Properties

Label 1881.2.a.i.1.1
Level 18811881
Weight 22
Character 1881.1
Self dual yes
Analytic conductor 15.02015.020
Analytic rank 00
Dimension 33
CM no
Inner twists 11

Related objects

Downloads

Learn more

Show commands: Magma / PariGP / SageMath

Newspace parameters

comment: Compute space of new eigenforms
 
[N,k,chi] = [1881,2,Mod(1,1881)]
 
mf = mfinit([N,k,chi],0)
 
lf = mfeigenbasis(mf)
 
from sage.modular.dirichlet import DirichletCharacter
 
H = DirichletGroup(1881, base_ring=CyclotomicField(2))
 
chi = DirichletCharacter(H, H._module([0, 0, 0]))
 
N = Newforms(chi, 2, names="a")
 
//Please install CHIMP (https://github.com/edgarcosta/CHIMP) if you want to run this code
 
chi := DirichletCharacter("1881.1");
 
S:= CuspForms(chi, 2);
 
N := Newforms(S);
 
Level: N N == 1881=321119 1881 = 3^{2} \cdot 11 \cdot 19
Weight: k k == 2 2
Character orbit: [χ][\chi] == 1881.a (trivial)

Newform invariants

comment: select newform
 
sage: f = N[0] # Warning: the index may be different
 
gp: f = lf[1] \\ Warning: the index may be different
 
Self dual: yes
Analytic conductor: 15.019860620215.0198606202
Analytic rank: 00
Dimension: 33
Coefficient field: 3.3.321.1
comment: defining polynomial
 
gp: f.mod \\ as an extension of the character field
 
Defining polynomial: x3x24x+1 x^{3} - x^{2} - 4x + 1 Copy content Toggle raw display
Coefficient ring: Z[a1,a2]\Z[a_1, a_2]
Coefficient ring index: 1 1
Twist minimal: no (minimal twist has level 627)
Fricke sign: 1-1
Sato-Tate group: SU(2)\mathrm{SU}(2)

Embedding invariants

Embedding label 1.1
Root 2.460502.46050 of defining polynomial
Character χ\chi == 1881.1

qq-expansion

comment: q-expansion
 
sage: f.q_expansion() # note that sage often uses an isomorphic number field
 
gp: mfcoefs(f, 20)
 
f(q)f(q) == q1.46050q2+0.133074q4+4.05408q51.40642q7+2.72665q85.92101q101.00000q116.46050q13+2.05408q144.24844q164.38151q171.00000q19+0.539495q20+1.46050q22+5.00000q23+11.4356q25+9.43560q260.187159q28+10.2484q29+7.32743q31+0.751560q32+6.39922q345.70175q35+5.37432q37+1.46050q38+11.0541q40+2.46050q412.13307q430.133074q447.30252q46+6.64766q475.02198q4916.7017q500.859728q529.16225q534.05408q553.83482q5614.9679q58+1.78074q59+0.975094q6110.7017q62+7.39922q6426.1914q65+1.91381q670.583068q68+8.32743q70+9.46050q71+4.64766q737.84922q740.133074q76+1.40642q77+15.0364q7917.2235q803.59358q82+9.08326q8317.7630q85+3.11537q862.72665q88+7.32743q89+9.08619q91+0.665372q929.70895q944.05408q95+8.35661q97+7.33463q98+O(q100)q-1.46050 q^{2} +0.133074 q^{4} +4.05408 q^{5} -1.40642 q^{7} +2.72665 q^{8} -5.92101 q^{10} -1.00000 q^{11} -6.46050 q^{13} +2.05408 q^{14} -4.24844 q^{16} -4.38151 q^{17} -1.00000 q^{19} +0.539495 q^{20} +1.46050 q^{22} +5.00000 q^{23} +11.4356 q^{25} +9.43560 q^{26} -0.187159 q^{28} +10.2484 q^{29} +7.32743 q^{31} +0.751560 q^{32} +6.39922 q^{34} -5.70175 q^{35} +5.37432 q^{37} +1.46050 q^{38} +11.0541 q^{40} +2.46050 q^{41} -2.13307 q^{43} -0.133074 q^{44} -7.30252 q^{46} +6.64766 q^{47} -5.02198 q^{49} -16.7017 q^{50} -0.859728 q^{52} -9.16225 q^{53} -4.05408 q^{55} -3.83482 q^{56} -14.9679 q^{58} +1.78074 q^{59} +0.975094 q^{61} -10.7017 q^{62} +7.39922 q^{64} -26.1914 q^{65} +1.91381 q^{67} -0.583068 q^{68} +8.32743 q^{70} +9.46050 q^{71} +4.64766 q^{73} -7.84922 q^{74} -0.133074 q^{76} +1.40642 q^{77} +15.0364 q^{79} -17.2235 q^{80} -3.59358 q^{82} +9.08326 q^{83} -17.7630 q^{85} +3.11537 q^{86} -2.72665 q^{88} +7.32743 q^{89} +9.08619 q^{91} +0.665372 q^{92} -9.70895 q^{94} -4.05408 q^{95} +8.35661 q^{97} +7.33463 q^{98} +O(q^{100})
Tr(f)(q)\operatorname{Tr}(f)(q) == 3q+2q2+4q4+3q57q7+9q85q103q1113q133q14+10q16+6q173q19+8q202q22+15q23+6q25+5q28+8q29+12q31++4q98+O(q100) 3 q + 2 q^{2} + 4 q^{4} + 3 q^{5} - 7 q^{7} + 9 q^{8} - 5 q^{10} - 3 q^{11} - 13 q^{13} - 3 q^{14} + 10 q^{16} + 6 q^{17} - 3 q^{19} + 8 q^{20} - 2 q^{22} + 15 q^{23} + 6 q^{25} + 5 q^{28} + 8 q^{29} + 12 q^{31}+ \cdots + 4 q^{98}+O(q^{100}) Copy content Toggle raw display

Coefficient data

For each nn we display the coefficients of the qq-expansion ana_n, the Satake parameters αp\alpha_p, and the Satake angles θp=Arg(αp)\theta_p = \textrm{Arg}(\alpha_p).



