Properties

Label 1881.2.a.i.1.2
Level 18811881
Weight 22
Character 1881.1
Self dual yes
Analytic conductor 15.02015.020
Analytic rank 00
Dimension 33
CM no
Inner twists 11

Related objects

Downloads

Learn more

Show commands: Magma / PariGP / SageMath

Newspace parameters

comment: Compute space of new eigenforms
 
[N,k,chi] = [1881,2,Mod(1,1881)]
 
mf = mfinit([N,k,chi],0)
 
lf = mfeigenbasis(mf)
 
from sage.modular.dirichlet import DirichletCharacter
 
H = DirichletGroup(1881, base_ring=CyclotomicField(2))
 
chi = DirichletCharacter(H, H._module([0, 0, 0]))
 
N = Newforms(chi, 2, names="a")
 
//Please install CHIMP (https://github.com/edgarcosta/CHIMP) if you want to run this code
 
chi := DirichletCharacter("1881.1");
 
S:= CuspForms(chi, 2);
 
N := Newforms(S);
 
Level: N N == 1881=321119 1881 = 3^{2} \cdot 11 \cdot 19
Weight: k k == 2 2
Character orbit: [χ][\chi] == 1881.a (trivial)

Newform invariants

comment: select newform
 
sage: f = N[0] # Warning: the index may be different
 
gp: f = lf[1] \\ Warning: the index may be different
 
Self dual: yes
Analytic conductor: 15.019860620215.0198606202
Analytic rank: 00
Dimension: 33
Coefficient field: 3.3.321.1
comment: defining polynomial
 
gp: f.mod \\ as an extension of the character field
 
Defining polynomial: x3x24x+1 x^{3} - x^{2} - 4x + 1 Copy content Toggle raw display
Coefficient ring: Z[a1,a2]\Z[a_1, a_2]
Coefficient ring index: 1 1
Twist minimal: no (minimal twist has level 627)
Fricke sign: 1-1
Sato-Tate group: SU(2)\mathrm{SU}(2)

Embedding invariants

Embedding label 1.2
Root 0.2391230.239123 of defining polynomial
Character χ\chi == 1881.1

qq-expansion

comment: q-expansion
 
sage: f.q_expansion() # note that sage often uses an isomorphic number field
 
gp: mfcoefs(f, 20)
 
