Properties

Label 1875.4.a.g.1.10
Level $1875$
Weight $4$
Character 1875.1
Self dual yes
Analytic conductor $110.629$
Analytic rank $1$
Dimension $14$
CM no
Inner twists $1$

Related objects

Downloads

Learn more

Show commands: Magma / PariGP / SageMath

Newspace parameters

comment: Compute space of new eigenforms
 
[N,k,chi] = [1875,4,Mod(1,1875)]
 
mf = mfinit([N,k,chi],0)
 
lf = mfeigenbasis(mf)
 
from sage.modular.dirichlet import DirichletCharacter
 
H = DirichletGroup(1875, base_ring=CyclotomicField(2))
 
chi = DirichletCharacter(H, H._module([0, 0]))
 
N = Newforms(chi, 4, names="a")
 
//Please install CHIMP (https://github.com/edgarcosta/CHIMP) if you want to run this code
 
chi := DirichletCharacter("1875.1");
 
S:= CuspForms(chi, 4);
 
N := Newforms(S);
 
Level: \( N \) \(=\) \( 1875 = 3 \cdot 5^{4} \)
Weight: \( k \) \(=\) \( 4 \)
Character orbit: \([\chi]\) \(=\) 1875.a (trivial)

Newform invariants

comment: select newform
 
sage: f = N[0] # Warning: the index may be different
 
gp: f = lf[1] \\ Warning: the index may be different
 
Self dual: yes
Analytic conductor: \(110.628581261\)
Analytic rank: \(1\)
Dimension: \(14\)
Coefficient field: \(\mathbb{Q}[x]/(x^{14} - \cdots)\)
comment: defining polynomial
 
gp: f.mod \\ as an extension of the character field
 
Defining polynomial: \( x^{14} - 81 x^{12} - 7 x^{11} + 2512 x^{10} + 517 x^{9} - 36970 x^{8} - 12987 x^{7} + 257291 x^{6} + \cdots + 42064 \) Copy content Toggle raw display
Coefficient ring: \(\Z[a_1, \ldots, a_{13}]\)
Coefficient ring index: \( 2^{2}\cdot 5^{3} \)
Twist minimal: no (minimal twist has level 75)
Fricke sign: \(-1\)
Sato-Tate group: $\mathrm{SU}(2)$

Embedding invariants

Embedding label 1.10
Root \(1.73740\) of defining polynomial
Character \(\chi\) \(=\) 1875.1

$q$-expansion

comment: q-expansion
 
sage: f.q_expansion() # note that sage often uses an isomorphic number field
 
gp: mfcoefs(f, 20)
 
\(f(q)\) \(=\) \(q+1.73740 q^{2} +3.00000 q^{3} -4.98145 q^{4} +5.21219 q^{6} +7.66213 q^{7} -22.5539 q^{8} +9.00000 q^{9} +20.4704 q^{11} -14.9443 q^{12} -14.8079 q^{13} +13.3122 q^{14} +0.666425 q^{16} -109.000 q^{17} +15.6366 q^{18} +97.7849 q^{19} +22.9864 q^{21} +35.5652 q^{22} -80.5714 q^{23} -67.6618 q^{24} -25.7272 q^{26} +27.0000 q^{27} -38.1685 q^{28} +59.0555 q^{29} +176.318 q^{31} +181.589 q^{32} +61.4111 q^{33} -189.376 q^{34} -44.8330 q^{36} -230.536 q^{37} +169.891 q^{38} -44.4236 q^{39} +179.464 q^{41} +39.9365 q^{42} -407.459 q^{43} -101.972 q^{44} -139.985 q^{46} +477.166 q^{47} +1.99927 q^{48} -284.292 q^{49} -326.999 q^{51} +73.7647 q^{52} -515.525 q^{53} +46.9097 q^{54} -172.811 q^{56} +293.355 q^{57} +102.603 q^{58} -571.444 q^{59} -52.3159 q^{61} +306.334 q^{62} +68.9591 q^{63} +310.162 q^{64} +106.696 q^{66} -551.814 q^{67} +542.976 q^{68} -241.714 q^{69} +368.658 q^{71} -202.985 q^{72} -406.465 q^{73} -400.533 q^{74} -487.111 q^{76} +156.847 q^{77} -77.1815 q^{78} -654.750 q^{79} +81.0000 q^{81} +311.801 q^{82} +421.856 q^{83} -114.505 q^{84} -707.919 q^{86} +177.166 q^{87} -461.688 q^{88} +425.138 q^{89} -113.460 q^{91} +401.362 q^{92} +528.953 q^{93} +829.027 q^{94} +544.768 q^{96} +590.666 q^{97} -493.928 q^{98} +184.233 q^{99} +O(q^{100})\)
\(\operatorname{Tr}(f)(q)\) \(=\) \( 14 q + 42 q^{3} + 50 q^{4} - 27 q^{7} + 21 q^{8} + 126 q^{9} - 33 q^{11} + 150 q^{12} - 188 q^{13} - 287 q^{14} + 82 q^{16} - 146 q^{17} - 184 q^{19} - 81 q^{21} - 277 q^{22} - 164 q^{23} + 63 q^{24} + 103 q^{26}+ \cdots - 297 q^{99}+O(q^{100}) \) Copy content Toggle raw display

Coefficient data

For each \(n\) we display the coefficients of the \(q\)-expansion \(a_n\), the Satake parameters \(\alpha_p\), and the Satake angles \(\theta_p = \textrm{Arg}(\alpha_p)\).



Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))
Significant digits:
\(n\) \(a_n\) \(a_n / n^{(k-1)/2}\) \( \alpha_n \) \( \theta_n \)
\(p\) \(a_p\) \(a_p / p^{(k-1)/2}\) \( \alpha_p\) \( \theta_p \)
\(2\) 1.73740 0.614263 0.307131 0.951667i \(-0.400631\pi\)
0.307131 + 0.951667i \(0.400631\pi\)
\(3\) 3.00000 0.577350
\(4\) −4.98145 −0.622681
\(5\) 0 0
\(6\) 5.21219 0.354645
\(7\) 7.66213 0.413716 0.206858 0.978371i \(-0.433676\pi\)
0.206858 + 0.978371i \(0.433676\pi\)
\(8\) −22.5539 −0.996753
\(9\) 9.00000 0.333333
\(10\) 0 0
\(11\) 20.4704 0.561095 0.280548 0.959840i \(-0.409484\pi\)
0.280548 + 0.959840i \(0.409484\pi\)
\(12\) −14.9443 −0.359505
\(13\) −14.8079 −0.315920 −0.157960 0.987445i \(-0.550492\pi\)
−0.157960 + 0.987445i \(0.550492\pi\)
\(14\) 13.3122 0.254130
\(15\) 0 0
\(16\) 0.666425 0.0104129
\(17\) −109.000 −1.55508 −0.777539 0.628835i \(-0.783532\pi\)
−0.777539 + 0.628835i \(0.783532\pi\)
\(18\) 15.6366 0.204754
\(19\) 97.7849 1.18071 0.590353 0.807145i \(-0.298989\pi\)
0.590353 + 0.807145i \(0.298989\pi\)
\(20\) 0 0
\(21\) 22.9864 0.238859
\(22\) 35.5652 0.344660
\(23\) −80.5714 −0.730447 −0.365224 0.930920i \(-0.619008\pi\)
−0.365224 + 0.930920i \(0.619008\pi\)
\(24\) −67.6618 −0.575475
\(25\) 0 0
\(26\) −25.7272 −0.194058
\(27\) 27.0000 0.192450
\(28\) −38.1685 −0.257613
\(29\) 59.0555 0.378149 0.189075 0.981963i \(-0.439451\pi\)
0.189075 + 0.981963i \(0.439451\pi\)
\(30\) 0 0
\(31\) 176.318 1.02153 0.510767 0.859719i \(-0.329361\pi\)
0.510767 + 0.859719i \(0.329361\pi\)
\(32\) 181.589 1.00315
\(33\) 61.4111 0.323949
\(34\) −189.376 −0.955226
\(35\) 0 0
\(36\) −44.8330 −0.207560
\(37\) −230.536 −1.02432 −0.512161 0.858889i \(-0.671155\pi\)
−0.512161 + 0.858889i \(0.671155\pi\)
\(38\) 169.891 0.725264
\(39\) −44.4236 −0.182397
\(40\) 0 0
\(41\) 179.464 0.683600 0.341800 0.939773i \(-0.388963\pi\)
0.341800 + 0.939773i \(0.388963\pi\)
\(42\) 39.9365 0.146722
\(43\) −407.459 −1.44505 −0.722523 0.691347i \(-0.757018\pi\)
−0.722523 + 0.691347i \(0.757018\pi\)
\(44\) −101.972 −0.349384
\(45\) 0 0
\(46\) −139.985 −0.448687
\(47\) 477.166 1.48089 0.740445 0.672117i \(-0.234615\pi\)
0.740445 + 0.672117i \(0.234615\pi\)
\(48\) 1.99927 0.00601188
\(49\) −284.292 −0.828839
\(50\) 0 0
\(51\) −326.999 −0.897824
\(52\) 73.7647 0.196718
\(53\) −515.525 −1.33609 −0.668046 0.744120i \(-0.732869\pi\)
−0.668046 + 0.744120i \(0.732869\pi\)
\(54\) 46.9097 0.118215
\(55\) 0 0
\(56\) −172.811 −0.412372
\(57\) 293.355 0.681681
\(58\) 102.603 0.232283
\(59\) −571.444 −1.26094 −0.630472 0.776212i \(-0.717139\pi\)
−0.630472 + 0.776212i \(0.717139\pi\)
\(60\) 0 0
\(61\) −52.3159 −0.109809 −0.0549046 0.998492i \(-0.517485\pi\)
−0.0549046 + 0.998492i \(0.517485\pi\)
\(62\) 306.334 0.627491
\(63\) 68.9591 0.137905
\(64\) 310.162 0.605784
\(65\) 0 0
\(66\) 106.696 0.198990
\(67\) −551.814 −1.00619 −0.503096 0.864231i \(-0.667806\pi\)
−0.503096 + 0.864231i \(0.667806\pi\)
\(68\) 542.976 0.968317
\(69\) −241.714 −0.421724
\(70\) 0 0
\(71\) 368.658 0.616220 0.308110 0.951351i \(-0.400304\pi\)
0.308110 + 0.951351i \(0.400304\pi\)
\(72\) −202.985 −0.332251
\(73\) −406.465 −0.651687 −0.325843 0.945424i \(-0.605648\pi\)
−0.325843 + 0.945424i \(0.605648\pi\)
\(74\) −400.533 −0.629203
\(75\) 0 0
\(76\) −487.111 −0.735203
\(77\) 156.847 0.232134
\(78\) −77.1815 −0.112040
\(79\) −654.750 −0.932470 −0.466235 0.884661i \(-0.654390\pi\)
−0.466235 + 0.884661i \(0.654390\pi\)
\(80\) 0 0
\(81\) 81.0000 0.111111
\(82\) 311.801 0.419910
\(83\) 421.856 0.557887 0.278944 0.960307i \(-0.410016\pi\)
0.278944 + 0.960307i \(0.410016\pi\)
\(84\) −114.505 −0.148733
\(85\) 0 0
\(86\) −707.919 −0.887638
\(87\) 177.166 0.218325
\(88\) −461.688 −0.559273
\(89\) 425.138 0.506343 0.253171 0.967421i \(-0.418526\pi\)
0.253171 + 0.967421i \(0.418526\pi\)
\(90\) 0 0
\(91\) −113.460 −0.130701
\(92\) 401.362 0.454836
\(93\) 528.953 0.589783
\(94\) 829.027 0.909655
\(95\) 0 0
\(96\) 544.768 0.579168
\(97\) 590.666 0.618279 0.309139 0.951017i \(-0.399959\pi\)
0.309139 + 0.951017i \(0.399959\pi\)
\(98\) −493.928 −0.509125
\(99\) 184.233 0.187032
\(100\) 0 0
\(101\) −1533.55 −1.51083 −0.755417 0.655244i \(-0.772566\pi\)
−0.755417 + 0.655244i \(0.772566\pi\)
\(102\) −568.128 −0.551500
\(103\) −718.897 −0.687719 −0.343859 0.939021i \(-0.611734\pi\)
−0.343859 + 0.939021i \(0.611734\pi\)
\(104\) 333.976 0.314895
\(105\) 0 0
\(106\) −895.672 −0.820711
\(107\) −944.844 −0.853659 −0.426830 0.904332i \(-0.640370\pi\)
−0.426830 + 0.904332i \(0.640370\pi\)
\(108\) −134.499 −0.119835
\(109\) 1472.33 1.29380 0.646899 0.762576i \(-0.276066\pi\)
0.646899 + 0.762576i \(0.276066\pi\)
\(110\) 0 0
\(111\) −691.609 −0.591393
\(112\) 5.10623 0.00430798
\(113\) −820.255 −0.682859 −0.341429 0.939907i \(-0.610911\pi\)
−0.341429 + 0.939907i \(0.610911\pi\)
\(114\) 509.674 0.418731
\(115\) 0 0
\(116\) −294.182 −0.235466
\(117\) −133.271 −0.105307
\(118\) −992.826 −0.774551
\(119\) −835.170 −0.643360
\(120\) 0 0
\(121\) −911.964 −0.685172
\(122\) −90.8935 −0.0674517
\(123\) 538.393 0.394677
\(124\) −878.317 −0.636090
\(125\) 0 0
\(126\) 119.809 0.0847101
\(127\) 1663.86 1.16255 0.581274 0.813708i \(-0.302554\pi\)
0.581274 + 0.813708i \(0.302554\pi\)
