.18973
\(452\) 0 0
\(453\) 0 0
\(454\) 0 0
\(455\) 159.733 0.0164581
\(456\) 0 0
\(457\) 14683.2 1.50295 0.751477 0.659759i \(-0.229342\pi\)
0.751477 + 0.659759i \(0.229342\pi\)
\(458\) 0 0
\(459\) 0 0
\(460\) 0 0
\(461\) −3622.75 −0.366005 −0.183003 0.983112i \(-0.558582\pi\)
−0.183003 + 0.983112i \(0.558582\pi\)
\(462\) 0 0
\(463\) −15517.0 −1.55753 −0.778766 0.627314i \(-0.784154\pi\)
−0.778766 + 0.627314i \(0.784154\pi\)
\(464\) 0 0
\(465\) 0 0
\(466\) 0 0
\(467\) 14315.1 1.41847 0.709235 0.704973i \(-0.249041\pi\)
0.709235 + 0.704973i \(0.249041\pi\)
\(468\) 0 0
\(469\) 7315.10 0.720213
\(470\) 0 0
\(471\) 0 0
\(472\) 0 0
\(473\) 11719.6 1.13925
\(474\) 0 0
\(475\) 17598.4 1.69994
\(476\) 0 0
\(477\) 0 0
\(478\) 0 0
\(479\) −6601.85 −0.629742 −0.314871 0.949135i \(-0.601961\pi\)
−0.314871 + 0.949135i \(0.601961\pi\)
\(480\) 0 0
\(481\) 4251.93 0.403059
\(482\) 0 0
\(483\) 0 0
\(484\) 0 0
\(485\) 2298.21 0.215168
\(486\) 0 0
\(487\) 616.770 0.0573892 0.0286946 0.999588i \(-0.490865\pi\)
0.0286946 + 0.999588i \(0.490865\pi\)
\(488\) 0 0
\(489\) 0 0
\(490\) 0 0
\(491\) 1565.75 0.143913 0.0719567 0.997408i \(-0.477076\pi\)
0.0719567 + 0.997408i \(0.477076\pi\)
\(492\) 0 0
\(493\) 2038.31 0.186208
\(494\) 0 0
\(495\) 0 0
\(496\) 0 0
\(497\) 841.081 0.0759108
\(498\) 0 0
\(499\) −2449.31 −0.219732 −0.109866 0.993946i \(-0.535042\pi\)
−0.109866 + 0.993946i \(0.535042\pi\)
\(500\) 0 0
\(501\) 0 0
\(502\) 0 0
\(503\) −7106.77 −0.629970 −0.314985 0.949097i \(-0.602000\pi\)
−0.314985 + 0.949097i \(0.602000\pi\)
\(504\) 0 0
\(505\) 2400.16 0.211496
\(506\) 0 0
\(507\) 0 0
\(508\) 0 0
\(509\) −7657.22 −0.666798 −0.333399 0.942786i \(-0.608196\pi\)
−0.333399 + 0.942786i \(0.608196\pi\)
\(510\) 0 0
\(511\) 5073.99 0.439256
\(512\) 0 0
\(513\) 0 0
\(514\) 0 0
\(515\) −1215.69 −0.104019
\(516\) 0 0
\(517\) 3453.49 0.293780
\(518\) 0 0
\(519\) 0 0
\(520\) 0 0
\(521\) −3616.82 −0.304138 −0.152069 0.988370i \(-0.548594\pi\)
−0.152069 + 0.988370i \(0.548594\pi\)
\(522\) 0 0
\(523\) −14089.9 −1.17803 −0.589014 0.808123i \(-0.700484\pi\)
−0.589014 + 0.808123i \(0.700484\pi\)
\(524\) 0 0
\(525\) 0 0
\(526\) 0 0
\(527\) 8487.11 0.701526
\(528\) 0 0
\(529\) 4398.66 0.361524
\(530\) 0 0
\(531\) 0 0
\(532\) 0 0
