Properties

Label 1881.2.a.i.1.1
Level $1881$
Weight $2$
Character 1881.1
Self dual yes
Analytic conductor $15.020$
Analytic rank $0$
Dimension $3$
CM no
Inner twists $1$

Related objects

Downloads

Learn more

Show commands: Magma / PariGP / SageMath

Newspace parameters

comment: Compute space of new eigenforms
 
[N,k,chi] = [1881,2,Mod(1,1881)]
 
mf = mfinit([N,k,chi],0)
 
lf = mfeigenbasis(mf)
 
from sage.modular.dirichlet import DirichletCharacter
 
H = DirichletGroup(1881, base_ring=CyclotomicField(2))
 
chi = DirichletCharacter(H, H._module([0, 0, 0]))
 
N = Newforms(chi, 2, names="a")
 
//Please install CHIMP (https://github.com/edgarcosta/CHIMP) if you want to run this code
 
chi := DirichletCharacter("1881.1");
 
S:= CuspForms(chi, 2);
 
N := Newforms(S);
 
Level: \( N \) \(=\) \( 1881 = 3^{2} \cdot 11 \cdot 19 \)
Weight: \( k \) \(=\) \( 2 \)
Character orbit: \([\chi]\) \(=\) 1881.a (trivial)

Newform invariants

comment: select newform
 
sage: f = N[0] # Warning: the index may be different
 
gp: f = lf[1] \\ Warning: the index may be different
 
Self dual: yes
Analytic conductor: \(15.0198606202\)
Analytic rank: \(0\)
Dimension: \(3\)
Coefficient field: 3.3.321.1
comment: defining polynomial
 
gp: f.mod \\ as an extension of the character field
 
Defining polynomial: \( x^{3} - x^{2} - 4x + 1 \) Copy content Toggle raw display
Coefficient ring: \(\Z[a_1, a_2]\)
Coefficient ring index: \( 1 \)
Twist minimal: no (minimal twist has level 627)
Fricke sign: \(-1\)
Sato-Tate group: $\mathrm{SU}(2)$

Embedding invariants

Embedding label 1.1
Root \(2.46050\) of defining polynomial
Character \(\chi\) \(=\) 1881.1

$q$-expansion

comment: q-expansion
 
sage: f.q_expansion() # note that sage often uses an isomorphic number field
 
gp: mfcoefs(f, 20)
 
\(f(q)\) \(=\) \(q-1.46050 q^{2} +0.133074 q^{4} +4.05408 q^{5} -1.40642 q^{7} +2.72665 q^{8} -5.92101 q^{10} -1.00000 q^{11} -6.46050 q^{13} +2.05408 q^{14} -4.24844 q^{16} -4.38151 q^{17} -1.00000 q^{19} +0.539495 q^{20} +1.46050 q^{22} +5.00000 q^{23} +11.4356 q^{25} +9.43560 q^{26} -0.187159 q^{28} +10.2484 q^{29} +7.32743 q^{31} +0.751560 q^{32} +6.39922 q^{34} -5.70175 q^{35} +5.37432 q^{37} +1.46050 q^{38} +11.0541 q^{40} +2.46050 q^{41} -2.13307 q^{43} -0.133074 q^{44} -7.30252 q^{46} +6.64766 q^{47} -5.02198 q^{49} -16.7017 q^{50} -0.859728 q^{52} -9.16225 q^{53} -4.05408 q^{55} -3.83482 q^{56} -14.9679 q^{58} +1.78074 q^{59} +0.975094 q^{61} -10.7017 q^{62} +7.39922 q^{64} -26.1914 q^{65} +1.91381 q^{67} -0.583068 q^{68} +8.32743 q^{70} +9.46050 q^{71} +4.64766 q^{73} -7.84922 q^{74} -0.133074 q^{76} +1.40642 q^{77} +15.0364 q^{79} -17.2235 q^{80} -3.59358 q^{82} +9.08326 q^{83} -17.7630 q^{85} +3.11537 q^{86} -2.72665 q^{88} +7.32743 q^{89} +9.08619 q^{91} +0.665372 q^{92} -9.70895 q^{94} -4.05408 q^{95} +8.35661 q^{97} +7.33463 q^{98} +O(q^{100})\)
\(\operatorname{Tr}(f)(q)\) \(=\) \( 3 q + 2 q^{2} + 4 q^{4} + 3 q^{5} - 7 q^{7} + 9 q^{8} - 5 q^{10} - 3 q^{11} - 13 q^{13} - 3 q^{14} + 10 q^{16} + 6 q^{17} - 3 q^{19} + 8 q^{20} - 2 q^{22} + 15 q^{23} + 6 q^{25} + 5 q^{28} + 8 q^{29} + 12 q^{31}+ \cdots + 4 q^{98}+O(q^{100}) \) Copy content Toggle raw display

Coefficient data

For each \(n\) we display the coefficients of the \(q\)-expansion \(a_n\), the Satake parameters \(\alpha_p\), and the Satake angles \(\theta_p = \textrm{Arg}(\alpha_p)\).



Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))
Significant digits:
\(n\) \(a_n\) \(a_n / n^{(k-1)/2}\) \( \alpha_n \) \( \theta_n \)
\(p\) \(a_p\) \(a_p / p^{(k-1)/2}\) \( \alpha_p\) \( \theta_p \)
\(2\) −1.46050 −1.03273 −0.516366 0.856368i \(-0.672716\pi\)
−0.516366 + 0.856368i \(0.672716\pi\)
\(3\) 0 0
\(4\) 0.133074 0.0665372
\(5\) 4.05408 1.81304 0.906521 0.422161i \(-0.138728\pi\)
0.906521 + 0.422161i \(0.138728\pi\)
\(6\) 0 0
\(7\) −1.40642 −0.531577 −0.265789 0.964031i \(-0.585632\pi\)
−0.265789 + 0.964031i \(0.585632\pi\)
\(8\) 2.72665 0.964018
\(9\) 0 0
\(10\) −5.92101 −1.87239
\(11\) −1.00000 −0.301511
\(12\) 0 0
\(13\) −6.46050 −1.79182 −0.895911 0.444234i \(-0.853476\pi\)
−0.895911 + 0.444234i \(0.853476\pi\)
\(14\) 2.05408 0.548977
\(15\) 0 0
\(16\) −4.24844 −1.06211
\(17\) −4.38151 −1.06267 −0.531337 0.847161i \(-0.678310\pi\)
−0.531337 + 0.847161i \(0.678310\pi\)
\(18\) 0 0
\(19\) −1.00000 −0.229416
\(20\) 0.539495 0.120635
\(21\) 0 0
\(22\) 1.46050 0.311381
\(23\) 5.00000 1.04257 0.521286 0.853382i \(-0.325452\pi\)
0.521286 + 0.853382i \(0.325452\pi\)
\(24\) 0 0
\(25\) 11.4356 2.28712
\(26\) 9.43560 1.85047
\(27\) 0 0
\(28\) −0.187159 −0.0353697
\(29\) 10.2484 1.90309 0.951544 0.307513i \(-0.0994969\pi\)
0.951544 + 0.307513i \(0.0994969\pi\)
\(30\) 0 0
\(31\) 7.32743 1.31605 0.658023 0.752998i \(-0.271393\pi\)
0.658023 + 0.752998i \(0.271393\pi\)
\(32\) 0.751560 0.132858
\(33\) 0 0
\(34\) 6.39922 1.09746
\(35\) −5.70175 −0.963771
\(36\) 0 0
\(37\) 5.37432 0.883532 0.441766 0.897130i \(-0.354352\pi\)
0.441766 + 0.897130i \(0.354352\pi\)
\(38\) 1.46050 0.236925
\(39\) 0 0
\(40\) 11.0541 1.74780
\(41\) 2.46050 0.384266 0.192133 0.981369i \(-0.438459\pi\)
0.192133 + 0.981369i \(0.438459\pi\)
\(42\) 0 0
\(43\) −2.13307 −0.325291 −0.162645 0.986685i \(-0.552003\pi\)
−0.162645 + 0.986685i \(0.552003\pi\)
\(44\) −0.133074 −0.0200617
\(45\) 0 0
\(46\) −7.30252 −1.07670
\(47\) 6.64766 0.969661 0.484831 0.874608i \(-0.338881\pi\)
0.484831 + 0.874608i \(0.338881\pi\)
\(48\) 0 0
\(49\) −5.02198 −0.717426
\(50\) −16.7017 −2.36198
\(51\) 0 0
\(52\) −0.859728 −0.119223
\(53\) −9.16225 −1.25853 −0.629266 0.777190i \(-0.716644\pi\)
−0.629266 + 0.777190i \(0.716644\pi\)
\(54\) 0 0
\(55\) −4.05408 −0.546653
\(56\) −3.83482 −0.512450
\(57\) 0 0
\(58\) −14.9679 −1.96538
\(59\) 1.78074 0.231832 0.115916 0.993259i \(-0.463020\pi\)
0.115916 + 0.993259i \(0.463020\pi\)
\(60\) 0 0
\(61\) 0.975094 0.124848 0.0624240 0.998050i \(-0.480117\pi\)
0.0624240 + 0.998050i \(0.480117\pi\)
\(62\) −10.7017 −1.35912
\(63\) 0 0
\(64\) 7.39922 0.924903
\(65\) −26.1914 −3.24865
\(66\) 0 0
\(67\) 1.91381 0.233809 0.116905 0.993143i \(-0.462703\pi\)
0.116905 + 0.993143i \(0.462703\pi\)
\(68\) −0.583068 −0.0707074
\(69\) 0 0
\(70\) 8.32743 0.995318
\(71\) 9.46050 1.12276 0.561378 0.827560i \(-0.310272\pi\)
0.561378 + 0.827560i \(0.310272\pi\)
\(72\) 0 0
\(73\) 4.64766 0.543968 0.271984 0.962302i \(-0.412320\pi\)
0.271984 + 0.962302i \(0.412320\pi\)
\(74\) −7.84922 −0.912453
\(75\) 0 0
\(76\) −0.133074 −0.0152647
\(77\) 1.40642 0.160277
\(78\) 0 0
\(79\) 15.0364 1.69172 0.845862 0.533401i \(-0.179086\pi\)
0.845862 + 0.533401i \(0.179086\pi\)
\(80\) −17.2235 −1.92565
\(81\) 0 0
\(82\) −3.59358 −0.396844
\(83\) 9.08326 0.997018 0.498509 0.866885i \(-0.333881\pi\)
0.498509 + 0.866885i \(0.333881\pi\)
\(84\) 0 0
\(85\) −17.7630 −1.92667
\(86\) 3.11537 0.335939
\(87\) 0 0
\(88\) −2.72665 −0.290662
\(89\) 7.32743 0.776706 0.388353 0.921511i \(-0.373044\pi\)
0.388353 + 0.921511i \(0.373044\pi\)
\(90\) 0 0
\(91\) 9.08619 0.952491
\(92\) 0.665372 0.0693699
\(93\) 0 0
\(94\) −9.70895 −1.00140
\(95\) −4.05408 −0.415940
\(96\) 0 0
\(97\) 8.35661 0.848485 0.424243 0.905549i \(-0.360540\pi\)
0.424243 + 0.905549i \(0.360540\pi\)
\(98\) 7.33463 0.740909
\(99\) 0 0
\(100\) 1.52179 0.152179
\(101\) −4.05408 −0.403396 −0.201698 0.979448i \(-0.564646\pi\)
−0.201698 + 0.979448i \(0.564646\pi\)
\(102\) 0 0
\(103\) −13.0761 −1.28842 −0.644211 0.764847i \(-0.722814\pi\)
−0.644211 + 0.764847i \(0.722814\pi\)
\(104\) −17.6156 −1.72735
\(105\) 0 0
\(106\) 13.3815 1.29973
\(107\) 13.5146 1.30650 0.653252 0.757140i \(-0.273404\pi\)
0.653252 + 0.757140i \(0.273404\pi\)
\(108\) 0 0
\(109\) −8.78074 −0.841042 −0.420521 0.907283i \(-0.638153\pi\)
−0.420521 + 0.907283i \(0.638153\pi\)
\(110\) 5.92101 0.564546
\(111\) 0 0
\(112\) 5.97509 0.564593
\(113\) 9.34941 0.879519 0.439759 0.898116i \(-0.355064\pi\)
0.439759 + 0.898116i \(0.355064\pi\)
\(114\) 0 0
\(115\) 20.2704 1.89023
\(116\) 1.36381 0.126626
\(117\) 0 0
\(118\) −2.60078 −0.239421
\(119\) 6.16225 0.564893
\(120\) 0 0
\(121\) 1.00000 0.0909091
\(122\) −1.42413 −0.128935
\(123\) 0 0
\(124\) 0.975094 0.0875660
\(125\) 26.0905 2.33360
\(126\) 0 0
\(127\) −12.5438 −1.11308 −0.556540 0.830821i \(-0.687871\pi\)
−0.556540 + 0.830821i \(0.687871\pi\)