Display apa_p with pp up to: 50 250 1000 (See ana_n instead) (See ana_n instead) (See ana_n instead) Display ana_n with nn up to: 50 250 1000 (See only apa_p) (See only apa_p) (See only apa_p)
Significant digits:
nn ana_n an/n(k1)/2a_n / n^{(k-1)/2} αn \alpha_n θn \theta_n
pp apa_p ap/p(k1)/2a_p / p^{(k-1)/2} αp \alpha_p θp \theta_p
22 −1.46050 −1.03273 −0.516366 0.856368i 0.672716π-0.672716\pi
−0.516366 + 0.856368i 0.672716π0.672716\pi
33 0 0
44 0.133074 0.0665372
55 4.05408 1.81304 0.906521 0.422161i 0.138728π-0.138728\pi
0.906521 + 0.422161i 0.138728π0.138728\pi
66 0 0
77 −1.40642 −0.531577 −0.265789 0.964031i 0.585632π-0.585632\pi
−0.265789 + 0.964031i 0.585632π0.585632\pi
88 2.72665 0.964018
99 0 0
1010 −5.92101 −1.87239
1111 −1.00000 −0.301511
1212 0 0
1313 −6.46050 −1.79182 −0.895911 0.444234i 0.853476π-0.853476\pi
−0.895911 + 0.444234i 0.853476π0.853476\pi
1414 2.05408 0.548977
1515 0 0
1616 −4.24844 −1.06211
1717 −4.38151 −1.06267 −0.531337 0.847161i 0.678310π-0.678310\pi
−0.531337 + 0.847161i 0.678310π0.678310\pi
1818 0 0
1919 −1.00000 −0.229416
2020 0.539495 0.120635
2121 0 0
2222 1.46050 0.311381
2323 5.00000 1.04257 0.521286 0.853382i 0.325452π-0.325452\pi
0.521286 + 0.853382i 0.325452π0.325452\pi
2424 0 0
2525 11.4356 2.28712
2626 9.43560 1.85047
2727 0 0
2828 −0.187159 −0.0353697
2929 10.2484 1.90309 0.951544 0.307513i 0.0994969π-0.0994969\pi
0.951544 + 0.307513i 0.0994969π0.0994969\pi
3030 0 0
3131 7.32743 1.31605 0.658023 0.752998i 0.271393π-0.271393\pi
0.658023 + 0.752998i 0.271393π0.271393\pi
3232 0.751560 0.132858
3333 0 0
3434 6.39922 1.09746
3535 −5.70175 −0.963771
3636 0 0
3737 5.37432 0.883532 0.441766 0.897130i 0.354352π-0.354352\pi
0.441766 + 0.897130i 0.354352π0.354352\pi
3838 1.46050 0.236925
3939 0 0
4040 11.0541 1.74780
4141 2.46050 0.384266 0.192133 0.981369i 0.438459π-0.438459\pi
0.192133 + 0.981369i 0.438459π0.438459\pi
4242 0 0
4343 −2.13307 −0.325291 −0.162645 0.986685i 0.552003π-0.552003\pi
−0.162645 + 0.986685i 0.552003π0.552003\pi
4444 −0.133074 −0.0200617
4545 0 0
4646 −7.30252 −1.07670
4747 6.64766 0.969661 0.484831 0.874608i 0.338881π-0.338881\pi
0.484831 + 0.874608i 0.338881π0.338881\pi
4848 0 0
4949 −5.02198 −0.717426
5050 −16.7017 −2.36198
5151 0 0
5252 −0.859728 −0.119223
5353 −9.16225 −1.25853 −0.629266 0.777190i 0.716644π-0.716644\pi
−0.629266 + 0.777190i 0.716644π0.716644\pi
5454 0 0
5555 −4.05408 −0.546653
5656 −3.83482 −0.512450
5757 0 0
5858 −14.9679 −1.96538
5959 1.78074 0.231832 0.115916 0.993259i 0.463020π-0.463020\pi
0.115916 + 0.993259i 0.463020π0.463020\pi
6060 0 0
6161 0.975094 0.124848 0.0624240 0.998050i 0.480117π-0.480117\pi
0.0624240 + 0.998050i 0.480117π0.480117\pi
6262 −10.7017 −1.35912
6363 0 0
6464 7.39922 0.924903
6565 −26.1914 −3.24865
6666 0 0
6767 1.91381 0.233809 0.116905 0.993143i 0.462703π-0.462703\pi
0.116905 + 0.993143i 0.462703π0.462703\pi
6868 −0.583068 −0.0707074
6969 0 0
7070 8.32743 0.995318
7171 9.46050 1.12276 0.561378 0.827560i 0.310272π-0.310272\pi
0.561378 + 0.827560i 0.310272π0.310272\pi
7272 0 0
7373 4.64766 0.543968 0.271984 0.962302i 0.412320π-0.412320\pi
0.271984 + 0.962302i 0.412320π0.412320\pi
7474 −7.84922 −0.912453
7575 0 0
7676 −0.133074 −0.0152647
7777 1.40642 0.160277
7878 0 0
7979 15.0364 1.69172 0.845862 0.533401i 0.179086π-0.179086\pi
0.845862 + 0.533401i 0.179086π0.179086\pi
8080 −17.2235 −1.92565
8181 0 0
8282 −3.59358 −0.396844
8383 9.08326 0.997018 0.498509 0.866885i 0.333881π-0.333881\pi
0.498509 + 0.866885i 0.333881π0.333881\pi
8484 0 0
8585 −17.7630 −1.92667
8686 3.11537 0.335939
8787 0 0
8888 −2.72665 −0.290662
8989 7.32743 0.776706 0.388353 0.921511i 0.373044π-0.373044\pi
0.388353 + 0.921511i 0.373044π0.373044\pi
9090 0 0
9191 9.08619 0.952491
9292 0.665372 0.0693699
9393 0 0
9494 −9.70895 −1.00140
9595 −4.05408 −0.415940
9696 0 0
9797 8.35661 0.848485 0.424243 0.905549i 0.360540π-0.360540\pi
0.424243 + 0.905549i 0.360540π0.360540\pi
9898 7.33463 0.740909
9999 0 0
100100 1.52179 0.152179
101101 −4.05408 −0.403396 −0.201698 0.979448i 0.564646π-0.564646\pi
−0.201698 + 0.979448i 0.564646π0.564646\pi
102102 0 0
103103 −13.0761 −1.28842 −0.644211 0.764847i 0.722814π-0.722814\pi
−0.644211 + 0.764847i 0.722814π0.722814\pi
104104 −17.6156 −1.72735
105105 0 0
106106 13.3815 1.29973
107107 13.5146 1.30650 0.653252 0.757140i 0.273404π-0.273404\pi
0.653252 + 0.757140i 0.273404π0.273404\pi
108108 0 0
109109 −8.78074 −0.841042 −0.420521 0.907283i 0.638153π-0.638153\pi
−0.420521 + 0.907283i 0.638153π0.638153\pi
110110 5.92101 0.564546
111111 0 0
112112 5.97509 0.564593
113113 9.34941 0.879519 0.439759 0.898116i 0.355064π-0.355064\pi
0.439759 + 0.898116i 0.355064π0.355064\pi
114114 0 0
115115 20.2704 1.89023
116116 1.36381 0.126626
117117 0 0
118118 −2.60078 −0.239421
119119 6.16225 0.564893
120120 0 0
121121 1.00000 0.0909091
122122 −1.42413 −0.128935
123123 0 0
124124 0.975094 0.0875660
125125 26.0905 2.33360
126126 0 0
127127 −12.5438 −1.11308 −0.556540 0.830821i 0.687871π-0.687871\pi