f(q)f(q) == q+0.760877q21.42107q41.94282q55.18194q72.60301q81.47825q101.00000q114.23912q133.94282q14+0.861564q16+2.28263q171.00000q19+2.76088q200.760877q22+5.00000q231.22545q253.22545q26+7.36389q28+5.13844q29+6.66019q31+5.86156q32+1.73680q34+10.0676q359.72777q370.760877q38+5.05718q40+0.239123q410.578933q43+1.42107q44+3.80438q463.12476q47+19.8525q490.932417q50+6.02408q52+8.82846q53+1.94282q55+13.4887q56+3.90972q589.54583q599.46457q61+5.06758q62+2.73680q64+8.23585q6510.9669q673.24377q68+7.66019q70+7.23912q715.12476q737.40164q74+1.42107q76+5.18194q77+7.03775q791.67386q80+0.181943q8213.3502q834.43474q850.440497q86+2.60301q88+6.66019q89+21.9669q917.10533q922.37756q94+1.94282q958.74720q97+15.1053q98+O(q100)q+0.760877 q^{2} -1.42107 q^{4} -1.94282 q^{5} -5.18194 q^{7} -2.60301 q^{8} -1.47825 q^{10} -1.00000 q^{11} -4.23912 q^{13} -3.94282 q^{14} +0.861564 q^{16} +2.28263 q^{17} -1.00000 q^{19} +2.76088 q^{20} -0.760877 q^{22} +5.00000 q^{23} -1.22545 q^{25} -3.22545 q^{26} +7.36389 q^{28} +5.13844 q^{29} +6.66019 q^{31} +5.86156 q^{32} +1.73680 q^{34} +10.0676 q^{35} -9.72777 q^{37} -0.760877 q^{38} +5.05718 q^{40} +0.239123 q^{41} -0.578933 q^{43} +1.42107 q^{44} +3.80438 q^{46} -3.12476 q^{47} +19.8525 q^{49} -0.932417 q^{50} +6.02408 q^{52} +8.82846 q^{53} +1.94282 q^{55} +13.4887 q^{56} +3.90972 q^{58} -9.54583 q^{59} -9.46457 q^{61} +5.06758 q^{62} +2.73680 q^{64} +8.23585 q^{65} -10.9669 q^{67} -3.24377 q^{68} +7.66019 q^{70} +7.23912 q^{71} -5.12476 q^{73} -7.40164 q^{74} +1.42107 q^{76} +5.18194 q^{77} +7.03775 q^{79} -1.67386 q^{80} +0.181943 q^{82} -13.3502 q^{83} -4.43474 q^{85} -0.440497 q^{86} +2.60301 q^{88} +6.66019 q^{89} +21.9669 q^{91} -7.10533 q^{92} -2.37756 q^{94} +1.94282 q^{95} -8.74720 q^{97} +15.1053 q^{98} +O(q^{100})
Tr(f)(q)\operatorname{Tr}(f)(q) == 3q+2q2+4q4+3q57q7+9q85q103q1113q133q14+10q16+6q173q19+8q202q22+15q23+6q25+5q28+8q29+12q31++4q98+O(q100) 3 q + 2 q^{2} + 4 q^{4} + 3 q^{5} - 7 q^{7} + 9 q^{8} - 5 q^{10} - 3 q^{11} - 13 q^{13} - 3 q^{14} + 10 q^{16} + 6 q^{17} - 3 q^{19} + 8 q^{20} - 2 q^{22} + 15 q^{23} + 6 q^{25} + 5 q^{28} + 8 q^{29} + 12 q^{31}+ \cdots + 4 q^{98}+O(q^{100}) Copy content Toggle raw display

Coefficient data

For each nn we display the coefficients of the qq-expansion ana_n, the Satake parameters αp\alpha_p, and the Satake angles θp=Arg(αp)\theta_p = \textrm{Arg}(\alpha_p).