\(128\) −12.3097 −1.08804
\(129\) 0 0
\(130\) 38.2527 3.35498
\(131\) 20.0584 1.75251 0.876253 0.481851i \(-0.160035\pi\)
0.876253 + 0.481851i \(0.160035\pi\)
\(132\) 0 0
\(133\) 1.40642 0.121952
\(134\) −2.79513 −0.241463
\(135\) 0 0
\(136\) −11.9469 −1.02444
\(137\) −6.34941 −0.542467 −0.271233 0.962514i \(-0.587432\pi\)
−0.271233 + 0.962514i \(0.587432\pi\)
\(138\) 0 0
\(139\) −12.7558 −1.08194 −0.540968 0.841043i \(-0.681942\pi\)
−0.540968 + 0.841043i \(0.681942\pi\)
\(140\) −0.758757 −0.0641267
\(141\) 0 0
\(142\) −13.8171 −1.15951
\(143\) 6.46050 0.540255
\(144\) 0 0
\(145\) 41.5480 3.45038
\(146\) −6.78794 −0.561774
\(147\) 0 0
\(148\) 0.715184 0.0587878
\(149\) −12.4605 −1.02080 −0.510402 0.859936i \(-0.670503\pi\)
−0.510402 + 0.859936i \(0.670503\pi\)
\(150\) 0 0
\(151\) 18.6156 1.51491 0.757456 0.652886i \(-0.226442\pi\)
0.757456 + 0.652886i \(0.226442\pi\)
\(152\) −2.72665 −0.221161
\(153\) 0 0
\(154\) −2.05408 −0.165523
\(155\) 29.7060 2.38604
\(156\) 0 0
\(157\) −22.6768 −1.80981 −0.904904 0.425615i \(-0.860058\pi\)
−0.904904 + 0.425615i \(0.860058\pi\)
\(158\) −21.9607 −1.74710
\(159\) 0 0
\(160\) 3.04689 0.240878
\(161\) −7.03210 −0.554207
\(162\) 0 0
\(163\) −5.35661 −0.419562 −0.209781 0.977748i \(-0.567275\pi\)
−0.209781 + 0.977748i \(0.567275\pi\)
\(164\) 0.327430 0.0255680
\(165\) 0 0
\(166\) −13.2661 −1.02965
\(167\) −2.05408 −0.158950 −0.0794749 0.996837i \(-0.525324\pi\)
−0.0794749 + 0.996837i \(0.525324\pi\)
\(168\) 0 0
\(169\) 28.7381 2.21062
\(170\) 25.9430 1.98974
\(171\) 0 0
\(172\) −0.283858 −0.0216440
\(173\) 19.1623 1.45688 0.728440 0.685110i \(-0.240246\pi\)
0.728440 + 0.685110i \(0.240246\pi\)
\(174\) 0 0
\(175\) −16.0833 −1.21578
\(176\) 4.24844 0.320238
\(177\) 0 0
\(178\) −10.7017 −0.802130
\(179\) −19.7017 −1.47258 −0.736289 0.676667i \(-0.763424\pi\)
−0.736289 + 0.676667i \(0.763424\pi\)
\(180\) 0 0
\(181\) −12.6768 −0.942262 −0.471131 0.882063i \(-0.656154\pi\)
−0.471131 + 0.882063i \(0.656154\pi\)
\(182\) −13.2704 −0.983669
\(183\) 0 0
\(184\) 13.6333 1.00506
\(185\) 21.7879 1.60188
\(186\) 0 0
\(187\) 4.38151 0.320408
\(188\) 0.884634 0.0645186
\(189\) 0 0
\(190\) 5.92101 0.429555
\(191\) 2.56440 0.185554 0.0927768 0.995687i \(-0.470426\pi\)
0.0927768 + 0.995687i \(0.470426\pi\)
\(192\) 0 0
\(193\) 11.6185 0.836317 0.418158 0.908374i \(-0.362676\pi\)
0.418158 + 0.908374i \(0.362676\pi\)
\(194\) −12.2049 −0.876258
\(195\) 0 0
\(196\) −0.668297 −0.0477355
\(197\) −12.3887 −0.882659 −0.441330 0.897345i \(-0.645493\pi\)
−0.441330 + 0.897345i \(0.645493\pi\)
\(198\) 0 0
\(199\) 8.67977 0.615292 0.307646 0.951501i \(-0.400459\pi\)
0.307646 + 0.951501i \(0.400459\pi\)
\(200\) 31.1809 2.20482
\(201\) 0 0
\(202\) 5.92101 0.416601
\(203\) −14.4136 −1.01164
\(204\) 0 0
\(205\) 9.97509 0.696691
\(206\) 19.0977 1.33060
\(207\) 0 0
\(208\) 27.4471 1.90311
\(209\) 1.00000 0.0691714
\(210\) 0 0
\(211\) 14.5366 1.00074 0.500369 0.865812i \(-0.333198\pi\)
0.500369 + 0.865812i \(0.333198\pi\)
\(212\) −1.21926 −0.0837393
\(213\) 0 0
\(214\) −19.7381 −1.34927
\(215\) −8.64766 −0.589766
\(216\) 0 0
\(217\) −10.3054 −0.699579
\(218\) 12.8243 0.868572
\(219\) 0 0
\(220\) −0.539495 −0.0363728
\(221\) 28.3068 1.90412
\(222\) 0 0
\(223\) 7.37432 0.493821 0.246910 0.969038i \(-0.420585\pi\)
0.246910 + 0.969038i \(0.420585\pi\)
\(224\) −1.05701 −0.0706244
\(225\) 0 0
\(226\) −13.6549 −0.908308
\(227\) 10.7807 0.715543 0.357771 0.933809i \(-0.383537\pi\)
0.357771 + 0.933809i \(0.383537\pi\)
\(228\) 0 0
\(229\) 5.38871 0.356096 0.178048 0.984022i \(-0.443022\pi\)
0.178048 + 0.984022i \(0.443022\pi\)
\(230\) −29.6050 −1.95210
\(231\) 0 0
\(232\) 27.9439 1.83461
\(233\) −3.47821 −0.227865 −0.113933 0.993488i \(-0.536345\pi\)
−0.113933 + 0.993488i \(0.536345\pi\)
\(234\) 0 0
\(235\) 26.9502 1.75804
\(236\) 0.236971 0.0154255
\(237\) 0 0
\(238\) −9.00000 −0.583383
\(239\) −9.99707 −0.646657 −0.323329 0.946287i \(-0.604802\pi\)
−0.323329 + 0.946287i \(0.604802\pi\)
\(240\) 0 0
\(241\) −7.25564 −0.467377 −0.233688 0.972312i \(-0.575080\pi\)
−0.233688 + 0.972312i \(0.575080\pi\)
\(242\) −1.46050 −0.0938848
\(243\) 0 0
\(244\) 0.129760 0.00830704
\(245\) −20.3595 −1.30072
\(246\) 0 0
\(247\) 6.46050 0.411072
\(248\) 19.9794 1.26869
\(249\) 0 0
\(250\) −38.1052 −2.40999
\(251\) −4.14786 −0.261810 −0.130905 0.991395i \(-0.541788\pi\)
−0.130905 + 0.991395i \(0.541788\pi\)
\(252\) 0 0
\(253\) −5.00000 −0.314347
\(254\) 18.3202 1.14951
\(255\) 0 0
\(256\) 3.17996 0.198748
\(257\) 19.9722 1.24583 0.622915 0.782290i \(-0.285948\pi\)
0.622915 + 0.782290i \(0.285948\pi\)
\(258\) 0 0
\(259\) −7.55855 −0.469666
\(260\) −3.48541 −0.216156
\(261\) 0 0
\(262\) −29.2953 −1.80987
\(263\) 5.37724 0.331575 0.165787 0.986162i \(-0.446983\pi\)
0.165787 + 0.986162i \(0.446983\pi\)
\(264\) 0 0
\(265\) −37.1445 −2.28177
\(266\) −2.05408 −0.125944
\(267\) 0 0
\(268\) 0.254680 0.0155570