−0.556540 + 0.830821i 0.687871π0.687871\pi
128128 −12.3097 −1.08804
129129 0 0
130130 38.2527 3.35498
131131 20.0584 1.75251 0.876253 0.481851i 0.160035π-0.160035\pi
0.876253 + 0.481851i 0.160035π0.160035\pi
132132 0 0
133133 1.40642 0.121952
134134 −2.79513 −0.241463
135135 0 0
136136 −11.9469 −1.02444
137137 −6.34941 −0.542467 −0.271233 0.962514i 0.587432π-0.587432\pi
−0.271233 + 0.962514i 0.587432π0.587432\pi
138138 0 0
139139 −12.7558 −1.08194 −0.540968 0.841043i 0.681942π-0.681942\pi
−0.540968 + 0.841043i 0.681942π0.681942\pi
140140 −0.758757 −0.0641267
141141 0 0
142142 −13.8171 −1.15951
143143 6.46050 0.540255
144144 0 0
145145 41.5480 3.45038
146146 −6.78794 −0.561774
147147 0 0
148148 0.715184 0.0587878
149149 −12.4605 −1.02080 −0.510402 0.859936i 0.670503π-0.670503\pi
−0.510402 + 0.859936i 0.670503π0.670503\pi
150150 0 0
151151 18.6156 1.51491 0.757456 0.652886i 0.226442π-0.226442\pi
0.757456 + 0.652886i 0.226442π0.226442\pi
152152 −2.72665 −0.221161
153153 0 0
154154 −2.05408 −0.165523
155155 29.7060 2.38604
156156 0 0
157157 −22.6768 −1.80981 −0.904904 0.425615i 0.860058π-0.860058\pi
−0.904904 + 0.425615i 0.860058π0.860058\pi
158158 −21.9607 −1.74710
159159 0 0
160160 3.04689 0.240878
161161 −7.03210 −0.554207
162162 0 0
163163 −5.35661 −0.419562 −0.209781 0.977748i 0.567275π-0.567275\pi
−0.209781 + 0.977748i 0.567275π0.567275\pi
164164 0.327430 0.0255680
165165 0 0
166166 −13.2661 −1.02965
167167 −2.05408 −0.158950 −0.0794749 0.996837i 0.525324π-0.525324\pi
−0.0794749 + 0.996837i 0.525324π0.525324\pi
168168 0 0
169169 28.7381 2.21062
170170 25.9430 1.98974
171171 0 0
172172 −0.283858 −0.0216440
173173 19.1623 1.45688 0.728440 0.685110i 0.240246π-0.240246\pi
0.728440 + 0.685110i 0.240246π0.240246\pi
174174 0 0
175175 −16.0833 −1.21578
176176 4.24844 0.320238
177177 0 0
178178 −10.7017 −0.802130
179179 −19.7017 −1.47258 −0.736289 0.676667i 0.763424π-0.763424\pi
−0.736289 + 0.676667i 0.763424π0.763424\pi
180180 0 0
181181 −12.6768 −0.942262 −0.471131 0.882063i 0.656154π-0.656154\pi
−0.471131 + 0.882063i 0.656154π0.656154\pi
182182 −13.2704 −0.983669
183183 0 0
184184 13.6333 1.00506
185185 21.7879 1.60188
186186 0 0
187187 4.38151 0.320408
188188 0.884634 0.0645186
189189 0 0
190190 5.92101 0.429555
191191 2.56440 0.185554 0.0927768 0.995687i 0.470426π-0.470426\pi
0.0927768 + 0.995687i 0.470426π0.470426\pi
192192 0 0
193193 11.6185 0.836317 0.418158 0.908374i 0.362676π-0.362676\pi
0.418158 + 0.908374i 0.362676π0.362676\pi
194194 −12.2049 −0.876258
195195 0 0
196196 −0.668297 −0.0477355
197197 −12.3887 −0.882659 −0.441330 0.897345i 0.645493π-0.645493\pi
−0.441330 + 0.897345i 0.645493π0.645493\pi
198198 0 0
199199 8.67977 0.615292 0.307646 0.951501i 0.400459π-0.400459\pi
0.307646 + 0.951501i 0.400459π0.400459\pi
200200 31.1809 2.20482
201201 0 0
202202 5.92101 0.416601
203203 −14.4136 −1.01164
204204 0 0
205205 9.97509 0.696691
206206 19.0977 1.33060
207207 0 0
208208 27.4471 1.90311
209209 1.00000 0.0691714
210210 0 0
211211 14.5366 1.00074 0.500369 0.865812i 0.333198π-0.333198\pi
0.500369 + 0.865812i 0.333198π0.333198\pi
212212 −1.21926 −0.0837393
213213 0 0
214214 −19.7381 −1.34927
215215 −8.64766 −0.589766
216216 0 0
217217 −10.3054 −0.699579
218218 12.8243 0.868572
219219 0 0
220220 −0.539495 −0.0363728
221221 28.3068 1.90412
222222 0 0
223223 7.37432 0.493821 0.246910 0.969038i 0.420585π-0.420585\pi
0.246910 + 0.969038i 0.420585π0.420585\pi
224224 −1.05701 −0.0706244
225225 0 0
226226 −13.6549 −0.908308
227227 10.7807 0.715543 0.357771 0.933809i 0.383537π-0.383537\pi
0.357771 + 0.933809i 0.383537π0.383537\pi
228228 0 0
229229 5.38871 0.356096 0.178048 0.984022i 0.443022π-0.443022\pi
0.178048 + 0.984022i 0.443022π0.443022\pi
230230 −29.6050 −1.95210
231231 0 0
232232 27.9439 1.83461
233233 −3.47821 −0.227865 −0.113933 0.993488i 0.536345π-0.536345\pi
−0.113933 + 0.993488i 0.536345π0.536345\pi
234234 0 0
235235 26.9502 1.75804
236236 0.236971 0.0154255
237237 0 0
238238 −9.00000 −0.583383
239239 −9.99707 −0.646657 −0.323329 0.946287i 0.604802π-0.604802\pi
−0.323329 + 0.946287i 0.604802π0.604802\pi
240240 0 0
241241 −7.25564 −0.467377 −0.233688 0.972312i 0.575080π-0.575080\pi
−0.233688 + 0.972312i 0.575080π0.575080\pi
242242 −1.46050 −0.0938848
243243 0 0
244244 0.129760 0.00830704
245245 −20.3595 −1.30072
246246 0 0
247247 6.46050 0.411072
248248 19.9794 1.26869
249249 0 0
250250 −38.1052 −2.40999
251251 −4.14786 −0.261810 −0.130905 0.991395i 0.541788π-0.541788\pi
−0.130905 + 0.991395i 0.541788π0.541788\pi
252252 0 0
253253 −5.00000 −0.314347
254254 18.3202 1.14951
255255 0 0
256256 3.17996 0.198748
257257 19.9722 1.24583 0.622915 0.782290i 0.285948π-0.285948\pi
0.622915 + 0.782290i 0.285948π0.285948\pi
258258 0 0
259259 −7.55855 −0.469666
260260 −3.48541 −0.216156
261261 0 0
262262 −29.2953 −1.80987
263263 5.37724 0.331575 0.165787 0.986162i 0.446983π-0.446983\pi
0.165787 + 0.986162i 0.446983π0.446983\pi
264264 0 0
265265 −37.1445 −2.28177