\(128\) −913.841 −0.631038
\(129\) −1222.38 −0.834297
\(130\) 0 0
\(131\) −2281.74 −1.52180 −0.760901 0.648868i \(-0.775243\pi\)
−0.760901 + 0.648868i \(0.775243\pi\)
\(132\) −305.916 −0.201717
\(133\) 749.241 0.488477
\(134\) −958.721 −0.618066
\(135\) 0 0
\(136\) 2458.37 1.55003
\(137\) 934.992 0.583078 0.291539 0.956559i \(-0.405833\pi\)
0.291539 + 0.956559i \(0.405833\pi\)
\(138\) −419.954 −0.259049
\(139\) −2874.22 −1.75387 −0.876937 0.480605i \(-0.840417\pi\)
−0.876937 + 0.480605i \(0.840417\pi\)
\(140\) 0 0
\(141\) 1431.50 0.854992
\(142\) 640.505 0.378521
\(143\) −303.123 −0.177262
\(144\) 5.99782 0.00347096
\(145\) 0 0
\(146\) −706.192 −0.400307
\(147\) −852.875 −0.478530
\(148\) 1148.40 0.637826
\(149\) 2275.13 1.25091 0.625457 0.780259i \(-0.284913\pi\)
0.625457 + 0.780259i \(0.284913\pi\)
\(150\) 0 0
\(151\) 2396.11 1.29134 0.645670 0.763617i \(-0.276578\pi\)
0.645670 + 0.763617i \(0.276578\pi\)
\(152\) −2205.44 −1.17687
\(153\) −980.997 −0.518359
\(154\) 272.505 0.142591
\(155\) 0 0
\(156\) 221.294 0.113575
\(157\) 902.424 0.458734 0.229367 0.973340i \(-0.426334\pi\)
0.229367 + 0.973340i \(0.426334\pi\)
\(158\) −1137.56 −0.572782
\(159\) −1546.58 −0.771393
\(160\) 0 0
\(161\) −617.348 −0.302198
\(162\) 140.729 0.0682514
\(163\) −4028.26 −1.93569 −0.967846 0.251543i \(-0.919062\pi\)
−0.967846 + 0.251543i \(0.919062\pi\)
\(164\) −893.992 −0.425665
\(165\) 0 0
\(166\) 732.931 0.342690
\(167\) −982.313 −0.455172 −0.227586 0.973758i \(-0.573083\pi\)
−0.227586 + 0.973758i \(0.573083\pi\)
\(168\) −518.433 −0.238083
\(169\) −1977.73 −0.900194
\(170\) 0 0
\(171\) 880.065 0.393569
\(172\) 2029.74 0.899802
\(173\) 1265.10 0.555975 0.277988 0.960585i \(-0.410333\pi\)
0.277988 + 0.960585i \(0.410333\pi\)
\(174\) 307.809 0.134109
\(175\) 0 0
\(176\) 13.6420 0.00584262
\(177\) −1714.33 −0.728007
\(178\) 738.634 0.311028
\(179\) −1471.61 −0.614488 −0.307244 0.951631i \(-0.599407\pi\)
−0.307244 + 0.951631i \(0.599407\pi\)
\(180\) 0 0
\(181\) −3742.99 −1.53709 −0.768547 0.639794i \(-0.779020\pi\)
−0.768547 + 0.639794i \(0.779020\pi\)
\(182\) −197.125 −0.0802850
\(183\) −156.948 −0.0633984
\(184\) 1817.20 0.728075
\(185\) 0 0
\(186\) 919.001 0.362282
\(187\) −2231.26 −0.872547
\(188\) −2376.98 −0.922122
\(189\) 206.877 0.0796197
\(190\) 0 0
\(191\) 3953.76 1.49782 0.748911 0.662670i \(-0.230577\pi\)
0.748911 + 0.662670i \(0.230577\pi\)
\(192\) 930.485 0.349750
\(193\) −4739.26 −1.76756 −0.883780 0.467903i \(-0.845010\pi\)
−0.883780 + 0.467903i \(0.845010\pi\)
\(194\) 1026.22 0.379786
\(195\) 0 0
\(196\) 1416.19 0.516102
\(197\) −1912.59 −0.691708 −0.345854 0.938288i \(-0.612411\pi\)
−0.345854 + 0.938288i \(0.612411\pi\)
\(198\) 320.087 0.114887
\(199\) −3291.81 −1.17262 −0.586308 0.810089i \(-0.699419\pi\)
−0.586308 + 0.810089i \(0.699419\pi\)
\(200\) 0 0
\(201\) −1655.44 −0.580925
\(202\) −2664.39 −0.928050
\(203\) 452.491 0.156446
\(204\) 1628.93 0.559058
\(205\) 0 0
\(206\) −1249.01 −0.422440
\(207\) −725.142 −0.243482
\(208\) −9.86833 −0.00328964
\(209\) 2001.69 0.662489
\(210\) 0 0
\(211\) 713.739 0.232871 0.116436 0.993198i \(-0.462853\pi\)
0.116436 + 0.993198i \(0.462853\pi\)
\(212\) 2568.06 0.831959
\(213\) 1105.97 0.355775
\(214\) −1641.57 −0.524371
\(215\) 0 0
\(216\) −608.956 −0.191825
\(217\) 1350.97 0.422625
\(218\) 2558.03 0.794732
\(219\) −1219.40 −0.376252
\(220\) 0 0
\(221\) 1614.05 0.491281
\(222\) −1201.60 −0.363271
\(223\) −4536.63 −1.36231 −0.681155 0.732140i \(-0.738522\pi\)
−0.681155 + 0.732140i \(0.738522\pi\)
\(224\) 1391.36 0.415019
\(225\) 0 0
\(226\) −1425.11 −0.419455
\(227\) 49.5501 0.0144879 0.00724396 0.999974i \(-0.497694\pi\)
0.00724396 + 0.999974i \(0.497694\pi\)
\(228\) −1461.33 −0.424470
\(229\) −2354.73 −0.679498 −0.339749 0.940516i \(-0.610342\pi\)
−0.339749 + 0.940516i \(0.610342\pi\)
\(230\) 0 0
\(231\) 470.540 0.134023
\(232\) −1331.93 −0.376921
\(233\) −2899.04 −0.815116 −0.407558 0.913179i \(-0.633620\pi\)
−0.407558 + 0.913179i \(0.633620\pi\)
\(234\) −231.545 −0.0646861
\(235\) 0 0
\(236\) 2846.62 0.785166
\(237\) −1964.25 −0.538362
\(238\) −1451.02 −0.395192
\(239\) −1054.21 −0.285319 −0.142660 0.989772i \(-0.545565\pi\)
−0.142660 + 0.989772i \(0.545565\pi\)
\(240\) 0 0
\(241\) 6842.40 1.82887 0.914435 0.404732i \(-0.132635\pi\)
0.914435 + 0.404732i \(0.132635\pi\)
\(242\) −1584.44 −0.420876
\(243\) 243.000 0.0641500
\(244\) 260.609 0.0683761
\(245\) 0 0
\(246\) 935.403 0.242435
\(247\) −1447.99 −0.373009
\(248\) −3976.66 −1.01822
\(249\) 1265.57 0.322096
\(250\) 0 0
\(251\) −6021.53 −1.51424 −0.757122 0.653273i \(-0.773395\pi\)
−0.757122 + 0.653273i \(0.773395\pi\)
\(252\) −343.516 −0.0858710
\(253\) −1649.33 −0.409851
\(254\) 2890.78 0.714110
\(255\) 0 0
\(256\) −4069.00 −0.993408
\(257\) −539.470 −0.130939 −0.0654693 0.997855i \(-0.520854\pi\)
−0.0654693 + 0.997855i \(0.520854\pi\)
\(258\) −2123.76 −0.512478
\(259\) −1766.40 −0.423779
\(260\) 0 0
\(261\) 531.499 0.126050
\(262\) −3964.28 −0.934787
\(263\) −707.750 −0.165938 −0.0829690 0.996552i \(-0.526440\pi\)
−0.0829690 + 0.996552i \(0.526440\pi\)
\(264\) −1385.06 −0.322897
\(265\) 0 0
\(266\) 1301.73 0.300053
\(267\) 1275.41 0.292337
\(268\) 2748.83 0.626536