\(533\) 4258.63 0.346082
\(534\) 0 0
\(535\) −1937.99 −0.156610
\(536\) 0 0
\(537\) 0 0
\(538\) 0 0
\(539\) −9481.21 −0.757671
\(540\) 0 0
\(541\) −16786.5 −1.33403 −0.667013 0.745046i \(-0.732428\pi\)
−0.667013 + 0.745046i \(0.732428\pi\)
\(542\) 0 0
\(543\) 0 0
\(544\) 0 0
\(545\) 624.353 0.0490722
\(546\) 0 0
\(547\) −19055.0 −1.48946 −0.744729 0.667368i \(-0.767421\pi\)
−0.744729 + 0.667368i \(0.767421\pi\)
\(548\) 0 0
\(549\) 0 0
\(550\) 0 0
\(551\) −2701.80 −0.208894
\(552\) 0 0
\(553\) −8983.04 −0.690773
\(554\) 0 0
\(555\) 0 0
\(556\) 0 0
\(557\) 13217.4 1.00546 0.502729 0.864444i \(-0.332329\pi\)
0.502729 + 0.864444i \(0.332329\pi\)
\(558\) 0 0
\(559\) −4379.93 −0.331398
\(560\) 0 0
\(561\) 0 0
\(562\) 0 0
\(563\) −24946.0 −1.86741 −0.933703 0.358048i \(-0.883442\pi\)
−0.933703 + 0.358048i \(0.883442\pi\)
\(564\) 0 0
\(565\) 2267.39 0.168832
\(566\) 0 0
\(567\) 0 0
\(568\) 0 0
\(569\) 15102.5 1.11270 0.556352 0.830947i \(-0.312201\pi\)
0.556352 + 0.830947i \(0.312201\pi\)
\(570\) 0 0
\(571\) 16747.0 1.22739 0.613697 0.789542i \(-0.289682\pi\)
0.613697 + 0.789542i \(0.289682\pi\)
\(572\) 0 0
\(573\) 0 0
\(574\) 0 0
\(575\) 15812.6 1.14683
\(576\) 0 0
\(577\) 19788.9 1.42777 0.713885 0.700263i \(-0.246934\pi\)
0.713885 + 0.700263i \(0.246934\pi\)
\(578\) 0 0
\(579\) 0 0
\(580\) 0 0
\(581\) 6224.33 0.444456
\(582\) 0 0
\(583\) 23881.5 1.69652
\(584\) 0 0
\(585\) 0 0
\(586\) 0 0
\(587\) 23658.3 1.66351 0.831756 0.555141i \(-0.187336\pi\)
0.831756 + 0.555141i \(0.187336\pi\)
\(588\) 0 0
\(589\) −11249.8 −0.786992
\(590\) 0 0
\(591\) 0 0
\(592\) 0 0
\(593\) 17388.5 1.20415 0.602074 0.798441i \(-0.294341\pi\)
0.602074 + 0.798441i \(0.294341\pi\)
\(594\) 0 0
\(595\) −1327.84 −0.0914890
\(596\) 0 0
\(597\) 0 0
\(598\) 0 0
\(599\) 9053.40 0.617549 0.308774 0.951135i \(-0.400081\pi\)
0.308774 + 0.951135i \(0.400081\pi\)
\(600\) 0 0
\(601\) −13531.6 −0.918414 −0.459207 0.888329i \(-0.651866\pi\)
−0.459207 + 0.888329i \(0.651866\pi\)
\(602\) 0 0
\(603\) 0 0
\(604\) 0 0
\(605\) 177.202 0.0119079
\(606\) 0 0
\(607\) −2841.08 −0.189977 −0.0949884 0.995478i \(-0.530281\pi\)
−0.0949884 + 0.995478i \(0.530281\pi\)
\(608\) 0 0
\(609\) 0 0
\(610\) 0 0
\(611\) −1290.67 −0.0854579
\(612\) 0 0