266266 −2.05408 −0.125944
267267 0 0
268268 0.254680 0.0155570
269269 −3.74863 −0.228558 −0.114279 0.993449i 0.536456π-0.536456\pi
−0.114279 + 0.993449i 0.536456π0.536456\pi
270270 0 0
271271 1.00720 0.0611829 0.0305914 0.999532i 0.490261π-0.490261\pi
0.0305914 + 0.999532i 0.490261π0.490261\pi
272272 18.6146 1.12868
273273 0 0
274274 9.27335 0.560223
275275 −11.4356 −0.689593
276276 0 0
277277 −11.6726 −0.701337 −0.350668 0.936500i 0.614046π-0.614046\pi
−0.350668 + 0.936500i 0.614046π0.614046\pi
278278 18.6300 1.11735
279279 0 0
280280 −15.5467 −0.929093
281281 3.78794 0.225969 0.112985 0.993597i 0.463959π-0.463959\pi
0.112985 + 0.993597i 0.463959π0.463959\pi
282282 0 0
283283 −8.70895 −0.517693 −0.258847 0.965918i 0.583342π-0.583342\pi
−0.258847 + 0.965918i 0.583342π0.583342\pi
284284 1.25895 0.0747050
285285 0 0
286286 −9.43560 −0.557939
287287 −3.46050 −0.204267
288288 0 0
289289 2.19767 0.129275
290290 −60.6811 −3.56332
291291 0 0
292292 0.618485 0.0361941
293293 2.32316 0.135720 0.0678602 0.997695i 0.478383π-0.478383\pi
0.0678602 + 0.997695i 0.478383π0.478383\pi
294294 0 0
295295 7.21926 0.420322
296296 14.6539 0.851741
297297 0 0
298298 18.1986 1.05422
299299 −32.3025 −1.86810
300300 0 0
301301 3.00000 0.172917
302302 −27.1881 −1.56450
303303 0 0
304304 4.24844 0.243665
305305 3.95311 0.226355
306306 0 0
307307 1.86693 0.106551 0.0532755 0.998580i 0.483034π-0.483034\pi
0.0532755 + 0.998580i 0.483034π0.483034\pi
308308 0.187159 0.0106644
309309 0 0
310310 −43.3858 −2.46415
311311 −8.02198 −0.454885 −0.227442 0.973792i 0.573036π-0.573036\pi
−0.227442 + 0.973792i 0.573036π0.573036\pi
312312 0 0
313313 −5.07179 −0.286675 −0.143337 0.989674i 0.545783π-0.545783\pi
−0.143337 + 0.989674i 0.545783π0.545783\pi
314314 33.1196 1.86905
315315 0 0
316316 2.00096 0.112563
317317 −22.4428 −1.26051 −0.630257 0.776387i 0.717050π-0.717050\pi
−0.630257 + 0.776387i 0.717050π0.717050\pi
318318 0 0
319319 −10.2484 −0.573802
320320 29.9971 1.67689
321321 0 0
322322 10.2704 0.572348
323323 4.38151 0.243794
324324 0 0
325325 −73.8797 −4.09811
326326 7.82335 0.433295
327327 0 0
328328 6.70895 0.370440
329329 −9.34941 −0.515450
330330 0 0
331331 9.16225 0.503603 0.251801 0.967779i 0.418977π-0.418977\pi
0.251801 + 0.967779i 0.418977π0.418977\pi
332332 1.20875 0.0663388
333333 0 0
334334 3.00000 0.164153
335335 7.75876 0.423906
336336 0 0
337337 21.0220 1.14514 0.572570 0.819856i 0.305946π-0.305946\pi
0.572570 + 0.819856i 0.305946π0.305946\pi
338338 −41.9722 −2.28299
339339 0 0
340340 −2.36381 −0.128195
341341 −7.32743 −0.396803
342342 0 0
343343 16.9080 0.912944
344344 −5.81616 −0.313586
345345 0 0
346346 −27.9866 −1.50457
347347 −1.90662 −0.102352 −0.0511762 0.998690i 0.516297π-0.516297\pi
−0.0511762 + 0.998690i 0.516297π0.516297\pi
348348 0 0
349349 −20.0862 −1.07519 −0.537594 0.843204i 0.680667π-0.680667\pi
−0.537594 + 0.843204i 0.680667π0.680667\pi
350350 23.4897 1.25558
351351 0 0
352352 −0.751560 −0.0400583
353353 10.3858 0.552780 0.276390 0.961046i 0.410862π-0.410862\pi
0.276390 + 0.961046i 0.410862π0.410862\pi
354354 0 0
355355 38.3537 2.03560
356356 0.975094 0.0516799
357357 0 0
358358 28.7745 1.52078
359359 22.9354 1.21048 0.605242 0.796041i 0.293076π-0.293076\pi
0.605242 + 0.796041i 0.293076π0.293076\pi
360360 0 0
361361 1.00000 0.0526316
362362 18.5146 0.973105
363363 0 0
364364 1.20914 0.0633761
365365 18.8420 0.986236
366366 0 0
367367 14.6624 0.765374 0.382687 0.923878i 0.374999π-0.374999\pi
0.382687 + 0.923878i 0.374999π0.374999\pi
368368 −21.2422 −1.10733
369369 0 0
370370 −31.8214 −1.65432
371371 12.8860 0.669007
372372 0 0
373373 −24.3786 −1.26228 −0.631138 0.775671i 0.717412π-0.717412\pi
−0.631138 + 0.775671i 0.717412π0.717412\pi
374374 −6.39922 −0.330896
375375 0 0
376376 18.1259 0.934771
377377 −66.2101 −3.40999
378378 0 0
379379 0.0861875 0.00442715 0.00221358 0.999998i 0.499295π-0.499295\pi
0.00221358 + 0.999998i 0.499295π0.499295\pi
380380 −0.539495 −0.0276755
381381 0 0
382382 −3.74532 −0.191627
383383 −26.6840 −1.36349 −0.681745 0.731590i 0.738779π-0.738779\pi
−0.681745 + 0.731590i 0.738779π0.738779\pi
384384 0 0
385385 5.70175 0.290588
386386 −16.9689 −0.863692
387387 0 0
388388 1.11205 0.0564559
389389 −10.3317 −0.523838 −0.261919 0.965090i 0.584355π-0.584355\pi
−0.261919 + 0.965090i 0.584355π0.584355\pi
390390 0 0
391391 −21.9076 −1.10791
392392 −13.6932 −0.691611
393393 0 0
394394 18.0938 0.911551
395395 60.9587 3.06717
396396 0 0
397397 21.5801 1.08308 0.541538 0.840676i 0.317842π-0.317842\pi
0.541538 + 0.840676i 0.317842π0.317842\pi
398398 −12.6768 −0.635433
399399 0 0
400400 −48.5835 −2.42917
401401 22.8597 1.14156 0.570780 0.821103i 0.306641π-0.306641\pi
0.570780 + 0.821103i 0.306641π0.306641\pi
402402 0 0
403403 −47.3389 −2.35812
404404 −0.539495 −0.0268409
405405 0 0
406406 21.0512 1.04475
407407 −5.37432 −0.266395
408408 0 0
409409 −36.9794 −1.82851 −0.914256 0.405137i 0.867224π-0.867224\pi
−0.914256 + 0.405137i 0.867224π0.867224\pi
410410 −14.5687 −0.719495