\(269\) −2877.92 −0.652304 −0.326152 0.945317i \(-0.605752\pi\)
−0.326152 + 0.945317i \(0.605752\pi\)
\(270\) 0 0
\(271\) 3569.27 0.800065 0.400033 0.916501i \(-0.368999\pi\)
0.400033 + 0.916501i \(0.368999\pi\)
\(272\) −72.6401 −0.0161928
\(273\) −340.379 −0.0754604
\(274\) 1624.45 0.358163
\(275\) 0 0
\(276\) 1204.09 0.262600
\(277\) 6956.58 1.50895 0.754477 0.656327i \(-0.227891\pi\)
0.754477 + 0.656327i \(0.227891\pi\)
\(278\) −4993.67 −1.07734
\(279\) 1586.86 0.340512
\(280\) 0 0
\(281\) 3329.41 0.706819 0.353409 0.935469i \(-0.385022\pi\)
0.353409 + 0.935469i \(0.385022\pi\)
\(282\) 2487.08 0.525190
\(283\) −613.980 −0.128966 −0.0644829 0.997919i \(-0.520540\pi\)
−0.0644829 + 0.997919i \(0.520540\pi\)
\(284\) −1836.45 −0.383709
\(285\) 0 0
\(286\) −526.645 −0.108885
\(287\) 1375.08 0.282816
\(288\) 1634.30 0.334383
\(289\) 6967.94 1.41827
\(290\) 0 0
\(291\) 1772.00 0.356963
\(292\) 2024.79 0.405793
\(293\) −6494.46 −1.29492 −0.647458 0.762101i \(-0.724168\pi\)
−0.647458 + 0.762101i \(0.724168\pi\)
\(294\) −1481.78 −0.293944
\(295\) 0 0
\(296\) 5199.50 1.02100
\(297\) 552.700 0.107983
\(298\) 3952.81 0.768390
\(299\) 1193.09 0.230763
\(300\) 0 0
\(301\) −3122.00 −0.597838
\(302\) 4162.99 0.793222
\(303\) −4600.66 −0.872281
\(304\) 65.1663 0.0122946
\(305\) 0 0
\(306\) −1704.38 −0.318409
\(307\) −967.468 −0.179858 −0.0899289 0.995948i \(-0.528664\pi\)
−0.0899289 + 0.995948i \(0.528664\pi\)
\(308\) −781.323 −0.144546
\(309\) −2156.69 −0.397055
\(310\) 0 0
\(311\) −1530.33 −0.279026 −0.139513 0.990220i \(-0.544554\pi\)
−0.139513 + 0.990220i \(0.544554\pi\)
\(312\) 1001.93 0.181804
\(313\) 7983.61 1.44173 0.720863 0.693078i \(-0.243746\pi\)
0.720863 + 0.693078i \(0.243746\pi\)
\(314\) 1567.87 0.281783
\(315\) 0 0
\(316\) 3261.61 0.580632
\(317\) −5281.05 −0.935689 −0.467844 0.883811i \(-0.654969\pi\)
−0.467844 + 0.883811i \(0.654969\pi\)
\(318\) −2687.02 −0.473838
\(319\) 1208.89 0.212178
\(320\) 0 0
\(321\) −2834.53 −0.492860
\(322\) −1072.58 −0.185629
\(323\) −10658.5 −1.83609
\(324\) −403.497 −0.0691868
\(325\) 0 0
\(326\) −6998.69 −1.18902
\(327\) 4417.00 0.746975
\(328\) −4047.63 −0.681381
\(329\) 3656.11 0.612667
\(330\) 0 0
\(331\) −2082.60 −0.345830 −0.172915 0.984937i \(-0.555319\pi\)
−0.172915 + 0.984937i \(0.555319\pi\)
\(332\) −2101.45 −0.347386
\(333\) −2074.83 −0.341441
\(334\) −1706.67 −0.279595
\(335\) 0 0
\(336\) 15.3187 0.00248721
\(337\) 6924.52 1.11930 0.559648 0.828730i \(-0.310936\pi\)
0.559648 + 0.828730i \(0.310936\pi\)
\(338\) −3436.10 −0.552956
\(339\) −2460.76 −0.394249
\(340\) 0 0
\(341\) 3609.29 0.573179
\(342\) 1529.02 0.241755
\(343\) −4806.39 −0.756620
\(344\) 9189.81 1.44035
\(345\) 0 0
\(346\) 2197.98 0.341515
\(347\) −2159.18 −0.334037 −0.167019 0.985954i \(-0.553414\pi\)
−0.167019 + 0.985954i \(0.553414\pi\)
\(348\) −882.546 −0.135947
\(349\) −11809.8 −1.81136 −0.905679 0.423963i \(-0.860639\pi\)
−0.905679 + 0.423963i \(0.860639\pi\)
\(350\) 0 0
\(351\) −399.813 −0.0607989
\(352\) 3717.20 0.562862
\(353\) 8267.86 1.24661 0.623306 0.781978i \(-0.285789\pi\)
0.623306 + 0.781978i \(0.285789\pi\)
\(354\) −2978.48 −0.447187
\(355\) 0 0
\(356\) −2117.80 −0.315290
\(357\) −2505.51 −0.371444
\(358\) −2556.77 −0.377457
\(359\) 4656.29 0.684539 0.342269 0.939602i \(-0.388804\pi\)
0.342269 + 0.939602i \(0.388804\pi\)
\(360\) 0 0
\(361\) 2702.90 0.394066
\(362\) −6503.05 −0.944179
\(363\) −2735.89 −0.395584
\(364\) 565.194 0.0813852
\(365\) 0 0
\(366\) −272.680 −0.0389433
\(367\) −519.600 −0.0739044 −0.0369522 0.999317i \(-0.511765\pi\)
−0.0369522 + 0.999317i \(0.511765\pi\)
\(368\) −53.6947 −0.00760606
\(369\) 1615.18 0.227867
\(370\) 0 0
\(371\) −3950.02 −0.552762
\(372\) −2634.95 −0.367247
\(373\) −4202.26 −0.583337 −0.291669 0.956519i \(-0.594210\pi\)
−0.291669 + 0.956519i \(0.594210\pi\)
\(374\) −3876.59 −0.535973
\(375\) 0 0
\(376\) −10762.0 −1.47608
\(377\) −874.486 −0.119465
\(378\) 359.428 0.0489074
\(379\) 2855.16 0.386964 0.193482 0.981104i \(-0.438022\pi\)
0.193482 + 0.981104i \(0.438022\pi\)
\(380\) 0 0
\(381\) 4991.58 0.671197
\(382\) 6869.26 0.920057
\(383\) −5756.86 −0.768046 −0.384023 0.923324i \(-0.625462\pi\)
−0.384023 + 0.923324i \(0.625462\pi\)
\(384\) −2741.52 −0.364330
\(385\) 0 0
\(386\) −8233.97 −1.08575
\(387\) −3667.13 −0.481682
\(388\) −2942.37 −0.384990
\(389\) 10994.1 1.43296 0.716481 0.697607i \(-0.245752\pi\)
0.716481 + 0.697607i \(0.245752\pi\)
\(390\) 0 0
\(391\) 8782.25 1.13590
\(392\) 6411.90 0.826148
\(393\) −6845.21 −0.878613
\(394\) −3322.93 −0.424890
\(395\) 0 0
\(396\) −917.749 −0.116461
\(397\) −163.743 −0.0207004 −0.0103502 0.999946i \(-0.503295\pi\)
−0.0103502 + 0.999946i \(0.503295\pi\)
\(398\) −5719.19 −0.720294
\(399\) 2247.72 0.282022
\(400\) 0 0
\(401\) 8096.74 1.00831 0.504154 0.863614i \(-0.331804\pi\)
0.504154 + 0.863614i \(0.331804\pi\)
\(402\) −2876.16 −0.356841
\(403\) −2610.89 −0.322724
\(404\) 7639.32 0.940768
\(405\) 0 0
\(406\) 786.156 0.0960992
\(407\) −4719.16 −0.574743
\(408\) 7375.12 0.894909
\(409\) 5493.78 0.664181 0.332091 0.943247i \(-0.392246\pi\)
0.332091 + 0.943247i \(0.392246\pi\)
\(410\) 0 0
\(411\) 2804.98 0.336640
\(412\) 3581.15 0.428229
\(413\) −4378.48 −0.521673
\(414\) −1259.86 −0.149562