\(269\) −3.74863 −0.228558 −0.114279 0.993449i \(-0.536456\pi\)
−0.114279 + 0.993449i \(0.536456\pi\)
\(270\) 0 0
\(271\) 1.00720 0.0611829 0.0305914 0.999532i \(-0.490261\pi\)
0.0305914 + 0.999532i \(0.490261\pi\)
\(272\) 18.6146 1.12868
\(273\) 0 0
\(274\) 9.27335 0.560223
\(275\) −11.4356 −0.689593
\(276\) 0 0
\(277\) −11.6726 −0.701337 −0.350668 0.936500i \(-0.614046\pi\)
−0.350668 + 0.936500i \(0.614046\pi\)
\(278\) 18.6300 1.11735
\(279\) 0 0
\(280\) −15.5467 −0.929093
\(281\) 3.78794 0.225969 0.112985 0.993597i \(-0.463959\pi\)
0.112985 + 0.993597i \(0.463959\pi\)
\(282\) 0 0
\(283\) −8.70895 −0.517693 −0.258847 0.965918i \(-0.583342\pi\)
−0.258847 + 0.965918i \(0.583342\pi\)
\(284\) 1.25895 0.0747050
\(285\) 0 0
\(286\) −9.43560 −0.557939
\(287\) −3.46050 −0.204267
\(288\) 0 0
\(289\) 2.19767 0.129275
\(290\) −60.6811 −3.56332
\(291\) 0 0
\(292\) 0.618485 0.0361941
\(293\) 2.32316 0.135720 0.0678602 0.997695i \(-0.478383\pi\)
0.0678602 + 0.997695i \(0.478383\pi\)
\(294\) 0 0
\(295\) 7.21926 0.420322
\(296\) 14.6539 0.851741
\(297\) 0 0
\(298\) 18.1986 1.05422
\(299\) −32.3025 −1.86810
\(300\) 0 0
\(301\) 3.00000 0.172917
\(302\) −27.1881 −1.56450
\(303\) 0 0
\(304\) 4.24844 0.243665
\(305\) 3.95311 0.226355
\(306\) 0 0
\(307\) 1.86693 0.106551 0.0532755 0.998580i \(-0.483034\pi\)
0.0532755 + 0.998580i \(0.483034\pi\)
\(308\) 0.187159 0.0106644
\(309\) 0 0
\(310\) −43.3858 −2.46415
\(311\) −8.02198 −0.454885 −0.227442 0.973792i \(-0.573036\pi\)
−0.227442 + 0.973792i \(0.573036\pi\)
\(312\) 0 0
\(313\) −5.07179 −0.286675 −0.143337 0.989674i \(-0.545783\pi\)
−0.143337 + 0.989674i \(0.545783\pi\)
\(314\) 33.1196 1.86905
\(315\) 0 0
\(316\) 2.00096 0.112563
\(317\) −22.4428 −1.26051 −0.630257 0.776387i \(-0.717050\pi\)
−0.630257 + 0.776387i \(0.717050\pi\)
\(318\) 0 0
\(319\) −10.2484 −0.573802
\(320\) 29.9971 1.67689
\(321\) 0 0
\(322\) 10.2704 0.572348
\(323\) 4.38151 0.243794
\(324\) 0 0
\(325\) −73.8797 −4.09811
\(326\) 7.82335 0.433295
\(327\) 0 0
\(328\) 6.70895 0.370440
\(329\) −9.34941 −0.515450
\(330\) 0 0
\(331\) 9.16225 0.503603 0.251801 0.967779i \(-0.418977\pi\)
0.251801 + 0.967779i \(0.418977\pi\)
\(332\) 1.20875 0.0663388
\(333\) 0 0
\(334\) 3.00000 0.164153
\(335\) 7.75876 0.423906
\(336\) 0 0
\(337\) 21.0220 1.14514 0.572570 0.819856i \(-0.305946\pi\)
0.572570 + 0.819856i \(0.305946\pi\)
\(338\) −41.9722 −2.28299
\(339\) 0 0
\(340\) −2.36381 −0.128195
\(341\) −7.32743 −0.396803
\(342\) 0 0
\(343\) 16.9080 0.912944
\(344\) −5.81616 −0.313586
\(345\) 0 0
\(346\) −27.9866 −1.50457
\(347\) −1.90662 −0.102352 −0.0511762 0.998690i \(-0.516297\pi\)
−0.0511762 + 0.998690i \(0.516297\pi\)
\(348\) 0 0
\(349\) −20.0862 −1.07519 −0.537594 0.843204i \(-0.680667\pi\)
−0.537594 + 0.843204i \(0.680667\pi\)
\(350\) 23.4897 1.25558
\(351\) 0 0
\(352\) −0.751560 −0.0400583
\(353\) 10.3858 0.552780 0.276390 0.961046i \(-0.410862\pi\)
0.276390 + 0.961046i \(0.410862\pi\)
\(354\) 0 0
\(355\) 38.3537 2.03560
\(356\) 0.975094 0.0516799
\(357\) 0 0
\(358\) 28.7745 1.52078
\(359\) 22.9354 1.21048 0.605242 0.796041i \(-0.293076\pi\)
0.605242 + 0.796041i \(0.293076\pi\)
\(360\) 0 0
\(361\) 1.00000 0.0526316
\(362\) 18.5146 0.973105
\(363\) 0 0
\(364\) 1.20914 0.0633761
\(365\) 18.8420 0.986236
\(366\) 0 0
\(367\) 14.6624 0.765374 0.382687 0.923878i \(-0.374999\pi\)
0.382687 + 0.923878i \(0.374999\pi\)
\(368\) −21.2422 −1.10733
\(369\) 0 0
\(370\) −31.8214 −1.65432
\(371\) 12.8860 0.669007
\(372\) 0 0
\(373\) −24.3786 −1.26228 −0.631138 0.775671i \(-0.717412\pi\)
−0.631138 + 0.775671i \(0.717412\pi\)
\(374\) −6.39922 −0.330896
\(375\) 0 0
\(376\) 18.1259 0.934771
\(377\) −66.2101 −3.40999
\(378\) 0 0
\(379\) 0.0861875 0.00442715 0.00221358 0.999998i \(-0.499295\pi\)
0.00221358 + 0.999998i \(0.499295\pi\)
\(380\) −0.539495 −0.0276755
\(381\) 0 0
\(382\) −3.74532 −0.191627
\(383\) −26.6840 −1.36349 −0.681745 0.731590i \(-0.738779\pi\)
−0.681745 + 0.731590i \(0.738779\pi\)
\(384\) 0 0
\(385\) 5.70175 0.290588
\(386\) −16.9689 −0.863692
\(387\) 0 0
\(388\) 1.11205 0.0564559
\(389\) −10.3317 −0.523838 −0.261919 0.965090i \(-0.584355\pi\)
−0.261919 + 0.965090i \(0.584355\pi\)
\(390\) 0 0
\(391\) −21.9076 −1.10791
\(392\) −13.6932 −0.691611
\(393\) 0 0
\(394\) 18.0938 0.911551
\(395\) 60.9587 3.06717
\(396\) 0 0
\(397\) 21.5801 1.08308 0.541538 0.840676i \(-0.317842\pi\)
0.541538 + 0.840676i \(0.317842\pi\)
\(398\) −12.6768 −0.635433
\(399\) 0 0
\(400\) −48.5835 −2.42917
\(401\) 22.8597 1.14156 0.570780 0.821103i \(-0.306641\pi\)
0.570780 + 0.821103i \(0.306641\pi\)
\(402\) 0 0
\(403\) −47.3389 −2.35812
\(404\) −0.539495 −0.0268409
\(405\) 0 0
\(406\) 21.0512 1.04475
\(407\) −5.37432 −0.266395
\(408\) 0 0
\(409\) −36.9794 −1.82851 −0.914256 0.405137i \(-0.867224\pi\)
−0.914256 + 0.405137i \(0.867224\pi\)
\(410\) −14.5687 −0.719495
\(411\) 0 0
\(412\) −1.74009 −0.0857281