411411 0 0
412412 −1.74009 −0.0857281
413413 −2.50447 −0.123237
414414 0 0
415415 36.8243 1.80763
416416 −4.85546 −0.238058
417417 0 0
418418 −1.46050 −0.0714356
419419 −24.5586 −1.19976 −0.599882 0.800089i 0.704786π-0.704786\pi
−0.599882 + 0.800089i 0.704786π0.704786\pi
420420 0 0
421421 31.4399 1.53229 0.766143 0.642670i 0.222174π-0.222174\pi
0.766143 + 0.642670i 0.222174π0.222174\pi
422422 −21.2307 −1.03350
423423 0 0
424424 −24.9823 −1.21325
425425 −50.1052 −2.43046
426426 0 0
427427 −1.37139 −0.0663663
428428 1.79845 0.0869312
429429 0 0
430430 12.6300 0.609071
431431 14.5045 0.698656 0.349328 0.937001i 0.386410π-0.386410\pi
0.349328 + 0.937001i 0.386410π0.386410\pi
432432 0 0
433433 −28.9253 −1.39006 −0.695030 0.718981i 0.744609π-0.744609\pi
−0.695030 + 0.718981i 0.744609π0.744609\pi
434434 15.0512 0.722479
435435 0 0
436436 −1.16849 −0.0559606
437437 −5.00000 −0.239182
438438 0 0
439439 12.8492 0.613260 0.306630 0.951829i 0.400799π-0.400799\pi
0.306630 + 0.951829i 0.400799π0.400799\pi
440440 −11.0541 −0.526983
441441 0 0
442442 −41.3422 −1.96645
443443 35.1301 1.66908 0.834542 0.550945i 0.185732π-0.185732\pi
0.834542 + 0.550945i 0.185732π0.185732\pi
444444 0 0
445445 29.7060 1.40820
446446 −10.7702 −0.509985
447447 0 0
448448 −10.4064 −0.491657
449449 33.0584 1.56012 0.780060 0.625705i 0.215188π-0.215188\pi
0.780060 + 0.625705i 0.215188π0.215188\pi
450450 0 0
451451 −2.46050 −0.115861
452452 1.24417 0.0585207
453453 0 0
454454 −15.7453 −0.738965
455455 36.8362 1.72691
456456 0 0
457457 −31.8932 −1.49190 −0.745950 0.666002i 0.768004π-0.768004\pi
−0.745950 + 0.666002i 0.768004π0.768004\pi
458458 −7.87024 −0.367752
459459 0 0
460460 2.69748 0.125770
461461 −13.4926 −0.628413 −0.314207 0.949355i 0.601738π-0.601738\pi
−0.314207 + 0.949355i 0.601738π0.601738\pi
462462 0 0
463463 10.8525 0.504360 0.252180 0.967680i 0.418853π-0.418853\pi
0.252180 + 0.967680i 0.418853π0.418853\pi
464464 −43.5399 −2.02129
465465 0 0
466466 5.07995 0.235324
467467 14.1872 0.656503 0.328252 0.944590i 0.393541π-0.393541\pi
0.328252 + 0.944590i 0.393541π0.393541\pi
468468 0 0
469469 −2.69163 −0.124288
470470 −39.3609 −1.81558
471471 0 0
472472 4.85546 0.223490
473473 2.13307 0.0980789
474474 0 0
475475 −11.4356 −0.524701
476476 0.820039 0.0375864
477477 0 0
478478 14.6008 0.667824
479479 6.55428 0.299473 0.149736 0.988726i 0.452158π-0.452158\pi
0.149736 + 0.988726i 0.452158π0.452158\pi
480480 0 0
481481 −34.7208 −1.58313
482482 10.5969 0.482675
483483 0 0
484484 0.133074 0.00604884
485485 33.8784 1.53834
486486 0 0
487487 39.0833 1.77103 0.885516 0.464609i 0.153805π-0.153805\pi
0.885516 + 0.464609i 0.153805π0.153805\pi
488488 2.65874 0.120356
489489 0 0
490490 29.7352 1.34330
491491 16.2163 0.731833 0.365917 0.930648i 0.380756π-0.380756\pi
0.365917 + 0.930648i 0.380756π0.380756\pi
492492 0 0
493493 −44.9037 −2.02236
494494 −9.43560 −0.424528
495495 0 0
496496 −31.1301 −1.39778
497497 −13.3054 −0.596831
498498 0 0
499499 30.9866 1.38715 0.693575 0.720385i 0.256035π-0.256035\pi
0.693575 + 0.720385i 0.256035π0.256035\pi
500500 3.47197 0.155271
501501 0 0
502502 6.05797 0.270380
503503 −2.57918 −0.115000 −0.0575001 0.998346i 0.518313π-0.518313\pi
−0.0575001 + 0.998346i 0.518313π0.518313\pi
504504 0 0
505505 −16.4356 −0.731375
506506 7.30252 0.324637
507507 0 0
508508 −1.66926 −0.0740612
509509 −20.3959 −0.904033 −0.452016 0.892010i 0.649295π-0.649295\pi
−0.452016 + 0.892010i 0.649295π0.649295\pi
510510 0 0
511511 −6.53657 −0.289161
512512 19.9751 0.882783
513513 0 0
514514 −29.1694 −1.28661
515515 −53.0115 −2.33596
516516 0 0
517517 −6.64766 −0.292364
518518 11.0393 0.485039
519519 0 0
520520 −71.4150 −3.13175
521521 −31.8607 −1.39584 −0.697921 0.716175i 0.745891π-0.745891\pi
−0.697921 + 0.716175i 0.745891π0.745891\pi
522522 0 0
523523 5.01478 0.219281 0.109641 0.993971i 0.465030π-0.465030\pi
0.109641 + 0.993971i 0.465030π0.465030\pi
524524 2.66926 0.116607
525525 0 0
526526 −7.85349 −0.342428
527527 −32.1052 −1.39853
528528 0 0
529529 2.00000 0.0869565
530530 54.2498 2.35646
531531 0 0
532532 0.187159 0.00811436
533533 −15.8961 −0.688537
534534 0 0
535535 54.7893 2.36875
536536 5.21830 0.225396
537537 0 0
538538 5.47490 0.236040
539539 5.02198 0.216312
540540 0 0
541541 5.80857 0.249730 0.124865 0.992174i 0.460150π-0.460150\pi
0.124865 + 0.992174i 0.460150π0.460150\pi
542542 −1.47102 −0.0631856
543543 0 0
544544 −3.29297 −0.141185
545545 −35.5979 −1.52484
546546 0 0
547547 −31.1019 −1.32982 −0.664911 0.746922i 0.731531π-0.731531\pi
−0.664911 + 0.746922i 0.731531π0.731531\pi
548548 −0.844945 −0.0360942
549549 0 0
550550 16.7017 0.712165
551551 −10.2484 −0.436598
552552 0 0
553553 −21.1475 −0.899282
554554 17.0478 0.724294
555555 0 0
556556 −1.69748 −0.0719890
557557 8.32743 0.352845 0.176422 0.984315i 0.443548π-0.443548\pi
0.176422 + 0.984315i 0.443548π0.443548\pi
558558 0 0
559559 13.7807 0.582863
560560 24.2235 1.02363
561561 0 0
562562 −5.53230 −0.233366
563563 −28.9502 −1.22010 −0.610052 0.792361i 0.708852π-0.708852\pi