\(613\) −23429.1 −1.54371 −0.771854 0.635800i \(-0.780670\pi\)
−0.771854 + 0.635800i \(0.780670\pi\)
\(614\) 0 0
\(615\) 0 0
\(616\) 0 0
\(617\) 17303.8 1.12905 0.564526 0.825415i \(-0.309059\pi\)
0.564526 + 0.825415i \(0.309059\pi\)
\(618\) 0 0
\(619\) 2669.38 0.173330 0.0866652 0.996237i \(-0.472379\pi\)
0.0866652 + 0.996237i \(0.472379\pi\)
\(620\) 0 0
\(621\) 0 0
\(622\) 0 0
\(623\) 4209.39 0.270699
\(624\) 0 0
\(625\) 14825.7 0.948848
\(626\) 0 0
\(627\) 0 0
\(628\) 0 0
\(629\) −35345.6 −2.24057
\(630\) 0 0
\(631\) −12671.5 −0.799439 −0.399720 0.916637i \(-0.630893\pi\)
−0.399720 + 0.916637i \(0.630893\pi\)
\(632\) 0 0
\(633\) 0 0
\(634\) 0 0
\(635\) 2132.66 0.133278
\(636\) 0 0
\(637\) 3543.40 0.220400
\(638\) 0 0
\(639\) 0 0
\(640\) 0 0
\(641\) −6148.11 −0.378839 −0.189420 0.981896i \(-0.560661\pi\)
−0.189420 + 0.981896i \(0.560661\pi\)
\(642\) 0 0
\(643\) 21495.1 1.31833 0.659164 0.752000i \(-0.270910\pi\)
0.659164 + 0.752000i \(0.270910\pi\)
\(644\) 0 0
\(645\) 0 0
\(646\) 0 0
\(647\) 20055.9 1.21867 0.609335 0.792913i \(-0.291436\pi\)
0.609335 + 0.792913i \(0.291436\pi\)
\(648\) 0 0
\(649\) −8432.50 −0.510023
\(650\) 0 0
\(651\) 0 0
\(652\) 0 0
\(653\) −13667.9 −0.819091 −0.409546 0.912290i \(-0.634313\pi\)
−0.409546 + 0.912290i \(0.634313\pi\)
\(654\) 0 0
\(655\) 2668.88 0.159209
\(656\) 0 0
\(657\) 0 0
\(658\) 0 0
\(659\) 14754.7 0.872173 0.436087 0.899905i \(-0.356364\pi\)
0.436087 + 0.899905i \(0.356364\pi\)
\(660\) 0 0
\(661\) −27222.0 −1.60184 −0.800918 0.598774i \(-0.795655\pi\)
−0.800918 + 0.598774i \(0.795655\pi\)
\(662\) 0 0
\(663\) 0 0
\(664\) 0 0
\(665\) 1760.06 0.102635
\(666\) 0 0
\(667\) −2427.63 −0.140927
\(668\) 0 0
\(669\) 0 0
\(670\) 0 0
\(671\) −22430.9 −1.29051
\(672\) 0 0
\(673\) 9635.48 0.551888 0.275944 0.961174i \(-0.411010\pi\)
0.275944 + 0.961174i \(0.411010\pi\)
\(674\) 0 0
\(675\) 0 0
\(676\) 0 0
\(677\) 16897.8 0.959286 0.479643 0.877464i \(-0.340766\pi\)
0.479643 + 0.877464i \(0.340766\pi\)
\(678\) 0 0
\(679\) −13173.5 −0.744552
\(680\) 0 0
\(681\) 0 0
\(682\) 0 0
\(683\) −30252.7 −1.69486 −0.847429 0.530908i \(-0.821851\pi\)
−0.847429 + 0.530908i \(0.821851\pi\)
\(684\) 0 0
\(685\) 892.993 0.0498095
\(686\) 0 0
\(687\) 0 0
\(688\) 0 0
\(689\) −8925.20 −0.493502
\(690\) 0 0