\(413\) −2.50447 −0.123237
\(414\) 0 0
\(415\) 36.8243 1.80763
\(416\) −4.85546 −0.238058
\(417\) 0 0
\(418\) −1.46050 −0.0714356
\(419\) −24.5586 −1.19976 −0.599882 0.800089i \(-0.704786\pi\)
−0.599882 + 0.800089i \(0.704786\pi\)
\(420\) 0 0
\(421\) 31.4399 1.53229 0.766143 0.642670i \(-0.222174\pi\)
0.766143 + 0.642670i \(0.222174\pi\)
\(422\) −21.2307 −1.03350
\(423\) 0 0
\(424\) −24.9823 −1.21325
\(425\) −50.1052 −2.43046
\(426\) 0 0
\(427\) −1.37139 −0.0663663
\(428\) 1.79845 0.0869312
\(429\) 0 0
\(430\) 12.6300 0.609071
\(431\) 14.5045 0.698656 0.349328 0.937001i \(-0.386410\pi\)
0.349328 + 0.937001i \(0.386410\pi\)
\(432\) 0 0
\(433\) −28.9253 −1.39006 −0.695030 0.718981i \(-0.744609\pi\)
−0.695030 + 0.718981i \(0.744609\pi\)
\(434\) 15.0512 0.722479
\(435\) 0 0
\(436\) −1.16849 −0.0559606
\(437\) −5.00000 −0.239182
\(438\) 0 0
\(439\) 12.8492 0.613260 0.306630 0.951829i \(-0.400799\pi\)
0.306630 + 0.951829i \(0.400799\pi\)
\(440\) −11.0541 −0.526983
\(441\) 0 0
\(442\) −41.3422 −1.96645
\(443\) 35.1301 1.66908 0.834542 0.550945i \(-0.185732\pi\)
0.834542 + 0.550945i \(0.185732\pi\)
\(444\) 0 0
\(445\) 29.7060 1.40820
\(446\) −10.7702 −0.509985
\(447\) 0 0
\(448\) −10.4064 −0.491657
\(449\) 33.0584 1.56012 0.780060 0.625705i \(-0.215188\pi\)
0.780060 + 0.625705i \(0.215188\pi\)
\(450\) 0 0
\(451\) −2.46050 −0.115861
\(452\) 1.24417 0.0585207
\(453\) 0 0
\(454\) −15.7453 −0.738965
\(455\) 36.8362 1.72691
\(456\) 0 0
\(457\) −31.8932 −1.49190 −0.745950 0.666002i \(-0.768004\pi\)
−0.745950 + 0.666002i \(0.768004\pi\)
\(458\) −7.87024 −0.367752
\(459\) 0 0
\(460\) 2.69748 0.125770
\(461\) −13.4926 −0.628413 −0.314207 0.949355i \(-0.601738\pi\)
−0.314207 + 0.949355i \(0.601738\pi\)
\(462\) 0 0
\(463\) 10.8525 0.504360 0.252180 0.967680i \(-0.418853\pi\)
0.252180 + 0.967680i \(0.418853\pi\)
\(464\) −43.5399 −2.02129
\(465\) 0 0
\(466\) 5.07995 0.235324
\(467\) 14.1872 0.656503 0.328252 0.944590i \(-0.393541\pi\)
0.328252 + 0.944590i \(0.393541\pi\)
\(468\) 0 0
\(469\) −2.69163 −0.124288
\(470\) −39.3609 −1.81558
\(471\) 0 0
\(472\) 4.85546 0.223490
\(473\) 2.13307 0.0980789
\(474\) 0 0
\(475\) −11.4356 −0.524701
\(476\) 0.820039 0.0375864
\(477\) 0 0
\(478\) 14.6008 0.667824
\(479\) 6.55428 0.299473 0.149736 0.988726i \(-0.452158\pi\)
0.149736 + 0.988726i \(0.452158\pi\)
\(480\) 0 0
\(481\) −34.7208 −1.58313
\(482\) 10.5969 0.482675
\(483\) 0 0
\(484\) 0.133074 0.00604884
\(485\) 33.8784 1.53834
\(486\) 0 0
\(487\) 39.0833 1.77103 0.885516 0.464609i \(-0.153805\pi\)
0.885516 + 0.464609i \(0.153805\pi\)
\(488\) 2.65874 0.120356
\(489\) 0 0
\(490\) 29.7352 1.34330
\(491\) 16.2163 0.731833 0.365917 0.930648i \(-0.380756\pi\)
0.365917 + 0.930648i \(0.380756\pi\)
\(492\) 0 0
\(493\) −44.9037 −2.02236
\(494\) −9.43560 −0.424528
\(495\) 0 0
\(496\) −31.1301 −1.39778
\(497\) −13.3054 −0.596831
\(498\) 0 0
\(499\) 30.9866 1.38715 0.693575 0.720385i \(-0.256035\pi\)
0.693575 + 0.720385i \(0.256035\pi\)
\(500\) 3.47197 0.155271
\(501\) 0 0
\(502\) 6.05797 0.270380
\(503\) −2.57918 −0.115000 −0.0575001 0.998346i \(-0.518313\pi\)
−0.0575001 + 0.998346i \(0.518313\pi\)
\(504\) 0 0
\(505\) −16.4356 −0.731375
\(506\) 7.30252 0.324637
\(507\) 0 0
\(508\) −1.66926 −0.0740612
\(509\) −20.3959 −0.904033 −0.452016 0.892010i \(-0.649295\pi\)
−0.452016 + 0.892010i \(0.649295\pi\)
\(510\) 0 0
\(511\) −6.53657 −0.289161
\(512\) 19.9751 0.882783
\(513\) 0 0
\(514\) −29.1694 −1.28661
\(515\) −53.0115 −2.33596
\(516\) 0 0
\(517\) −6.64766 −0.292364
\(518\) 11.0393 0.485039
\(519\) 0 0
\(520\) −71.4150 −3.13175
\(521\) −31.8607 −1.39584 −0.697921 0.716175i \(-0.745891\pi\)
−0.697921 + 0.716175i \(0.745891\pi\)
\(522\) 0 0
\(523\) 5.01478 0.219281 0.109641 0.993971i \(-0.465030\pi\)
0.109641 + 0.993971i \(0.465030\pi\)
\(524\) 2.66926 0.116607
\(525\) 0 0
\(526\) −7.85349 −0.342428
\(527\) −32.1052 −1.39853
\(528\) 0 0
\(529\) 2.00000 0.0869565
\(530\) 54.2498 2.35646
\(531\) 0 0
\(532\) 0.187159 0.00811436
\(533\) −15.8961 −0.688537
\(534\) 0 0
\(535\) 54.7893 2.36875
\(536\) 5.21830 0.225396
\(537\) 0 0
\(538\) 5.47490 0.236040
\(539\) 5.02198 0.216312
\(540\) 0 0
\(541\) 5.80857 0.249730 0.124865 0.992174i \(-0.460150\pi\)
0.124865 + 0.992174i \(0.460150\pi\)
\(542\) −1.47102 −0.0631856
\(543\) 0 0
\(544\) −3.29297 −0.141185
\(545\) −35.5979 −1.52484
\(546\) 0 0
\(547\) −31.1019 −1.32982 −0.664911 0.746922i \(-0.731531\pi\)
−0.664911 + 0.746922i \(0.731531\pi\)
\(548\) −0.844945 −0.0360942
\(549\) 0 0
\(550\) 16.7017 0.712165
\(551\) −10.2484 −0.436598
\(552\) 0 0
\(553\) −21.1475 −0.899282
\(554\) 17.0478 0.724294
\(555\) 0 0
\(556\) −1.69748 −0.0719890
\(557\) 8.32743 0.352845 0.176422 0.984315i \(-0.443548\pi\)
0.176422 + 0.984315i \(0.443548\pi\)
\(558\) 0 0
\(559\) 13.7807 0.582863
\(560\) 24.2235 1.02363
\(561\) 0 0
\(562\) −5.53230 −0.233366