\(415\) 0 0
\(416\) −2688.95 −0.316915
\(417\) −8622.67 −1.01260
\(418\) 3477.74 0.406942
\(419\) 11739.7 1.36879 0.684393 0.729114i \(-0.260067\pi\)
0.684393 + 0.729114i \(0.260067\pi\)
\(420\) 0 0
\(421\) 8506.36 0.984738 0.492369 0.870387i \(-0.336131\pi\)
0.492369 + 0.870387i \(0.336131\pi\)
\(422\) 1240.05 0.143044
\(423\) 4294.49 0.493630
\(424\) 11627.1 1.33175
\(425\) 0 0
\(426\) 1921.52 0.218539
\(427\) −400.851 −0.0454298
\(428\) 4706.69 0.531557
\(429\) −909.368 −0.102342
\(430\) 0 0
\(431\) −15772.5 −1.76272 −0.881362 0.472441i \(-0.843373\pi\)
−0.881362 + 0.472441i \(0.843373\pi\)
\(432\) 17.9935 0.00200396
\(433\) −5269.35 −0.584824 −0.292412 0.956292i \(-0.594458\pi\)
−0.292412 + 0.956292i \(0.594458\pi\)
\(434\) 2347.17 0.259603
\(435\) 0 0
\(436\) −7334.35 −0.805624
\(437\) −7878.67 −0.862443
\(438\) −2118.58 −0.231117
\(439\) 6863.61 0.746201 0.373100 0.927791i \(-0.378295\pi\)
0.373100 + 0.927791i \(0.378295\pi\)
\(440\) 0 0
\(441\) −2558.63 −0.276280
\(442\) 2804.25 0.301775
\(443\) 16108.2 1.72759 0.863795 0.503843i \(-0.168081\pi\)
0.863795 + 0.503843i \(0.168081\pi\)
\(444\) 3445.21 0.368249
\(445\) 0 0
\(446\) −7881.92 −0.836816
\(447\) 6825.40 0.722215
\(448\) 2376.50 0.250623
\(449\) 12908.2 1.35674 0.678370 0.734720i \(-0.262687\pi\)
0.678370 + 0.734720i \(0.262687\pi\)
\(450\) 0 0
\(451\) 3673.70 0.383565
\(452\) 4086.06 0.425203
\(453\) 7188.32 0.745556
\(454\) 86.0883 0.00889939
\(455\) 0 0
\(456\) −6616.31 −0.679467
\(457\) 10742.8 1.09962 0.549812 0.835288i \(-0.314699\pi\)
0.549812 + 0.835288i \(0.314699\pi\)
\(458\) −4091.11 −0.417390
\(459\) −2942.99 −0.299275
\(460\) 0 0
\(461\) 14421.4 1.45698 0.728492 0.685054i \(-0.240222\pi\)
0.728492 + 0.685054i \(0.240222\pi\)
\(462\) 817.515 0.0823252
\(463\) 11600.6 1.16442 0.582209 0.813039i \(-0.302188\pi\)
0.582209 + 0.813039i \(0.302188\pi\)
\(464\) 39.3560 0.00393762
\(465\) 0 0
\(466\) −5036.78 −0.500696
\(467\) −3093.46 −0.306527 −0.153264 0.988185i \(-0.548978\pi\)
−0.153264 + 0.988185i \(0.548978\pi\)
\(468\) 663.882 0.0655726
\(469\) −4228.07 −0.416277
\(470\) 0 0
\(471\) 2707.27 0.264850
\(472\) 12888.3 1.25685
\(473\) −8340.84 −0.810808
\(474\) −3412.69 −0.330696
\(475\) 0 0
\(476\) 4160.35 0.400608
\(477\) −4639.73 −0.445364
\(478\) −1831.59 −0.175261
\(479\) −17950.9 −1.71231 −0.856156 0.516717i \(-0.827154\pi\)
−0.856156 + 0.516717i \(0.827154\pi\)
\(480\) 0 0
\(481\) 3413.75 0.323604
\(482\) 11888.0 1.12341
\(483\) −1852.04 −0.174474
\(484\) 4542.90 0.426644
\(485\) 0 0
\(486\) 422.188 0.0394050
\(487\) 17260.9 1.60609 0.803043 0.595921i \(-0.203213\pi\)
0.803043 + 0.595921i \(0.203213\pi\)
\(488\) 1179.93 0.109453
\(489\) −12084.8 −1.11757
\(490\) 0 0
\(491\) 8189.74 0.752745 0.376372 0.926468i \(-0.377171\pi\)
0.376372 + 0.926468i \(0.377171\pi\)
\(492\) −2681.98 −0.245758
\(493\) −6437.03 −0.588051
\(494\) −2515.73 −0.229126
\(495\) 0 0
\(496\) 117.502 0.0106371
\(497\) 2824.70 0.254940
\(498\) 2198.79 0.197852
\(499\) −10653.8 −0.955767 −0.477884 0.878423i \(-0.658596\pi\)
−0.477884 + 0.878423i \(0.658596\pi\)
\(500\) 0 0
\(501\) −2946.94 −0.262793
\(502\) −10461.8 −0.930144
\(503\) 6067.02 0.537803 0.268902 0.963168i \(-0.413339\pi\)
0.268902 + 0.963168i \(0.413339\pi\)
\(504\) −1555.30 −0.137457
\(505\) 0 0
\(506\) −2865.54 −0.251756
\(507\) −5933.18 −0.519727
\(508\) −8288.43 −0.723897
\(509\) −3141.27 −0.273545 −0.136773 0.990602i \(-0.543673\pi\)
−0.136773 + 0.990602i \(0.543673\pi\)
\(510\) 0 0
\(511\) −3114.39 −0.269613
\(512\) 241.260 0.0208247
\(513\) 2640.19 0.227227
\(514\) −937.275 −0.0804308
\(515\) 0 0
\(516\) 6089.21 0.519501
\(517\) 9767.76 0.830920
\(518\) −3068.94 −0.260311
\(519\) 3795.30 0.320992
\(520\) 0 0
\(521\) 15548.5 1.30747 0.653737 0.756722i \(-0.273200\pi\)
0.653737 + 0.756722i \(0.273200\pi\)
\(522\) 923.426 0.0774277
\(523\) 19848.9 1.65952 0.829761 0.558119i \(-0.188477\pi\)
0.829761 + 0.558119i \(0.188477\pi\)
\(524\) 11366.3 0.947598
\(525\) 0 0
\(526\) −1229.64 −0.101930
\(527\) −19218.6 −1.58857
\(528\) 40.9259 0.00337324
\(529\) −5675.26 −0.466447
\(530\) 0 0
\(531\) −5143.00 −0.420315
\(532\) −3732.30 −0.304165
\(533\) −2657.49 −0.215963
\(534\) 2215.90 0.179572
\(535\) 0 0
\(536\) 12445.6 1.00292
\(537\) −4414.83 −0.354775
\(538\) −5000.09 −0.400686
\(539\) −5819.56 −0.465058
\(540\) 0 0
\(541\) −13213.7 −1.05010 −0.525048 0.851072i \(-0.675953\pi\)
−0.525048 + 0.851072i \(0.675953\pi\)
\(542\) 6201.24 0.491451
\(543\) −11229.0 −0.887441
\(544\) −19793.2 −1.55997
\(545\) 0 0
\(546\) −591.374 −0.0463525
\(547\) −6622.55 −0.517660 −0.258830 0.965923i \(-0.583337\pi\)
−0.258830 + 0.965923i \(0.583337\pi\)
\(548\) −4657.61 −0.363072
\(549\) −470.843 −0.0366031
\(550\) 0 0
\(551\) 5774.74 0.446483
\(552\) 5451.61 0.420355
\(553\) −5016.78 −0.385778
\(554\) 12086.3 0.926894
\(555\) 0 0
\(556\) 14317.8 1.09210
\(557\) −15042.5 −1.14430 −0.572148 0.820150i \(-0.693890\pi\)
−0.572148 + 0.820150i \(0.693890\pi\)
\(558\) 2757.00 0.209164
\(559\) 6033.61 0.456519
\(560\) 0 0
\(561\) −6693.79 −0.503765
\(562\) 5784.51 0.434173
\(563\) −3495.16 −0.261641 −0.130820 0.991406i \(-0.541761\pi\)
−0.130820 + 0.991406i \(0.541761\pi\)
\(564\) −7130.93 −0.532387