\(691\) 9471.02 0.521410 0.260705 0.965418i \(-0.416045\pi\)
0.260705 + 0.965418i \(0.416045\pi\)
\(692\) 0 0
\(693\) 0 0
\(694\) 0 0
\(695\) 803.334 0.0438449
\(696\) 0 0
\(697\) −35401.2 −1.92384
\(698\) 0 0
\(699\) 0 0
\(700\) 0 0
\(701\) 21733.2 1.17097 0.585485 0.810683i \(-0.300904\pi\)
0.585485 + 0.810683i \(0.300904\pi\)
\(702\) 0 0
\(703\) 46850.9 2.51354
\(704\) 0 0
\(705\) 0 0
\(706\) 0 0
\(707\) −13757.8 −0.731848
\(708\) 0 0
\(709\) 14647.9 0.775901 0.387950 0.921680i \(-0.373183\pi\)
0.387950 + 0.921680i \(0.373183\pi\)
\(710\) 0 0
\(711\) 0 0
\(712\) 0 0
\(713\) −10108.2 −0.530931
\(714\) 0 0
\(715\) 662.067 0.0346292
\(716\) 0 0
\(717\) 0 0
\(718\) 0 0
\(719\) −15330.7 −0.795187 −0.397594 0.917562i \(-0.630155\pi\)
−0.397594 + 0.917562i \(0.630155\pi\)
\(720\) 0 0
\(721\) 6968.41 0.359941
\(722\) 0 0
\(723\) 0 0
\(724\) 0 0
\(725\) −2317.26 −0.118705
\(726\) 0 0
\(727\) −23367.4 −1.19209 −0.596045 0.802951i \(-0.703262\pi\)
−0.596045 + 0.802951i \(0.703262\pi\)
\(728\) 0 0
\(729\) 0 0
\(730\) 0 0
\(731\) 36409.6 1.84221
\(732\) 0 0
\(733\) −18192.0 −0.916694 −0.458347 0.888773i \(-0.651558\pi\)
−0.458347 + 0.888773i \(0.651558\pi\)
\(734\) 0 0
\(735\) 0 0
\(736\) 0 0
\(737\) 30319.8 1.51539
\(738\) 0 0
\(739\) 19762.7 0.983741 0.491870 0.870668i \(-0.336313\pi\)
0.491870 + 0.870668i \(0.336313\pi\)
\(740\) 0 0
\(741\) 0 0
\(742\) 0 0
\(743\) −13400.8 −0.661677 −0.330839 0.943687i \(-0.607332\pi\)
−0.330839 + 0.943687i \(0.607332\pi\)
\(744\) 0 0
\(745\) 2728.92 0.134201
\(746\) 0 0
\(747\) 0 0
\(748\) 0 0
\(749\) 11108.7 0.541924
\(750\) 0 0
\(751\) 9368.29 0.455198 0.227599 0.973755i \(-0.426912\pi\)
0.227599 + 0.973755i \(0.426912\pi\)
\(752\) 0 0
\(753\) 0 0
\(754\) 0 0
\(755\) −284.647 −0.0137210
\(756\) 0 0
\(757\) 5851.52 0.280947 0.140474 0.990084i \(-0.455137\pi\)
0.140474 + 0.990084i \(0.455137\pi\)
\(758\) 0 0
\(759\) 0 0
\(760\) 0 0
\(761\) −28716.6 −1.36791 −0.683953 0.729526i \(-0.739740\pi\)
−0.683953 + 0.729526i \(0.739740\pi\)
\(762\) 0 0
\(763\) −3578.82 −0.169806
\(764\) 0 0
\(765\) 0 0
\(766\) 0 0
\(767\) 3151.47 0.148361
\(768\) 0 0
\(769\) 38963.7 1.82713 0.913567 0.406687i \(-0.133316\pi\)
0.913567 + 0.406687i \(0.133316\pi\)
\(770\) 0 0
\(771\) 0 0
\(772\) 0 0