\(563\) −28.9502 −1.22010 −0.610052 0.792361i \(-0.708852\pi\)
−0.610052 + 0.792361i \(0.708852\pi\)
\(564\) 0 0
\(565\) 37.9033 1.59460
\(566\) 12.7195 0.534639
\(567\) 0 0
\(568\) 25.7955 1.08236
\(569\) 21.6693 0.908422 0.454211 0.890894i \(-0.349921\pi\)
0.454211 + 0.890894i \(0.349921\pi\)
\(570\) 0 0
\(571\) 10.8391 0.453602 0.226801 0.973941i \(-0.427173\pi\)
0.226801 + 0.973941i \(0.427173\pi\)
\(572\) 0.859728 0.0359470
\(573\) 0 0
\(574\) 5.05408 0.210953
\(575\) 57.1780 2.38449
\(576\) 0 0
\(577\) −28.9282 −1.20430 −0.602149 0.798384i \(-0.705688\pi\)
−0.602149 + 0.798384i \(0.705688\pi\)
\(578\) −3.20971 −0.133506
\(579\) 0 0
\(580\) 5.52898 0.229579
\(581\) −12.7749 −0.529992
\(582\) 0 0
\(583\) 9.16225 0.379462
\(584\) 12.6726 0.524395
\(585\) 0 0
\(586\) −3.39298 −0.140163
\(587\) −38.3360 −1.58230 −0.791148 0.611625i \(-0.790516\pi\)
−0.791148 + 0.611625i \(0.790516\pi\)
\(588\) 0 0
\(589\) −7.32743 −0.301922
\(590\) −10.5438 −0.434080
\(591\) 0 0
\(592\) −22.8325 −0.938409
\(593\) 10.8918 0.447274 0.223637 0.974673i \(-0.428207\pi\)
0.223637 + 0.974673i \(0.428207\pi\)
\(594\) 0 0
\(595\) 24.9823 1.02417
\(596\) −1.65818 −0.0679215
\(597\) 0 0
\(598\) 47.1780 1.92925
\(599\) −27.5831 −1.12701 −0.563507 0.826111i \(-0.690548\pi\)
−0.563507 + 0.826111i \(0.690548\pi\)
\(600\) 0 0
\(601\) 23.6663 0.965370 0.482685 0.875794i \(-0.339662\pi\)
0.482685 + 0.875794i \(0.339662\pi\)
\(602\) −4.38151 −0.178577
\(603\) 0 0
\(604\) 2.47726 0.100798
\(605\) 4.05408 0.164822
\(606\) 0 0
\(607\) −30.0364 −1.21914 −0.609569 0.792733i \(-0.708658\pi\)
−0.609569 + 0.792733i \(0.708658\pi\)
\(608\) −0.751560 −0.0304798
\(609\) 0 0
\(610\) −5.77354 −0.233764
\(611\) −42.9473 −1.73746
\(612\) 0 0
\(613\) 21.6477 0.874341 0.437170 0.899379i \(-0.355981\pi\)
0.437170 + 0.899379i \(0.355981\pi\)
\(614\) −2.72665 −0.110039
\(615\) 0 0
\(616\) 3.83482 0.154509
\(617\) −43.3402 −1.74481 −0.872406 0.488781i \(-0.837442\pi\)
−0.872406 + 0.488781i \(0.837442\pi\)
\(618\) 0 0
\(619\) 19.9387 0.801405 0.400702 0.916208i \(-0.368766\pi\)
0.400702 + 0.916208i \(0.368766\pi\)
\(620\) 3.95311 0.158761
\(621\) 0 0
\(622\) 11.7161 0.469775
\(623\) −10.3054 −0.412879
\(624\) 0 0
\(625\) 48.5949 1.94380
\(626\) 7.40738 0.296058
\(627\) 0 0
\(628\) −3.01771 −0.120420
\(629\) −23.5477 −0.938906
\(630\) 0 0
\(631\) −17.8712 −0.711441 −0.355721 0.934592i \(-0.615765\pi\)
−0.355721 + 0.934592i \(0.615765\pi\)
\(632\) 40.9990 1.63085
\(633\) 0 0
\(634\) 32.7778 1.30177
\(635\) −50.8535 −2.01806
\(636\) 0 0
\(637\) 32.4445 1.28550
\(638\) 14.9679 0.592585
\(639\) 0 0
\(640\) −49.9046 −1.97265
\(641\) −22.6372 −0.894114 −0.447057 0.894506i \(-0.647528\pi\)
−0.447057 + 0.894506i \(0.647528\pi\)
\(642\) 0 0
\(643\) −6.80272 −0.268273 −0.134137 0.990963i \(-0.542826\pi\)
−0.134137 + 0.990963i \(0.542826\pi\)
\(644\) −0.935793 −0.0368754
\(645\) 0 0
\(646\) −6.39922 −0.251774
\(647\) −38.0010 −1.49397 −0.746986 0.664840i \(-0.768500\pi\)
−0.746986 + 0.664840i \(0.768500\pi\)
\(648\) 0 0
\(649\) −1.78074 −0.0699001
\(650\) 107.902 4.23225
\(651\) 0 0
\(652\) −0.712828 −0.0279165
\(653\) 27.5395 1.07770 0.538852 0.842401i \(-0.318858\pi\)
0.538852 + 0.842401i \(0.318858\pi\)
\(654\) 0 0
\(655\) 81.3183 3.17737
\(656\) −10.4533 −0.408133
\(657\) 0 0
\(658\) 13.6549 0.532322
\(659\) 23.9473 0.932853 0.466426 0.884560i \(-0.345541\pi\)
0.466426 + 0.884560i \(0.345541\pi\)
\(660\) 0 0
\(661\) 16.3202 0.634783 0.317392 0.948295i \(-0.397193\pi\)
0.317392 + 0.948295i \(0.397193\pi\)
\(662\) −13.3815 −0.520087
\(663\) 0 0
\(664\) 24.7669 0.961143
\(665\) 5.70175 0.221104
\(666\) 0 0
\(667\) 51.2422 1.98411
\(668\) −0.273346 −0.0105761
\(669\) 0 0
\(670\) −11.3317 −0.437782
\(671\) −0.975094 −0.0376431
\(672\) 0 0
\(673\) −11.8306 −0.456034 −0.228017 0.973657i \(-0.573224\pi\)
−0.228017 + 0.973657i \(0.573224\pi\)
\(674\) −30.7027 −1.18262
\(675\) 0 0
\(676\) 3.82431 0.147089
\(677\) 13.6874 0.526048 0.263024 0.964789i \(-0.415280\pi\)
0.263024 + 0.964789i \(0.415280\pi\)
\(678\) 0 0
\(679\) −11.7529 −0.451035
\(680\) −48.4336 −1.85734
\(681\) 0 0
\(682\) 10.7017 0.409791
\(683\) 18.5582 0.710108 0.355054 0.934846i \(-0.384462\pi\)
0.355054 + 0.934846i \(0.384462\pi\)
\(684\) 0 0
\(685\) −25.7410 −0.983515
\(686\) −24.6942 −0.942827
\(687\) 0 0
\(688\) 9.06224 0.345495
\(689\) 59.1928 2.25507
\(690\) 0 0
\(691\) 1.23990 0.0471679 0.0235839 0.999722i \(-0.492492\pi\)
0.0235839 + 0.999722i \(0.492492\pi\)
\(692\) 2.55001 0.0969367
\(693\) 0 0
\(694\) 2.78462 0.105703
\(695\) −51.7132 −1.96159
\(696\) 0 0
\(697\) −10.7807 −0.408350
\(698\) 29.3360 1.11038
\(699\) 0 0
\(700\) −2.14027 −0.0808947
\(701\) −2.47821 −0.0936008 −0.0468004 0.998904i \(-0.514902\pi\)
−0.0468004 + 0.998904i \(0.514902\pi\)
\(702\) 0 0
\(703\) −5.37432 −0.202696
\(704\) −7.39922 −0.278869
\(705\) 0 0
\(706\) −15.1685 −0.570874
\(707\) 5.70175 0.214436