\(565\) 0 0
\(566\) −1066.73 −0.0792189
\(567\) 620.632 0.0459684
\(568\) −8314.68 −0.614219
\(569\) 7467.34 0.550171 0.275085 0.961420i \(-0.411294\pi\)
0.275085 + 0.961420i \(0.411294\pi\)
\(570\) 0 0
\(571\) −15504.9 −1.13635 −0.568177 0.822906i \(-0.692351\pi\)
−0.568177 + 0.822906i \(0.692351\pi\)
\(572\) 1509.99 0.110377
\(573\) 11861.3 0.864768
\(574\) 2389.06 0.173724
\(575\) 0 0
\(576\) 2791.45 0.201928
\(577\) −25877.8 −1.86708 −0.933542 0.358468i \(-0.883299\pi\)
−0.933542 + 0.358468i \(0.883299\pi\)
\(578\) 12106.1 0.871188
\(579\) −14217.8 −1.02050
\(580\) 0 0
\(581\) 3232.31 0.230807
\(582\) 3078.66 0.219269
\(583\) −10553.0 −0.749675
\(584\) 9167.39 0.649571
\(585\) 0 0
\(586\) −11283.5 −0.795418
\(587\) −498.887 −0.0350788 −0.0175394 0.999846i \(-0.505583\pi\)
−0.0175394 + 0.999846i \(0.505583\pi\)
\(588\) 4248.56 0.297972
\(589\) 17241.2 1.20613
\(590\) 0 0
\(591\) −5737.77 −0.399358
\(592\) −153.635 −0.0106662
\(593\) 16095.6 1.11462 0.557309 0.830305i \(-0.311834\pi\)
0.557309 + 0.830305i \(0.311834\pi\)
\(594\) 960.260 0.0663299
\(595\) 0 0
\(596\) −11333.5 −0.778920
\(597\) −9875.44 −0.677010
\(598\) 2072.87 0.141749
\(599\) −998.977 −0.0681421 −0.0340710 0.999419i \(-0.510847\pi\)
−0.0340710 + 0.999419i \(0.510847\pi\)
\(600\) 0 0
\(601\) −12876.3 −0.873937 −0.436968 0.899477i \(-0.643948\pi\)
−0.436968 + 0.899477i \(0.643948\pi\)
\(602\) −5424.16 −0.367230
\(603\) −4966.33 −0.335397
\(604\) −11936.1 −0.804093
\(605\) 0 0
\(606\) −7993.18 −0.535810
\(607\) −12236.9 −0.818254 −0.409127 0.912477i \(-0.634167\pi\)
−0.409127 + 0.912477i \(0.634167\pi\)
\(608\) 17756.7 1.18442
\(609\) 1357.47 0.0903244
\(610\) 0 0
\(611\) −7065.81 −0.467843
\(612\) 4886.79 0.322772
\(613\) −1839.73 −0.121217 −0.0606085 0.998162i \(-0.519304\pi\)
−0.0606085 + 0.998162i \(0.519304\pi\)
\(614\) −1680.88 −0.110480
\(615\) 0 0
\(616\) −3537.51 −0.231380
\(617\) −3461.32 −0.225847 −0.112924 0.993604i \(-0.536022\pi\)
−0.112924 + 0.993604i \(0.536022\pi\)
\(618\) −3747.03 −0.243896
\(619\) −4899.75 −0.318155 −0.159077 0.987266i \(-0.550852\pi\)
−0.159077 + 0.987266i \(0.550852\pi\)
\(620\) 0 0
\(621\) −2175.43 −0.140575
\(622\) −2658.80 −0.171396
\(623\) 3257.46 0.209482
\(624\) −29.6050 −0.00189928
\(625\) 0 0
\(626\) 13870.7 0.885599
\(627\) 6005.08 0.382488
\(628\) −4495.38 −0.285645
\(629\) 25128.4 1.59290
\(630\) 0 0
\(631\) −2129.24 −0.134332 −0.0671661 0.997742i \(-0.521396\pi\)
−0.0671661 + 0.997742i \(0.521396\pi\)
\(632\) 14767.2 0.929443
\(633\) 2141.22 0.134448
\(634\) −9175.29 −0.574759
\(635\) 0 0
\(636\) 7704.19 0.480332
\(637\) 4209.76 0.261847
\(638\) 2100.32 0.130333
\(639\) 3317.92 0.205407
\(640\) 0 0
\(641\) −20797.9 −1.28154 −0.640771 0.767732i \(-0.721385\pi\)
−0.640771 + 0.767732i \(0.721385\pi\)
\(642\) −4924.71 −0.302746
\(643\) 6395.45 0.392243 0.196121 0.980580i \(-0.437165\pi\)
0.196121 + 0.980580i \(0.437165\pi\)
\(644\) 3075.29 0.188173
\(645\) 0 0
\(646\) −18518.1 −1.12784
\(647\) 9964.69 0.605491 0.302745 0.953071i \(-0.402097\pi\)
0.302745 + 0.953071i \(0.402097\pi\)
\(648\) −1826.87 −0.110750
\(649\) −11697.7 −0.707510
\(650\) 0 0
\(651\) 4052.90 0.244003
\(652\) 20066.6 1.20532
\(653\) 29629.0 1.77561 0.887803 0.460223i \(-0.152231\pi\)
0.887803 + 0.460223i \(0.152231\pi\)
\(654\) 7674.09 0.458839
\(655\) 0 0
\(656\) 119.599 0.00711825
\(657\) −3658.19 −0.217229
\(658\) 6352.11 0.376339
\(659\) 18698.2 1.10528 0.552640 0.833420i \(-0.313621\pi\)
0.552640 + 0.833420i \(0.313621\pi\)
\(660\) 0 0
\(661\) 16576.7 0.975430 0.487715 0.873003i \(-0.337831\pi\)
0.487715 + 0.873003i \(0.337831\pi\)
\(662\) −3618.30 −0.212431
\(663\) 4842.16 0.283641
\(664\) −9514.50 −0.556076
\(665\) 0 0
\(666\) −3604.80 −0.209734
\(667\) −4758.18 −0.276218
\(668\) 4893.34 0.283427
\(669\) −13609.9 −0.786530
\(670\) 0 0
\(671\) −1070.93 −0.0616135
\(672\) 4174.08 0.239611
\(673\) −8889.49 −0.509160 −0.254580 0.967052i \(-0.581937\pi\)
−0.254580 + 0.967052i \(0.581937\pi\)
\(674\) 12030.7 0.687542
\(675\) 0 0
\(676\) 9851.95 0.560534
\(677\) 22803.3 1.29454 0.647270 0.762261i \(-0.275911\pi\)
0.647270 + 0.762261i \(0.275911\pi\)
\(678\) −4275.33 −0.242172
\(679\) 4525.76 0.255792
\(680\) 0 0
\(681\) 148.650 0.00836460
\(682\) 6270.77 0.352082
\(683\) −7599.47 −0.425748 −0.212874 0.977080i \(-0.568282\pi\)
−0.212874 + 0.977080i \(0.568282\pi\)
\(684\) −4384.00 −0.245068
\(685\) 0 0
\(686\) −8350.61 −0.464764
\(687\) −7064.20 −0.392308
\(688\) −271.541 −0.0150471
\(689\) 7633.83 0.422099
\(690\) 0 0
\(691\) −12622.0 −0.694883 −0.347441 0.937702i \(-0.612949\pi\)
−0.347441 + 0.937702i \(0.612949\pi\)
\(692\) −6302.03 −0.346195
\(693\) 1411.62 0.0773780
\(694\) −3751.36 −0.205187
\(695\) 0 0
\(696\) −3995.80 −0.217616
\(697\) −19561.6 −1.06305
\(698\) −20518.3 −1.11265
\(699\) −8697.11 −0.470608
\(700\) 0 0
\(701\) −4783.64 −0.257740 −0.128870 0.991662i \(-0.541135\pi\)
−0.128870 + 0.991662i \(0.541135\pi\)
\(702\) −694.634 −0.0373465
\(703\) −22543.0 −1.20942
\(704\) 6349.12 0.339903
\(705\) 0 0
\(706\) 14364.6 0.765747
\(707\) −11750.3 −0.625056
\(708\) 8539.86 0.453316
\(709\) −33251.4 −1.76133 −0.880664 0.473741i \(-0.842903\pi\)
−0.880664 + 0.473741i \(0.842903\pi\)
\(710\) 0 0