−0.610052 + 0.792361i 0.708852π0.708852\pi
564564 0 0
565565 37.9033 1.59460
566566 12.7195 0.534639
567567 0 0
568568 25.7955 1.08236
569569 21.6693 0.908422 0.454211 0.890894i 0.349921π-0.349921\pi
0.454211 + 0.890894i 0.349921π0.349921\pi
570570 0 0
571571 10.8391 0.453602 0.226801 0.973941i 0.427173π-0.427173\pi
0.226801 + 0.973941i 0.427173π0.427173\pi
572572 0.859728 0.0359470
573573 0 0
574574 5.05408 0.210953
575575 57.1780 2.38449
576576 0 0
577577 −28.9282 −1.20430 −0.602149 0.798384i 0.705688π-0.705688\pi
−0.602149 + 0.798384i 0.705688π0.705688\pi
578578 −3.20971 −0.133506
579579 0 0
580580 5.52898 0.229579
581581 −12.7749 −0.529992
582582 0 0
583583 9.16225 0.379462
584584 12.6726 0.524395
585585 0 0
586586 −3.39298 −0.140163
587587 −38.3360 −1.58230 −0.791148 0.611625i 0.790516π-0.790516\pi
−0.791148 + 0.611625i 0.790516π0.790516\pi
588588 0 0
589589 −7.32743 −0.301922
590590 −10.5438 −0.434080
591591 0 0
592592 −22.8325 −0.938409
593593 10.8918 0.447274 0.223637 0.974673i 0.428207π-0.428207\pi
0.223637 + 0.974673i 0.428207π0.428207\pi
594594 0 0
595595 24.9823 1.02417
596596 −1.65818 −0.0679215
597597 0 0
598598 47.1780 1.92925
599599 −27.5831 −1.12701 −0.563507 0.826111i 0.690548π-0.690548\pi
−0.563507 + 0.826111i 0.690548π0.690548\pi
600600 0 0
601601 23.6663 0.965370 0.482685 0.875794i 0.339662π-0.339662\pi
0.482685 + 0.875794i 0.339662π0.339662\pi
602602 −4.38151 −0.178577
603603 0 0
604604 2.47726 0.100798
605605 4.05408 0.164822
606606 0 0
607607 −30.0364 −1.21914 −0.609569 0.792733i 0.708658π-0.708658\pi
−0.609569 + 0.792733i 0.708658π0.708658\pi
608608 −0.751560 −0.0304798
609609 0 0
610610 −5.77354 −0.233764
611611 −42.9473 −1.73746
612612 0 0
613613 21.6477 0.874341 0.437170 0.899379i 0.355981π-0.355981\pi
0.437170 + 0.899379i 0.355981π0.355981\pi
614614 −2.72665 −0.110039
615615 0 0
616616 3.83482 0.154509
617617 −43.3402 −1.74481 −0.872406 0.488781i 0.837442π-0.837442\pi
−0.872406 + 0.488781i 0.837442π0.837442\pi
618618 0 0
619619 19.9387 0.801405 0.400702 0.916208i 0.368766π-0.368766\pi
0.400702 + 0.916208i 0.368766π0.368766\pi
620620 3.95311 0.158761
621621 0 0
622622 11.7161 0.469775
623623 −10.3054 −0.412879
624624 0 0
625625 48.5949 1.94380
626626 7.40738 0.296058
627627 0 0
628628 −3.01771 −0.120420
629629 −23.5477 −0.938906
630630 0 0
631631 −17.8712 −0.711441 −0.355721 0.934592i 0.615765π-0.615765\pi
−0.355721 + 0.934592i 0.615765π0.615765\pi
632632 40.9990 1.63085
633633 0 0
634634 32.7778 1.30177
635635 −50.8535 −2.01806
636636 0 0
637637 32.4445 1.28550
638638 14.9679 0.592585
639639 0 0
640640 −49.9046 −1.97265
641641 −22.6372 −0.894114 −0.447057 0.894506i 0.647528π-0.647528\pi
−0.447057 + 0.894506i 0.647528π0.647528\pi
642642 0 0
643643 −6.80272 −0.268273 −0.134137 0.990963i 0.542826π-0.542826\pi
−0.134137 + 0.990963i 0.542826π0.542826\pi
644644 −0.935793 −0.0368754
645645 0 0
646646 −6.39922 −0.251774
647647 −38.0010 −1.49397 −0.746986 0.664840i 0.768500π-0.768500\pi
−0.746986 + 0.664840i 0.768500π0.768500\pi
648648 0 0
649649 −1.78074 −0.0699001
650650 107.902 4.23225
651651 0 0
652652 −0.712828 −0.0279165
653653 27.5395 1.07770 0.538852 0.842401i 0.318858π-0.318858\pi
0.538852 + 0.842401i 0.318858π0.318858\pi
654654 0 0
655655 81.3183 3.17737
656656 −10.4533 −0.408133
657657 0 0
658658 13.6549 0.532322
659659 23.9473 0.932853 0.466426 0.884560i 0.345541π-0.345541\pi
0.466426 + 0.884560i 0.345541π0.345541\pi
660660 0 0
661661 16.3202 0.634783 0.317392 0.948295i 0.397193π-0.397193\pi
0.317392 + 0.948295i 0.397193π0.397193\pi
662662 −13.3815 −0.520087
663663 0 0
664664 24.7669 0.961143
665665 5.70175 0.221104
666666 0 0
667667 51.2422 1.98411
668668 −0.273346 −0.0105761
669669 0 0
670670 −11.3317 −0.437782
671671 −0.975094 −0.0376431
672672 0 0
673673 −11.8306 −0.456034 −0.228017 0.973657i 0.573224π-0.573224\pi
−0.228017 + 0.973657i 0.573224π0.573224\pi
674674 −30.7027 −1.18262
675675 0 0
676676 3.82431 0.147089
677677 13.6874 0.526048 0.263024 0.964789i 0.415280π-0.415280\pi
0.263024 + 0.964789i 0.415280π0.415280\pi
678678 0 0
679679 −11.7529 −0.451035
680680 −48.4336 −1.85734
681681 0 0
682682 10.7017 0.409791
683683 18.5582 0.710108 0.355054 0.934846i 0.384462π-0.384462\pi
0.355054 + 0.934846i 0.384462π0.384462\pi
684684 0 0
685685 −25.7410 −0.983515
686686 −24.6942 −0.942827
687687 0 0
688688 9.06224 0.345495
689689 59.1928 2.25507
690690 0 0
691691 1.23990 0.0471679 0.0235839 0.999722i 0.492492π-0.492492\pi
0.0235839 + 0.999722i 0.492492π0.492492\pi
692692 2.55001 0.0969367
693693 0 0
694694 2.78462 0.105703
695695 −51.7132 −1.96159
696696 0 0
697697 −10.7807 −0.408350
698698 29.3360 1.11038
699699 0 0
700700 −2.14027 −0.0808947
701701 −2.47821 −0.0936008 −0.0468004 0.998904i 0.514902π-0.514902\pi
−0.0468004 + 0.998904i 0.514902π0.514902\pi
702702 0 0
703703 −5.37432 −0.202696
704704 −7.39922 −0.278869
705705 0 0
706706 −15.1685 −0.570874
707707 5.70175 0.214436
708708 0 0