\(708\) 0 0
\(709\) −33.7745 −1.26843 −0.634214 0.773158i \(-0.718676\pi\)
−0.634214 + 0.773158i \(0.718676\pi\)
\(710\) −56.0157 −2.10223
\(711\) 0 0
\(712\) 19.9794 0.748758
\(713\) 36.6372 1.37207
\(714\) 0 0
\(715\) 26.1914 0.979504
\(716\) −2.62180 −0.0979813
\(717\) 0 0
\(718\) −33.4973 −1.25011
\(719\) −16.7601 −0.625046 −0.312523 0.949910i \(-0.601174\pi\)
−0.312523 + 0.949910i \(0.601174\pi\)
\(720\) 0 0
\(721\) 18.3904 0.684896
\(722\) −1.46050 −0.0543544
\(723\) 0 0
\(724\) −1.68696 −0.0626955
\(725\) 117.197 4.35259
\(726\) 0 0
\(727\) 24.5586 0.910826 0.455413 0.890280i \(-0.349492\pi\)
0.455413 + 0.890280i \(0.349492\pi\)
\(728\) 24.7749 0.918218
\(729\) 0 0
\(730\) −27.5189 −1.01852
\(731\) 9.34610 0.345678
\(732\) 0 0
\(733\) −24.8056 −0.916217 −0.458109 0.888896i \(-0.651473\pi\)
−0.458109 + 0.888896i \(0.651473\pi\)
\(734\) −21.4146 −0.790426
\(735\) 0 0
\(736\) 3.75780 0.138514
\(737\) −1.91381 −0.0704962
\(738\) 0 0
\(739\) 19.4792 0.716553 0.358276 0.933616i \(-0.383365\pi\)
0.358276 + 0.933616i \(0.383365\pi\)
\(740\) 2.89942 0.106585
\(741\) 0 0
\(742\) −18.8200 −0.690905
\(743\) −27.3858 −1.00469 −0.502344 0.864668i \(-0.667529\pi\)
−0.502344 + 0.864668i \(0.667529\pi\)
\(744\) 0 0
\(745\) −50.5159 −1.85076
\(746\) 35.6050 1.30359
\(747\) 0 0
\(748\) 0.583068 0.0213191
\(749\) −19.0072 −0.694508
\(750\) 0 0
\(751\) −25.2924 −0.922933 −0.461466 0.887158i \(-0.652677\pi\)
−0.461466 + 0.887158i \(0.652677\pi\)
\(752\) −28.2422 −1.02989
\(753\) 0 0
\(754\) 96.7002 3.52161
\(755\) 75.4690 2.74660
\(756\) 0 0
\(757\) −41.9646 −1.52523 −0.762614 0.646853i \(-0.776085\pi\)
−0.762614 + 0.646853i \(0.776085\pi\)
\(758\) −0.125877 −0.00457207
\(759\) 0 0
\(760\) −11.0541 −0.400974
\(761\) 33.9866 1.23201 0.616006 0.787741i \(-0.288750\pi\)
0.616006 + 0.787741i \(0.288750\pi\)
\(762\) 0 0
\(763\) 12.3494 0.447079
\(764\) 0.341256 0.0123462
\(765\) 0 0
\(766\) 38.9722 1.40812
\(767\) −11.5045 −0.415402
\(768\) 0 0
\(769\) −20.1039 −0.724965 −0.362483 0.931991i \(-0.618071\pi\)
−0.362483 + 0.931991i \(0.618071\pi\)
\(770\) −8.32743 −0.300100
\(771\) 0 0
\(772\) 1.54612 0.0556462
\(773\) 44.3753 1.59607 0.798034 0.602613i \(-0.205874\pi\)
0.798034 + 0.602613i \(0.205874\pi\)
\(774\) 0 0
\(775\) 83.7936 3.00995
\(776\) 22.7856 0.817955
\(777\) 0 0
\(778\) 15.0895 0.540985
\(779\) −2.46050 −0.0881567
\(780\) 0 0
\(781\) −9.46050 −0.338523
\(782\) 31.9961 1.14418
\(783\) 0 0
\(784\) 21.3356 0.761985
\(785\) −91.9338 −3.28126
\(786\) 0 0
\(787\) −28.7103 −1.02341 −0.511706 0.859161i \(-0.670986\pi\)
−0.511706 + 0.859161i \(0.670986\pi\)
\(788\) −1.64862 −0.0587297
\(789\) 0 0
\(790\) −89.0305 −3.16756
\(791\) −13.1492 −0.467532
\(792\) 0 0
\(793\) −6.29960 −0.223705
\(794\) −31.5179 −1.11853
\(795\) 0 0
\(796\) 1.15506 0.0409399
\(797\) 9.82004 0.347844 0.173922 0.984759i \(-0.444356\pi\)
0.173922 + 0.984759i \(0.444356\pi\)
\(798\) 0 0
\(799\) −29.1268 −1.03043
\(800\) 8.59454 0.303863
\(801\) 0 0
\(802\) −33.3867 −1.17893
\(803\) −4.64766 −0.164012
\(804\) 0 0
\(805\) −28.5087 −1.00480
\(806\) 69.1387 2.43531
\(807\) 0 0
\(808\) −11.0541 −0.388881
\(809\) −55.9368 −1.96663 −0.983316 0.181907i \(-0.941773\pi\)
−0.983316 + 0.181907i \(0.941773\pi\)
\(810\) 0 0
\(811\) 4.70175 0.165101 0.0825503 0.996587i \(-0.473693\pi\)
0.0825503 + 0.996587i \(0.473693\pi\)
\(812\) −1.91808 −0.0673116
\(813\) 0 0
\(814\) 7.84922 0.275115
\(815\) −21.7161 −0.760683
\(816\) 0 0
\(817\) 2.13307 0.0746268
\(818\) 54.0085 1.88836
\(819\) 0 0
\(820\) 1.32743 0.0463559
\(821\) −14.3274 −0.500031 −0.250015 0.968242i \(-0.580436\pi\)
−0.250015 + 0.968242i \(0.580436\pi\)
\(822\) 0 0
\(823\) −5.83482 −0.203389 −0.101695 0.994816i \(-0.532426\pi\)
−0.101695 + 0.994816i \(0.532426\pi\)
\(824\) −35.6539 −1.24206
\(825\) 0 0
\(826\) 3.65779 0.127271
\(827\) −36.8784 −1.28239 −0.641194 0.767379i \(-0.721560\pi\)
−0.641194 + 0.767379i \(0.721560\pi\)
\(828\) 0 0
\(829\) −8.00720 −0.278101 −0.139051 0.990285i \(-0.544405\pi\)
−0.139051 + 0.990285i \(0.544405\pi\)
\(830\) −53.7821 −1.86680
\(831\) 0 0
\(832\) −47.8027 −1.65726
\(833\) 22.0039 0.762389
\(834\) 0 0
\(835\) −8.32743 −0.288183
\(836\) 0.133074 0.00460248
\(837\) 0 0
\(838\) 35.8679 1.23904
\(839\) 20.0029 0.690578 0.345289 0.938496i \(-0.387781\pi\)
0.345289 + 0.938496i \(0.387781\pi\)
\(840\) 0 0
\(841\) 76.0305 2.62174
\(842\) −45.9181 −1.58244
\(843\) 0 0
\(844\) 1.93445 0.0665864
\(845\) 116.507 4.00795
\(846\) 0 0
\(847\) −1.40642 −0.0483252
\(848\) 38.9253 1.33670
\(849\) 0 0
\(850\) 73.1790 2.51002
\(851\) 26.8716 0.921146
\(852\) 0 0
\(853\) −38.5083 −1.31850 −0.659250 0.751923i \(-0.729126\pi\)
−0.659250 + 0.751923i \(0.729126\pi\)
\(854\) 2.00293 0.0685387
\(855\) 0 0
\(856\) 36.8496 1.25949
\(857\) −6.19863 −0.211741 −0.105871 0.994380i \(-0.533763\pi\)
−0.105871 + 0.994380i \(0.533763\pi\)
\(858\) 0 0