\(711\) −5892.75 −0.310823
\(712\) −9588.53 −0.504699
\(713\) −14206.1 −0.746177
\(714\) −4353.06 −0.228164
\(715\) 0 0
\(716\) 7330.76 0.382630
\(717\) −3162.64 −0.164729
\(718\) 8089.82 0.420487
\(719\) 12428.5 0.644652 0.322326 0.946629i \(-0.395535\pi\)
0.322326 + 0.946629i \(0.395535\pi\)
\(720\) 0 0
\(721\) −5508.28 −0.284520
\(722\) 4696.01 0.242060
\(723\) 20527.2 1.05590
\(724\) 18645.5 0.957119
\(725\) 0 0
\(726\) −4753.33 −0.242993
\(727\) 8782.11 0.448020 0.224010 0.974587i \(-0.428085\pi\)
0.224010 + 0.974587i \(0.428085\pi\)
\(728\) 2558.97 0.130277
\(729\) 729.000 0.0370370
\(730\) 0 0
\(731\) 44412.9 2.24716
\(732\) 781.827 0.0394770
\(733\) 26084.3 1.31438 0.657192 0.753723i \(-0.271744\pi\)
0.657192 + 0.753723i \(0.271744\pi\)
\(734\) −902.753 −0.0453967
\(735\) 0 0
\(736\) −14630.9 −0.732748
\(737\) −11295.8 −0.564569
\(738\) 2806.21 0.139970
\(739\) −23385.1 −1.16405 −0.582027 0.813170i \(-0.697740\pi\)
−0.582027 + 0.813170i \(0.697740\pi\)
\(740\) 0 0
\(741\) −4343.96 −0.215357
\(742\) −6862.75 −0.339541
\(743\) 26389.6 1.30302 0.651508 0.758642i \(-0.274137\pi\)
0.651508 + 0.758642i \(0.274137\pi\)
\(744\) −11930.0 −0.587868
\(745\) 0 0
\(746\) −7301.00 −0.358322
\(747\) 3796.70 0.185962
\(748\) 11114.9 0.543318
\(749\) −7239.52 −0.353172
\(750\) 0 0
\(751\) 17725.3 0.861257 0.430629 0.902529i \(-0.358292\pi\)
0.430629 + 0.902529i \(0.358292\pi\)
\(752\) 317.995 0.0154203
\(753\) −18064.6 −0.874250
\(754\) −1519.33 −0.0733830
\(755\) 0 0
\(756\) −1030.55 −0.0495777
\(757\) −4478.94 −0.215046 −0.107523 0.994203i \(-0.534292\pi\)
−0.107523 + 0.994203i \(0.534292\pi\)
\(758\) 4960.54 0.237698
\(759\) −4947.98 −0.236627
\(760\) 0 0
\(761\) 1368.09 0.0651683 0.0325841 0.999469i \(-0.489626\pi\)
0.0325841 + 0.999469i \(0.489626\pi\)
\(762\) 8672.35 0.412292
\(763\) 11281.2 0.535265
\(764\) −19695.5 −0.932666
\(765\) 0 0
\(766\) −10001.9 −0.471782
\(767\) 8461.88 0.398358
\(768\) −12207.0 −0.573544
\(769\) 16530.6 0.775176 0.387588 0.921833i \(-0.373308\pi\)
0.387588 + 0.921833i \(0.373308\pi\)
\(770\) 0 0
\(771\) −1618.41 −0.0755975
\(772\) 23608.4 1.10063
\(773\) −8002.04 −0.372333 −0.186166 0.982518i \(-0.559606\pi\)
−0.186166 + 0.982518i \(0.559606\pi\)
\(774\) −6371.27 −0.295879
\(775\) 0 0
\(776\) −13321.8 −0.616271
\(777\) −5299.19 −0.244669
\(778\) 19101.1 0.880215
\(779\) 17548.9 0.807131
\(780\) 0 0
\(781\) 7546.56 0.345758
\(782\) 15258.3 0.697742
\(783\) 1594.50 0.0727749
\(784\) −189.459 −0.00863061
\(785\) 0 0
\(786\) −11892.8 −0.539699
\(787\) −19432.4 −0.880166 −0.440083 0.897957i \(-0.645051\pi\)
−0.440083 + 0.897957i \(0.645051\pi\)
\(788\) 9527.47 0.430713
\(789\) −2123.25 −0.0958044
\(790\) 0 0
\(791\) −6284.89 −0.282510
\(792\) −4155.19 −0.186424
\(793\) 774.687 0.0346910
\(794\) −284.487 −0.0127155
\(795\) 0 0
\(796\) 16398.0 0.730165
\(797\) −39528.1 −1.75678 −0.878391 0.477942i \(-0.841383\pi\)
−0.878391 + 0.477942i \(0.841383\pi\)
\(798\) 3905.19 0.173236
\(799\) −52010.9 −2.30290
\(800\) 0 0
\(801\) 3826.24 0.168781
\(802\) 14067.3 0.619366
\(803\) −8320.49 −0.365659
\(804\) 8246.50 0.361731
\(805\) 0 0
\(806\) −4536.15 −0.198237
\(807\) −8633.76 −0.376608
\(808\) 34587.7 1.50593
\(809\) −2308.05 −0.100305 −0.0501526 0.998742i \(-0.515971\pi\)
−0.0501526 + 0.998742i \(0.515971\pi\)
\(810\) 0 0
\(811\) −4243.29 −0.183726 −0.0918632 0.995772i \(-0.529282\pi\)
−0.0918632 + 0.995772i \(0.529282\pi\)
\(812\) −2254.06 −0.0974162
\(813\) 10707.8 0.461918
\(814\) −8199.07 −0.353043
\(815\) 0 0
\(816\) −217.920 −0.00934894
\(817\) −39843.4 −1.70617
\(818\) 9544.89 0.407982
\(819\) −1021.14 −0.0435671
\(820\) 0 0
\(821\) 28705.4 1.22025 0.610124 0.792306i \(-0.291120\pi\)
0.610124 + 0.792306i \(0.291120\pi\)
\(822\) 4873.36 0.206786
\(823\) 28010.8 1.18639 0.593193 0.805061i \(-0.297867\pi\)
0.593193 + 0.805061i \(0.297867\pi\)
\(824\) 16214.0 0.685486
\(825\) 0 0
\(826\) −7607.16 −0.320444
\(827\) 8868.42 0.372896 0.186448 0.982465i \(-0.440302\pi\)
0.186448 + 0.982465i \(0.440302\pi\)
\(828\) 3612.26 0.151612
\(829\) −24216.6 −1.01457 −0.507283 0.861779i \(-0.669350\pi\)
−0.507283 + 0.861779i \(0.669350\pi\)
\(830\) 0 0
\(831\) 20869.7 0.871195
\(832\) −4592.83 −0.191380
\(833\) 30987.7 1.28891
\(834\) −14981.0 −0.622003
\(835\) 0 0
\(836\) −9971.34 −0.412519
\(837\) 4760.58 0.196594
\(838\) 20396.5 0.840794
\(839\) 33351.0 1.37235 0.686177 0.727435i \(-0.259288\pi\)
0.686177 + 0.727435i \(0.259288\pi\)
\(840\) 0 0
\(841\) −20901.4 −0.857003
\(842\) 14778.9 0.604888
\(843\) 9988.24 0.408082
\(844\) −3555.45 −0.145004
\(845\) 0 0
\(846\) 7461.24 0.303218
\(847\) −6987.58 −0.283467
\(848\) −343.559 −0.0139126
\(849\) −1841.94 −0.0744585
\(850\) 0 0
\(851\) 18574.6 0.748214
\(852\) −5509.35 −0.221534
\(853\) −25395.6 −1.01938 −0.509688 0.860359i \(-0.670239\pi\)
−0.509688 + 0.860359i \(0.670239\pi\)
\(854\) −696.437 −0.0279059
\(855\) 0 0
\(856\) 21310.0 0.850887
\(857\) 28013.4 1.11659 0.558296 0.829642i \(-0.311455\pi\)
0.558296 + 0.829642i \(0.311455\pi\)
\(858\) −1579.93 −0.0628649
\(859\) 7094.28 0.281786 0.140893 0.990025i \(-0.455003\pi\)
0.140893 + 0.990025i \(0.455003\pi\)
\(860\) 0 0
\(861\) 4125.23 0.163284
\(862\) −27403.1 −1.08278