\(773\) 7592.57 0.353280 0.176640 0.984275i \(-0.443477\pi\)
0.176640 + 0.984275i \(0.443477\pi\)
\(774\) 0 0
\(775\) −9648.64 −0.447212
\(776\) 0 0
\(777\) 0 0
\(778\) 0 0
\(779\) 46924.7 2.15822
\(780\) 0 0
\(781\) 3486.13 0.159723
\(782\) 0 0
\(783\) 0 0
\(784\) 0 0
\(785\) 316.156 0.0143747
\(786\) 0 0
\(787\) 35488.2 1.60739 0.803696 0.595041i \(-0.202864\pi\)
0.803696 + 0.595041i \(0.202864\pi\)
\(788\) 0 0
\(789\) 0 0
\(790\) 0 0
\(791\) −12996.8 −0.584213
\(792\) 0 0
\(793\) 8383.07 0.375399
\(794\) 0 0
\(795\) 0 0
\(796\) 0 0
\(797\) 43362.4 1.92720 0.963599 0.267352i \(-0.0861486\pi\)
0.963599 + 0.267352i \(0.0861486\pi\)
\(798\) 0 0
\(799\) 10729.1 0.475053
\(800\) 0 0
\(801\) 0 0
\(802\) 0 0
\(803\) 21030.8 0.924234
\(804\) 0 0
\(805\) 1581.46 0.0692410
\(806\) 0 0
\(807\) 0 0
\(808\) 0 0
\(809\) 42504.0 1.84717 0.923586 0.383392i \(-0.125244\pi\)
0.923586 + 0.383392i \(0.125244\pi\)
\(810\) 0 0
\(811\) 28029.2 1.21361 0.606805 0.794851i \(-0.292451\pi\)
0.606805 + 0.794851i \(0.292451\pi\)
\(812\) 0 0
\(813\) 0 0
\(814\) 0 0
\(815\) 1949.13 0.0837730
\(816\) 0 0
\(817\) −48261.3 −2.06665
\(818\) 0 0
\(819\) 0 0
\(820\) 0 0
\(821\) −21499.0 −0.913911 −0.456955 0.889490i \(-0.651060\pi\)
−0.456955 + 0.889490i \(0.651060\pi\)
\(822\) 0 0
\(823\) 29687.3 1.25739 0.628697 0.777650i \(-0.283589\pi\)
0.628697 + 0.777650i \(0.283589\pi\)
\(824\) 0 0
\(825\) 0 0
\(826\) 0 0
\(827\) 18571.7 0.780897 0.390448 0.920625i \(-0.372320\pi\)
0.390448 + 0.920625i \(0.372320\pi\)
\(828\) 0 0
\(829\) 2576.14 0.107929 0.0539644 0.998543i \(-0.482814\pi\)
0.0539644 + 0.998543i \(0.482814\pi\)
\(830\) 0 0
\(831\) 0 0
\(832\) 0 0
\(833\) −29455.6 −1.22518
\(834\) 0 0
\(835\) −4670.02 −0.193548
\(836\) 0 0
\(837\) 0 0
\(838\) 0 0
\(839\) 13089.6 0.538621 0.269311 0.963053i \(-0.413204\pi\)
0.269311 + 0.963053i \(0.413204\pi\)
\(840\) 0 0
\(841\) −24033.2 −0.985413
\(842\) 0 0
\(843\) 0 0
\(844\) 0 0
\(845\) −247.433 −0.0100733
\(846\) 0 0
\(847\) −1015.73 −0.0412052
\(848\) 0 0
\(849\) 0 0
\(850\) 0 0
\(851\) 42096.6 1.69572
\(852\) 0 0
\(853\) 37066.5 1.48785 0.743923 0.668265i \(-0.232963\pi\)
0.743923 + 0.668265i \(0.232963\pi\)
\(854\) 0 0
\(855\) 0 0
\(856\) 0 0
\(857\) −20389.3 −0.812701 −0.406350 0.913717i \(-0.633199\pi\)