\(859\) 37.6883 1.28591 0.642954 0.765905i \(-0.277709\pi\)
0.642954 + 0.765905i \(0.277709\pi\)
\(860\) −1.15078 −0.0392414
\(861\) 0 0
\(862\) −21.1838 −0.721525
\(863\) −48.0085 −1.63423 −0.817115 0.576475i \(-0.804428\pi\)
−0.817115 + 0.576475i \(0.804428\pi\)
\(864\) 0 0
\(865\) 77.6854 2.64138
\(866\) 42.2455 1.43556
\(867\) 0 0
\(868\) −1.37139 −0.0465481
\(869\) −15.0364 −0.510074
\(870\) 0 0
\(871\) −12.3642 −0.418945
\(872\) −23.9420 −0.810780
\(873\) 0 0
\(874\) 7.30252 0.247012
\(875\) −36.6942 −1.24049
\(876\) 0 0
\(877\) 35.1838 1.18807 0.594037 0.804438i \(-0.297533\pi\)
0.594037 + 0.804438i \(0.297533\pi\)
\(878\) −18.7663 −0.633333
\(879\) 0 0
\(880\) 17.2235 0.580605
\(881\) −24.6621 −0.830886 −0.415443 0.909619i \(-0.636373\pi\)
−0.415443 + 0.909619i \(0.636373\pi\)
\(882\) 0 0
\(883\) −19.2193 −0.646780 −0.323390 0.946266i \(-0.604823\pi\)
−0.323390 + 0.946266i \(0.604823\pi\)
\(884\) 3.76691 0.126695
\(885\) 0 0
\(886\) −51.3078 −1.72372
\(887\) 22.2498 0.747075 0.373537 0.927615i \(-0.378145\pi\)
0.373537 + 0.927615i \(0.378145\pi\)
\(888\) 0 0
\(889\) 17.6418 0.591687
\(890\) −43.3858 −1.45429
\(891\) 0 0
\(892\) 0.981333 0.0328575
\(893\) −6.64766 −0.222456
\(894\) 0 0
\(895\) −79.8725 −2.66984
\(896\) 17.3126 0.578375
\(897\) 0 0
\(898\) −48.2819 −1.61119
\(899\) 75.0947 2.50455
\(900\) 0 0
\(901\) 40.1445 1.33741
\(902\) 3.59358 0.119653
\(903\) 0 0
\(904\) 25.4926 0.847872
\(905\) −51.3930 −1.70836
\(906\) 0 0
\(907\) −38.5480 −1.27997 −0.639983 0.768389i \(-0.721059\pi\)
−0.639983 + 0.768389i \(0.721059\pi\)
\(908\) 1.43464 0.0476102
\(909\) 0 0
\(910\) −53.7994 −1.78343
\(911\) −4.28093 −0.141834 −0.0709168 0.997482i \(-0.522592\pi\)
−0.0709168 + 0.997482i \(0.522592\pi\)
\(912\) 0 0
\(913\) −9.08326 −0.300612
\(914\) 46.5801 1.54073
\(915\) 0 0
\(916\) 0.717100 0.0236937
\(917\) −28.2105 −0.931592
\(918\) 0 0
\(919\) −7.52313 −0.248165 −0.124083 0.992272i \(-0.539599\pi\)
−0.124083 + 0.992272i \(0.539599\pi\)
\(920\) 55.2704 1.82221
\(921\) 0 0
\(922\) 19.7060 0.648983
\(923\) −61.1196 −2.01178
\(924\) 0 0
\(925\) 61.4585 2.02074
\(926\) −15.8502 −0.520869
\(927\) 0 0
\(928\) 7.70232 0.252841
\(929\) −11.0833 −0.363630 −0.181815 0.983333i \(-0.558197\pi\)
−0.181815 + 0.983333i \(0.558197\pi\)
\(930\) 0 0
\(931\) 5.02198 0.164589
\(932\) −0.462861 −0.0151615
\(933\) 0 0
\(934\) −20.7204 −0.677993
\(935\) 17.7630 0.580913
\(936\) 0 0
\(937\) −34.1373 −1.11522 −0.557609 0.830104i \(-0.688281\pi\)
−0.557609 + 0.830104i \(0.688281\pi\)
\(938\) 3.93113 0.128356
\(939\) 0 0
\(940\) 3.58638 0.116975
\(941\) 7.02491 0.229005 0.114503 0.993423i \(-0.463473\pi\)
0.114503 + 0.993423i \(0.463473\pi\)
\(942\) 0 0
\(943\) 12.3025 0.400625
\(944\) −7.56536 −0.246231
\(945\) 0 0
\(946\) −3.11537 −0.101289
\(947\) −8.37139 −0.272034 −0.136017 0.990707i \(-0.543430\pi\)
−0.136017 + 0.990707i \(0.543430\pi\)
\(948\) 0 0
\(949\) −30.0263 −0.974693
\(950\) 16.7017 0.541876
\(951\) 0 0
\(952\) 16.8023 0.544567
\(953\) 51.1632 1.65734 0.828669 0.559738i \(-0.189098\pi\)
0.828669 + 0.559738i \(0.189098\pi\)
\(954\) 0 0
\(955\) 10.3963 0.336416
\(956\) −1.33036 −0.0430268
\(957\) 0 0
\(958\) −9.57256 −0.309275
\(959\) 8.92994 0.288363
\(960\) 0 0
\(961\) 22.6912 0.731975
\(962\) 50.7099 1.63495
\(963\) 0 0
\(964\) −0.965540 −0.0310980
\(965\) 47.1023 1.51628
\(966\) 0 0
\(967\) −39.1990 −1.26056 −0.630278 0.776370i \(-0.717059\pi\)
−0.630278 + 0.776370i \(0.717059\pi\)
\(968\) 2.72665 0.0876380
\(969\) 0 0
\(970\) −49.4796 −1.58869
\(971\) 11.4385 0.367080 0.183540 0.983012i \(-0.441244\pi\)
0.183540 + 0.983012i \(0.441244\pi\)
\(972\) 0 0
\(973\) 17.9401 0.575132
\(974\) −57.0813 −1.82900
\(975\) 0 0
\(976\) −4.14263 −0.132602
\(977\) 41.2891 1.32095 0.660477 0.750846i \(-0.270354\pi\)
0.660477 + 0.750846i \(0.270354\pi\)
\(978\) 0 0
\(979\) −7.32743 −0.234186
\(980\) −2.70933 −0.0865465
\(981\) 0 0
\(982\) −23.6840 −0.755788
\(983\) 28.6735 0.914543 0.457272 0.889327i \(-0.348827\pi\)
0.457272 + 0.889327i \(0.348827\pi\)
\(984\) 0 0
\(985\) −50.2249 −1.60030
\(986\) 65.5821 2.08856
\(987\) 0 0
\(988\) 0.859728 0.0273516
\(989\) −10.6654 −0.339139
\(990\) 0 0
\(991\) −9.06848 −0.288070 −0.144035 0.989573i \(-0.546008\pi\)
−0.144035 + 0.989573i \(0.546008\pi\)
\(992\) 5.50700 0.174848
\(993\) 0 0
\(994\) 19.4327 0.616367
\(995\) 35.1885 1.11555
\(996\) 0 0
\(997\) 4.30252 0.136262 0.0681312 0.997676i \(-0.478296\pi\)
0.0681312 + 0.997676i \(0.478296\pi\)
\(998\) −45.2560 −1.43255
\(999\) 0 0
Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))

Twists

       By twisting character
Char Parity Ord Type Twist Min Dim
1.1 even 1 trivial 1881.2.a.i.1.1 3
3.2 odd 2 627.2.a.e.1.3 3
33.32 even 2 6897.2.a.p.1.1 3
    
        By twisted newform
Twist Min Dim Char Parity Ord Type
627.2.a.e.1.3 3 3.2 odd 2
1881.2.a.i.1.1 3 1.1 even 1 trivial
6897.2.a.p.1.1 3 33.32 even 2