709709 −33.7745 −1.26843 −0.634214 0.773158i 0.718676π-0.718676\pi
−0.634214 + 0.773158i 0.718676π0.718676\pi
710710 −56.0157 −2.10223
711711 0 0
712712 19.9794 0.748758
713713 36.6372 1.37207
714714 0 0
715715 26.1914 0.979504
716716 −2.62180 −0.0979813
717717 0 0
718718 −33.4973 −1.25011
719719 −16.7601 −0.625046 −0.312523 0.949910i 0.601174π-0.601174\pi
−0.312523 + 0.949910i 0.601174π0.601174\pi
720720 0 0
721721 18.3904 0.684896
722722 −1.46050 −0.0543544
723723 0 0
724724 −1.68696 −0.0626955
725725 117.197 4.35259
726726 0 0
727727 24.5586 0.910826 0.455413 0.890280i 0.349492π-0.349492\pi
0.455413 + 0.890280i 0.349492π0.349492\pi
728728 24.7749 0.918218
729729 0 0
730730 −27.5189 −1.01852
731731 9.34610 0.345678
732732 0 0
733733 −24.8056 −0.916217 −0.458109 0.888896i 0.651473π-0.651473\pi
−0.458109 + 0.888896i 0.651473π0.651473\pi
734734 −21.4146 −0.790426
735735 0 0
736736 3.75780 0.138514
737737 −1.91381 −0.0704962
738738 0 0
739739 19.4792 0.716553 0.358276 0.933616i 0.383365π-0.383365\pi
0.358276 + 0.933616i 0.383365π0.383365\pi
740740 2.89942 0.106585
741741 0 0
742742 −18.8200 −0.690905
743743 −27.3858 −1.00469 −0.502344 0.864668i 0.667529π-0.667529\pi
−0.502344 + 0.864668i 0.667529π0.667529\pi
744744 0 0
745745 −50.5159 −1.85076
746746 35.6050 1.30359
747747 0 0
748748 0.583068 0.0213191
749749 −19.0072 −0.694508
750750 0 0
751751 −25.2924 −0.922933 −0.461466 0.887158i 0.652677π-0.652677\pi
−0.461466 + 0.887158i 0.652677π0.652677\pi
752752 −28.2422 −1.02989
753753 0 0
754754 96.7002 3.52161
755755 75.4690 2.74660
756756 0 0
757757 −41.9646 −1.52523 −0.762614 0.646853i 0.776085π-0.776085\pi
−0.762614 + 0.646853i 0.776085π0.776085\pi
758758 −0.125877 −0.00457207
759759 0 0
760760 −11.0541 −0.400974
761761 33.9866 1.23201 0.616006 0.787741i 0.288750π-0.288750\pi
0.616006 + 0.787741i 0.288750π0.288750\pi
762762 0 0
763763 12.3494 0.447079
764764 0.341256 0.0123462
765765 0 0
766766 38.9722 1.40812
767767 −11.5045 −0.415402
768768 0 0
769769 −20.1039 −0.724965 −0.362483 0.931991i 0.618071π-0.618071\pi
−0.362483 + 0.931991i 0.618071π0.618071\pi
770770 −8.32743 −0.300100
771771 0 0
772772 1.54612 0.0556462
773773 44.3753 1.59607 0.798034 0.602613i 0.205874π-0.205874\pi
0.798034 + 0.602613i 0.205874π0.205874\pi
774774 0 0
775775 83.7936 3.00995
776776 22.7856 0.817955
777777 0 0
778778 15.0895 0.540985
779779 −2.46050 −0.0881567
780780 0 0
781781 −9.46050 −0.338523
782782 31.9961 1.14418
783783 0 0
784784 21.3356 0.761985
785785 −91.9338 −3.28126
786786 0 0
787787 −28.7103 −1.02341 −0.511706 0.859161i 0.670986π-0.670986\pi
−0.511706 + 0.859161i 0.670986π0.670986\pi
788788 −1.64862 −0.0587297
789789 0 0
790790 −89.0305 −3.16756
791791 −13.1492 −0.467532
792792 0 0
793793 −6.29960 −0.223705
794794 −31.5179 −1.11853
795795 0 0
796796 1.15506 0.0409399
797797 9.82004 0.347844 0.173922 0.984759i 0.444356π-0.444356\pi
0.173922 + 0.984759i 0.444356π0.444356\pi
798798 0 0
799799 −29.1268 −1.03043
800800 8.59454 0.303863
801801 0 0
802802 −33.3867 −1.17893
803803 −4.64766 −0.164012
804804 0 0
805805 −28.5087 −1.00480
806806 69.1387 2.43531
807807 0 0
808808 −11.0541 −0.388881
809809 −55.9368 −1.96663 −0.983316 0.181907i 0.941773π-0.941773\pi
−0.983316 + 0.181907i 0.941773π0.941773\pi
810810 0 0
811811 4.70175 0.165101 0.0825503 0.996587i 0.473693π-0.473693\pi
0.0825503 + 0.996587i 0.473693π0.473693\pi
812812 −1.91808 −0.0673116
813813 0 0
814814 7.84922 0.275115
815815 −21.7161 −0.760683
816816 0 0
817817 2.13307 0.0746268
818818 54.0085 1.88836
819819 0 0
820820 1.32743 0.0463559
821821 −14.3274 −0.500031 −0.250015 0.968242i 0.580436π-0.580436\pi
−0.250015 + 0.968242i 0.580436π0.580436\pi
822822 0 0
823823 −5.83482 −0.203389 −0.101695 0.994816i 0.532426π-0.532426\pi
−0.101695 + 0.994816i 0.532426π0.532426\pi
824824 −35.6539 −1.24206
825825 0 0
826826 3.65779 0.127271
827827 −36.8784 −1.28239 −0.641194 0.767379i 0.721560π-0.721560\pi
−0.641194 + 0.767379i 0.721560π0.721560\pi
828828 0 0
829829 −8.00720 −0.278101 −0.139051 0.990285i 0.544405π-0.544405\pi
−0.139051 + 0.990285i 0.544405π0.544405\pi
830830 −53.7821 −1.86680
831831 0 0
832832 −47.8027 −1.65726
833833 22.0039 0.762389
834834 0 0
835835 −8.32743 −0.288183
836836 0.133074 0.00460248
837837 0 0
838838 35.8679 1.23904
839839 20.0029 0.690578 0.345289 0.938496i 0.387781π-0.387781\pi
0.345289 + 0.938496i 0.387781π0.387781\pi
840840 0 0
841841 76.0305 2.62174
842842 −45.9181 −1.58244
843843 0 0
844844 1.93445 0.0665864
845845 116.507 4.00795
846846 0 0
847847 −1.40642 −0.0483252
848848 38.9253 1.33670
849849 0 0
850850 73.1790 2.51002
851851 26.8716 0.921146
852852 0 0
853853 −38.5083 −1.31850 −0.659250 0.751923i 0.729126π-0.729126\pi
−0.659250 + 0.751923i 0.729126π0.729126\pi
854854 2.00293 0.0685387
855855 0 0
856856 36.8496 1.25949
857857 −6.19863 −0.211741 −0.105871 0.994380i 0.533763π-0.533763\pi
−0.105871 + 0.994380i 0.533763π0.533763\pi
858858 0 0
859859 37.6883 1.28591 0.642954 0.765905i 0.277709π-0.277709\pi
0.642954 + 0.765905i 0.277709π0.277709\pi