\(863\) −12168.3 −0.479969 −0.239984 0.970777i \(-0.577142\pi\)
−0.239984 + 0.970777i \(0.577142\pi\)
\(864\) 4902.91 0.193056
\(865\) 0 0
\(866\) −9154.96 −0.359236
\(867\) 20903.8 0.818836
\(868\) −6729.78 −0.263161
\(869\) −13403.0 −0.523205
\(870\) 0 0
\(871\) 8171.20 0.317876
\(872\) −33206.9 −1.28960
\(873\) 5315.99 0.206093
\(874\) −13688.4 −0.529767
\(875\) 0 0
\(876\) 6074.36 0.234285
\(877\) −5576.23 −0.214704 −0.107352 0.994221i \(-0.534237\pi\)
−0.107352 + 0.994221i \(0.534237\pi\)
\(878\) 11924.8 0.458364
\(879\) −19483.4 −0.747620
\(880\) 0 0
\(881\) 44427.2 1.69897 0.849483 0.527616i \(-0.176914\pi\)
0.849483 + 0.527616i \(0.176914\pi\)
\(882\) −4445.35 −0.169708
\(883\) 28781.0 1.09689 0.548447 0.836186i \(-0.315219\pi\)
0.548447 + 0.836186i \(0.315219\pi\)
\(884\) −8040.33 −0.305911
\(885\) 0 0
\(886\) 27986.3 1.06119
\(887\) 13229.3 0.500785 0.250392 0.968144i \(-0.419440\pi\)
0.250392 + 0.968144i \(0.419440\pi\)
\(888\) 15598.5 0.589472
\(889\) 12748.7 0.480965
\(890\) 0 0
\(891\) 1658.10 0.0623439
\(892\) 22599.0 0.848284
\(893\) 46659.6 1.74849
\(894\) 11858.4 0.443630
\(895\) 0 0
\(896\) −7001.96 −0.261071
\(897\) 3579.27 0.133231
\(898\) 22426.7 0.833395
\(899\) 10412.5 0.386293
\(900\) 0 0
\(901\) 56192.1 2.07772
\(902\) 6382.68 0.235610
\(903\) −9366.01 −0.345162
\(904\) 18500.0 0.680642
\(905\) 0 0
\(906\) 12489.0 0.457967
\(907\) −18849.7 −0.690071 −0.345035 0.938590i \(-0.612133\pi\)
−0.345035 + 0.938590i \(0.612133\pi\)
\(908\) −246.831 −0.00902135
\(909\) −13802.0 −0.503611
\(910\) 0 0
\(911\) −20189.5 −0.734258 −0.367129 0.930170i \(-0.619659\pi\)
−0.367129 + 0.930170i \(0.619659\pi\)
\(912\) 195.499 0.00709826
\(913\) 8635.54 0.313028
\(914\) 18664.6 0.675459
\(915\) 0 0
\(916\) 11730.0 0.423111
\(917\) −17482.9 −0.629594
\(918\) −5113.15 −0.183833
\(919\) −9727.34 −0.349157 −0.174579 0.984643i \(-0.555856\pi\)
−0.174579 + 0.984643i \(0.555856\pi\)
\(920\) 0 0
\(921\) −2902.41 −0.103841
\(922\) 25055.6 0.894971
\(923\) −5459.04 −0.194676
\(924\) −2343.97 −0.0834534
\(925\) 0 0
\(926\) 20154.9 0.715259
\(927\) −6470.07 −0.229240
\(928\) 10723.8 0.379340
\(929\) −39516.5 −1.39558 −0.697790 0.716303i \(-0.745833\pi\)
−0.697790 + 0.716303i \(0.745833\pi\)
\(930\) 0 0
\(931\) −27799.5 −0.978615
\(932\) 14441.4 0.507558
\(933\) −4591.00 −0.161096
\(934\) −5374.57 −0.188288
\(935\) 0 0
\(936\) 3005.78 0.104965
\(937\) 32692.4 1.13982 0.569912 0.821706i \(-0.306977\pi\)
0.569912 + 0.821706i \(0.306977\pi\)
\(938\) −7345.84 −0.255704
\(939\) 23950.8 0.832381
\(940\) 0 0
\(941\) −11482.8 −0.397797 −0.198899 0.980020i \(-0.563736\pi\)
−0.198899 + 0.980020i \(0.563736\pi\)
\(942\) 4703.61 0.162688
\(943\) −14459.7 −0.499334
\(944\) −380.825 −0.0131301
\(945\) 0 0
\(946\) −14491.4 −0.498049
\(947\) 43381.4 1.48860 0.744300 0.667845i \(-0.232783\pi\)
0.744300 + 0.667845i \(0.232783\pi\)
\(948\) 9784.82 0.335228
\(949\) 6018.89 0.205881
\(950\) 0 0
\(951\) −15843.2 −0.540220
\(952\) 18836.4 0.641271
\(953\) 23222.7 0.789358 0.394679 0.918819i \(-0.370856\pi\)
0.394679 + 0.918819i \(0.370856\pi\)
\(954\) −8061.05 −0.273570
\(955\) 0 0
\(956\) 5251.51 0.177663
\(957\) 3626.66 0.122501
\(958\) −31187.8 −1.05181
\(959\) 7164.03 0.241229
\(960\) 0 0
\(961\) 1296.90 0.0435333
\(962\) 5931.05 0.198778
\(963\) −8503.60 −0.284553
\(964\) −34085.1 −1.13880
\(965\) 0 0
\(966\) −3217.74 −0.107173
\(967\) 16334.6 0.543211 0.271605 0.962409i \(-0.412445\pi\)
0.271605 + 0.962409i \(0.412445\pi\)
\(968\) 20568.4 0.682947
\(969\) −31975.6 −1.06007
\(970\) 0 0
\(971\) −39066.5 −1.29115 −0.645574 0.763698i \(-0.723382\pi\)
−0.645574 + 0.763698i \(0.723382\pi\)
\(972\) −1210.49 −0.0399450
\(973\) −22022.7 −0.725606
\(974\) 29989.0 0.986559
\(975\) 0 0
\(976\) −34.8646 −0.00114343
\(977\) −39942.7 −1.30796 −0.653982 0.756510i \(-0.726903\pi\)
−0.653982 + 0.756510i \(0.726903\pi\)
\(978\) −20996.1 −0.686483
\(979\) 8702.73 0.284107
\(980\) 0 0
\(981\) 13251.0 0.431266
\(982\) 14228.8 0.462383
\(983\) −23347.1 −0.757534 −0.378767 0.925492i \(-0.623652\pi\)
−0.378767 + 0.925492i \(0.623652\pi\)
\(984\) −12142.9 −0.393395
\(985\) 0 0
\(986\) −11183.7 −0.361218
\(987\) 10968.3 0.353724
\(988\) 7213.08 0.232266
\(989\) 32829.5 1.05553
\(990\) 0 0
\(991\) 1661.91 0.0532717 0.0266359 0.999645i \(-0.491521\pi\)
0.0266359 + 0.999645i \(0.491521\pi\)
\(992\) 32017.4 1.02475
\(993\) −6247.79 −0.199665
\(994\) 4907.63 0.156600
\(995\) 0 0
\(996\) −6304.36 −0.200563
\(997\) 4547.81 0.144464 0.0722320 0.997388i \(-0.476988\pi\)
0.0722320 + 0.997388i \(0.476988\pi\)
\(998\) −18509.8 −0.587092
\(999\) −6224.48 −0.197131
Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))

Twists

       By twisting character
Char Parity Ord Type Twist Min Dim
1.1 even 1 trivial 1875.4.a.g.1.10 14
5.4 even 2 1875.4.a.f.1.5 14
25.11 even 5 75.4.g.b.46.5 yes 28
25.16 even 5 75.4.g.b.31.5 28
75.11 odd 10 225.4.h.a.46.3 28
75.41 odd 10 225.4.h.a.181.3 28
    
        By twisted newform
Twist Min Dim Char Parity Ord Type
75.4.g.b.31.5 28 25.16 even 5
75.4.g.b.46.5 yes 28 25.11 even 5
225.4.h.a.46.3 28 75.11 odd 10
225.4.h.a.181.3 28 75.41 odd 10
1875.4.a.f.1.5 14 5.4 even 2
1875.4.a.g.1.10 14 1.1 even 1 trivial