−0.406350 + 0.913717i \(0.633199\pi\)
\(858\) 0 0
\(859\) −32050.7 −1.27306 −0.636529 0.771253i \(-0.719630\pi\)
−0.636529 + 0.771253i \(0.719630\pi\)
\(860\) 0 0
\(861\) 0 0
\(862\) 0 0
\(863\) 23477.1 0.926037 0.463018 0.886349i \(-0.346766\pi\)
0.463018 + 0.886349i \(0.346766\pi\)
\(864\) 0 0
\(865\) −4988.99 −0.196105
\(866\) 0 0
\(867\) 0 0
\(868\) 0 0
\(869\) −37233.1 −1.45345
\(870\) 0 0
\(871\) −11331.4 −0.440814
\(872\) 0 0
\(873\) 0 0
\(874\) 0 0
\(875\) 3045.46 0.117663
\(876\) 0 0
\(877\) 44692.4 1.72082 0.860408 0.509606i \(-0.170209\pi\)
0.860408 + 0.509606i \(0.170209\pi\)
\(878\) 0 0
\(879\) 0 0
\(880\) 0 0
\(881\) −8892.46 −0.340062 −0.170031 0.985439i \(-0.554387\pi\)
−0.170031 + 0.985439i \(0.554387\pi\)
\(882\) 0 0
\(883\) 40356.1 1.53804 0.769022 0.639223i \(-0.220744\pi\)
0.769022 + 0.639223i \(0.220744\pi\)
\(884\) 0 0
\(885\) 0 0
\(886\) 0 0
\(887\) −30987.8 −1.17302 −0.586511 0.809941i \(-0.699499\pi\)
−0.586511 + 0.809941i \(0.699499\pi\)
\(888\) 0 0
\(889\) −12224.5 −0.461188
\(890\) 0 0
\(891\) 0 0
\(892\) 0 0
\(893\) −14221.5 −0.532928
\(894\) 0 0
\(895\) −1494.06 −0.0557999
\(896\) 0 0
\(897\) 0 0
\(898\) 0 0
\(899\) 1481.31 0.0549549
\(900\) 0 0
\(901\) 74193.6 2.74334
\(902\) 0 0
\(903\) 0 0
\(904\) 0 0
\(905\) 5063.75 0.185994
\(906\) 0 0
\(907\) 11584.8 0.424110 0.212055 0.977258i \(-0.431984\pi\)
0.212055 + 0.977258i \(0.431984\pi\)
\(908\) 0 0
\(909\) 0 0
\(910\) 0 0
\(911\) 19161.5 0.696868 0.348434 0.937333i \(-0.386713\pi\)
0.348434 + 0.937333i \(0.386713\pi\)
\(912\) 0 0
\(913\) 25798.8 0.935174
\(914\) 0 0
\(915\) 0 0
\(916\) 0 0
\(917\) −15298.2 −0.550916
\(918\) 0 0
\(919\) −39089.3 −1.40309 −0.701544 0.712626i \(-0.747506\pi\)
−0.701544 + 0.712626i \(0.747506\pi\)
\(920\) 0 0
\(921\) 0 0
\(922\) 0 0
\(923\) −1302.87 −0.0464620
\(924\) 0 0
\(925\) 40182.9 1.42833
\(926\) 0 0
\(927\) 0 0
\(928\) 0 0
\(929\) −258.811 −0.00914027 −0.00457014 0.999990i \(-0.501455\pi\)
−0.00457014 + 0.999990i \(0.501455\pi\)
\(930\) 0 0
\(931\) 39043.8 1.37445
\(932\) 0 0
\(933\) 0 0
\(934\) 0 0
\(935\) −5503.64 −0.192501
\(936\) 0 0
\(937\) −29811.6 −1.03938 −0.519692 0.854354i \(-0.673953\pi\)
−0.519692 + 0.854354i \(0.673953\pi\)
\(938\) 0 0