860860 −1.15078 −0.0392414
861861 0 0
862862 −21.1838 −0.721525
863863 −48.0085 −1.63423 −0.817115 0.576475i 0.804428π-0.804428\pi
−0.817115 + 0.576475i 0.804428π0.804428\pi
864864 0 0
865865 77.6854 2.64138
866866 42.2455 1.43556
867867 0 0
868868 −1.37139 −0.0465481
869869 −15.0364 −0.510074
870870 0 0
871871 −12.3642 −0.418945
872872 −23.9420 −0.810780
873873 0 0
874874 7.30252 0.247012
875875 −36.6942 −1.24049
876876 0 0
877877 35.1838 1.18807 0.594037 0.804438i 0.297533π-0.297533\pi
0.594037 + 0.804438i 0.297533π0.297533\pi
878878 −18.7663 −0.633333
879879 0 0
880880 17.2235 0.580605
881881 −24.6621 −0.830886 −0.415443 0.909619i 0.636373π-0.636373\pi
−0.415443 + 0.909619i 0.636373π0.636373\pi
882882 0 0
883883 −19.2193 −0.646780 −0.323390 0.946266i 0.604823π-0.604823\pi
−0.323390 + 0.946266i 0.604823π0.604823\pi
884884 3.76691 0.126695
885885 0 0
886886 −51.3078 −1.72372
887887 22.2498 0.747075 0.373537 0.927615i 0.378145π-0.378145\pi
0.373537 + 0.927615i 0.378145π0.378145\pi
888888 0 0
889889 17.6418 0.591687
890890 −43.3858 −1.45429
891891 0 0
892892 0.981333 0.0328575
893893 −6.64766 −0.222456
894894 0 0
895895 −79.8725 −2.66984
896896 17.3126 0.578375
897897 0 0
898898 −48.2819 −1.61119
899899 75.0947 2.50455
900900 0 0
901901 40.1445 1.33741
902902 3.59358 0.119653
903903 0 0
904904 25.4926 0.847872
905905 −51.3930 −1.70836
906906 0 0
907907 −38.5480 −1.27997 −0.639983 0.768389i 0.721059π-0.721059\pi
−0.639983 + 0.768389i 0.721059π0.721059\pi
908908 1.43464 0.0476102
909909 0 0
910910 −53.7994 −1.78343
911911 −4.28093 −0.141834 −0.0709168 0.997482i 0.522592π-0.522592\pi
−0.0709168 + 0.997482i 0.522592π0.522592\pi
912912 0 0
913913 −9.08326 −0.300612
914914 46.5801 1.54073
915915 0 0
916916 0.717100 0.0236937
917917 −28.2105 −0.931592
918918 0 0
919919 −7.52313 −0.248165 −0.124083 0.992272i 0.539599π-0.539599\pi
−0.124083 + 0.992272i 0.539599π0.539599\pi
920920 55.2704 1.82221
921921 0 0
922922 19.7060 0.648983
923923 −61.1196 −2.01178
924924 0 0
925925 61.4585 2.02074
926926 −15.8502 −0.520869
927927 0 0
928928 7.70232 0.252841
929929 −11.0833 −0.363630 −0.181815 0.983333i 0.558197π-0.558197\pi
−0.181815 + 0.983333i 0.558197π0.558197\pi
930930 0 0
931931 5.02198 0.164589
932932 −0.462861 −0.0151615
933933 0 0
934934 −20.7204 −0.677993
935935 17.7630 0.580913
936936 0 0
937937 −34.1373 −1.11522 −0.557609 0.830104i 0.688281π-0.688281\pi
−0.557609 + 0.830104i 0.688281π0.688281\pi
938938 3.93113 0.128356
939939 0 0
940940 3.58638 0.116975
941941 7.02491 0.229005 0.114503 0.993423i 0.463473π-0.463473\pi
0.114503 + 0.993423i 0.463473π0.463473\pi
942942 0 0
943943 12.3025 0.400625
944944 −7.56536 −0.246231
945945 0 0
946946 −3.11537 −0.101289
947947 −8.37139 −0.272034 −0.136017 0.990707i 0.543430π-0.543430\pi
−0.136017 + 0.990707i 0.543430π0.543430\pi
948948 0 0
949949 −30.0263 −0.974693
950950 16.7017 0.541876
951951 0 0
952952 16.8023 0.544567
953953 51.1632 1.65734 0.828669 0.559738i 0.189098π-0.189098\pi
0.828669 + 0.559738i 0.189098π0.189098\pi
954954 0 0
955955 10.3963 0.336416
956956 −1.33036 −0.0430268
957957 0 0
958958 −9.57256 −0.309275
959959 8.92994 0.288363
960960 0 0
961961 22.6912 0.731975
962962 50.7099 1.63495
963963 0 0
964964 −0.965540 −0.0310980
965965 47.1023 1.51628
966966 0 0
967967 −39.1990 −1.26056 −0.630278 0.776370i 0.717059π-0.717059\pi
−0.630278 + 0.776370i 0.717059π0.717059\pi
968968 2.72665 0.0876380
969969 0 0
970970 −49.4796 −1.58869
971971 11.4385 0.367080 0.183540 0.983012i 0.441244π-0.441244\pi
0.183540 + 0.983012i 0.441244π0.441244\pi
972972 0 0
973973 17.9401 0.575132
974974 −57.0813 −1.82900
975975 0 0
976976 −4.14263 −0.132602
977977 41.2891 1.32095 0.660477 0.750846i 0.270354π-0.270354\pi
0.660477 + 0.750846i 0.270354π0.270354\pi
978978 0 0
979979 −7.32743 −0.234186
980980 −2.70933 −0.0865465
981981 0 0
982982 −23.6840 −0.755788
983983 28.6735 0.914543 0.457272 0.889327i 0.348827π-0.348827\pi
0.457272 + 0.889327i 0.348827π0.348827\pi
984984 0 0
985985 −50.2249 −1.60030
986986 65.5821 2.08856
987987 0 0
988988 0.859728 0.0273516
989989 −10.6654 −0.339139
990990 0 0
991991 −9.06848 −0.288070 −0.144035 0.989573i 0.546008π-0.546008\pi
−0.144035 + 0.989573i 0.546008π0.546008\pi
992992 5.50700 0.174848
993993 0 0
994994 19.4327 0.616367
995995 35.1885 1.11555
996996 0 0
997997 4.30252 0.136262 0.0681312 0.997676i 0.478296π-0.478296\pi
0.0681312 + 0.997676i 0.478296π0.478296\pi
998998 −45.2560 −1.43255
999999 0 0
Display apa_p with pp up to: 50 250 1000 (See ana_n instead) (See ana_n instead) (See ana_n instead) Display ana_n with nn up to: 50 250 1000 (See only apa_p) (See only apa_p) (See only apa_p)

Twists

       By twisting character
Char Parity Ord Type Twist Min Dim
1.1 even 1 trivial 1881.2.a.i.1.1 3
3.2 odd 2 627.2.a.e.1.3 3
33.32 even 2 6897.2.a.p.1.1 3
    
        By twisted newform
Twist Min Dim Char Parity Ord Type
627.2.a.e.1.3 3 3.2 odd 2
1881.2.a.i.1.1 3 1.1 even 1 trivial
6897.2.a.p.1.1 3 33.32 even 2