\(939\) 0 0
\(940\) 0 0
\(941\) 39979.7 1.38502 0.692509 0.721410i \(-0.256506\pi\)
0.692509 + 0.721410i \(0.256506\pi\)
\(942\) 0 0
\(943\) 42163.0 1.45601
\(944\) 0 0
\(945\) 0 0
\(946\) 0 0
\(947\) 8295.11 0.284641 0.142320 0.989821i \(-0.454544\pi\)
0.142320 + 0.989821i \(0.454544\pi\)
\(948\) 0 0
\(949\) −7859.80 −0.268851
\(950\) 0 0
\(951\) 0 0
\(952\) 0 0
\(953\) −19633.5 −0.667359 −0.333679 0.942687i \(-0.608290\pi\)
−0.333679 + 0.942687i \(0.608290\pi\)
\(954\) 0 0
\(955\) 4414.09 0.149567
\(956\) 0 0
\(957\) 0 0
\(958\) 0 0
\(959\) −5118.68 −0.172358
\(960\) 0 0
\(961\) −23623.1 −0.792961
\(962\) 0 0
\(963\) 0 0
\(964\) 0 0
\(965\) −790.314 −0.0263638
\(966\) 0 0
\(967\) −11936.8 −0.396961 −0.198480 0.980105i \(-0.563601\pi\)
−0.198480 + 0.980105i \(0.563601\pi\)
\(968\) 0 0
\(969\) 0 0
\(970\) 0 0
\(971\) −3489.36 −0.115323 −0.0576616 0.998336i \(-0.518364\pi\)
−0.0576616 + 0.998336i \(0.518364\pi\)
\(972\) 0 0
\(973\) −4604.75 −0.151718
\(974\) 0 0
\(975\) 0 0
\(976\) 0 0
\(977\) −28945.7 −0.947856 −0.473928 0.880564i \(-0.657164\pi\)
−0.473928 + 0.880564i \(0.657164\pi\)
\(978\) 0 0
\(979\) 17447.2 0.569574
\(980\) 0 0
\(981\) 0 0
\(982\) 0 0
\(983\) 41249.7 1.33841 0.669206 0.743077i \(-0.266634\pi\)
0.669206 + 0.743077i \(0.266634\pi\)
\(984\) 0 0
\(985\) 5315.72 0.171952
\(986\) 0 0
\(987\) 0 0
\(988\) 0 0
\(989\) −43363.9 −1.39423
\(990\) 0 0
\(991\) −30447.5 −0.975981 −0.487991 0.872849i \(-0.662270\pi\)
−0.487991 + 0.872849i \(0.662270\pi\)
\(992\) 0 0
\(993\) 0 0
\(994\) 0 0
\(995\) −5631.53 −0.179429
\(996\) 0 0
\(997\) −31771.1 −1.00923 −0.504615 0.863345i \(-0.668366\pi\)
−0.504615 + 0.863345i \(0.668366\pi\)
\(998\) 0 0
\(999\) 0 0
Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))

Twists

       By twisting character
Char Parity Ord Type Twist Min Dim
1.1 even 1 trivial 1872.4.a.be.1.1 2
3.2 odd 2 624.4.a.o.1.2 2
4.3 odd 2 936.4.a.g.1.1 2
12.11 even 2 312.4.a.a.1.2 2
24.5 odd 2 2496.4.a.z.1.1 2
24.11 even 2 2496.4.a.bg.1.1 2
    
        By twisted newform
Twist Min Dim Char Parity Ord Type
312.4.a.a.1.2 2 12.11 even 2
624.4.a.o.1.2 2 3.2 odd 2
936.4.a.g.1.1 2 4.3 odd 2
1872.4.a.be.1.1 2 1.1 even 1 trivial
2496.4.a.z.1.1 2 24.5 odd 2
2496.4.a.bg.1.1 2 24.11 even 2