Display apa_p with pp up to: 50 250 1000 (See ana_n instead) (See ana_n instead) (See ana_n instead) Display ana_n with nn up to: 50 250 1000 (See only apa_p) (See only apa_p) (See only apa_p)
Significant digits:
nn ana_n an/n(k1)/2a_n / n^{(k-1)/2} αn \alpha_n θn \theta_n
pp apa_p ap/p(k1)/2a_p / p^{(k-1)/2} αp \alpha_p θp \theta_p
22 0.760877 0.538021 0.269011 0.963137i 0.413303π-0.413303\pi
0.269011 + 0.963137i 0.413303π0.413303\pi
33 0 0
44 −1.42107 −0.710533
55 −1.94282 −0.868856 −0.434428 0.900707i 0.643049π-0.643049\pi
−0.434428 + 0.900707i 0.643049π0.643049\pi
66 0 0
77 −5.18194 −1.95859 −0.979295 0.202437i 0.935114π-0.935114\pi
−0.979295 + 0.202437i 0.935114π0.935114\pi
88 −2.60301 −0.920303
99 0 0
1010 −1.47825 −0.467463
1111 −1.00000 −0.301511
1212 0 0
1313 −4.23912 −1.17572 −0.587861 0.808962i 0.700030π-0.700030\pi
−0.587861 + 0.808962i 0.700030π0.700030\pi
1414 −3.94282 −1.05376
1515 0 0
1616 0.861564 0.215391
1717 2.28263 0.553619 0.276810 0.960925i 0.410723π-0.410723\pi
0.276810 + 0.960925i 0.410723π0.410723\pi
1818 0 0
1919 −1.00000 −0.229416
2020 2.76088 0.617351
2121 0 0
2222 −0.760877 −0.162219
2323 5.00000 1.04257 0.521286 0.853382i 0.325452π-0.325452\pi
0.521286 + 0.853382i 0.325452π0.325452\pi
2424 0 0
2525 −1.22545 −0.245090
2626 −3.22545 −0.632563
2727 0 0
2828 7.36389 1.39164
2929 5.13844 0.954184 0.477092 0.878853i 0.341691π-0.341691\pi
0.477092 + 0.878853i 0.341691π0.341691\pi
3030 0 0
3131 6.66019 1.19621 0.598103 0.801419i 0.295921π-0.295921\pi
0.598103 + 0.801419i 0.295921π0.295921\pi
3232 5.86156 1.03619
3333 0 0
3434 1.73680 0.297859
3535 10.0676 1.70173
3636 0 0
3737 −9.72777 −1.59924 −0.799618 0.600509i 0.794965π-0.794965\pi
−0.799618 + 0.600509i 0.794965π0.794965\pi
3838 −0.760877 −0.123431
3939 0 0
4040 5.05718 0.799610
4141 0.239123 0.0373448 0.0186724 0.999826i 0.494056π-0.494056\pi
0.0186724 + 0.999826i 0.494056π0.494056\pi
4242 0 0
4343 −0.578933 −0.0882865 −0.0441433 0.999025i 0.514056π-0.514056\pi
−0.0441433 + 0.999025i 0.514056π0.514056\pi
4444 1.42107 0.214234
4545 0 0
4646 3.80438 0.560926
4747 −3.12476 −0.455794 −0.227897 0.973685i 0.573185π-0.573185\pi
−0.227897 + 0.973685i 0.573185π0.573185\pi
4848 0 0
4949 19.8525 2.83608
5050 −0.932417 −0.131864
5151 0 0
5252 6.02408 0.835389
5353 8.82846 1.21268 0.606341 0.795205i 0.292637π-0.292637\pi
0.606341 + 0.795205i 0.292637π0.292637\pi
5454 0 0
5555 1.94282 0.261970
5656 13.4887 1.80250
5757 0 0
5858 3.90972 0.513371
5959 −9.54583 −1.24276 −0.621381 0.783509i 0.713428π-0.713428\pi
−0.621381 + 0.783509i 0.713428π0.713428\pi
6060 0 0
6161 −9.46457 −1.21181 −0.605907 0.795535i 0.707190π-0.707190\pi
−0.605907 + 0.795535i 0.707190π0.707190\pi
6262 5.06758 0.643584
6363 0 0
6464 2.73680 0.342100
6565 8.23585 1.02153
6666 0 0
6767 −10.9669 −1.33982 −0.669910 0.742442i 0.733667π-0.733667\pi
−0.669910 + 0.742442i 0.733667π0.733667\pi
6868 −3.24377 −0.393365
6969 0 0
7070 7.66019 0.915568
7171 7.23912 0.859126 0.429563 0.903037i 0.358668π-0.358668\pi
0.429563 + 0.903037i 0.358668π0.358668\pi
7272 0 0
7373 −5.12476 −0.599808 −0.299904 0.953969i 0.596955π-0.596955\pi
−0.299904 + 0.953969i 0.596955π0.596955\pi
7474 −7.40164 −0.860423
7575 0 0
7676 1.42107 0.163008
7777 5.18194 0.590537
7878 0 0
7979 7.03775 0.791809 0.395904 0.918292i 0.370431π-0.370431\pi
0.395904 + 0.918292i 0.370431π0.370431\pi
8080 −1.67386 −0.187144
8181 0 0
8282 0.181943 0.0200923
8383 −13.3502 −1.46538 −0.732688 0.680565i 0.761735π-0.761735\pi
−0.732688 + 0.680565i 0.761735π0.761735\pi
8484 0 0
8585 −4.43474 −0.481015
8686 −0.440497 −0.0475000
8787 0 0
8888 2.60301 0.277482
8989 6.66019 0.705979 0.352989 0.935627i 0.385165π-0.385165\pi
0.352989 + 0.935627i 0.385165π0.385165\pi
9090 0 0
9191 21.9669 2.30276
9292 −7.10533 −0.740782
9393 0 0
9494 −2.37756 −0.245227
9595 1.94282 0.199329
9696 0 0
9797 −8.74720 −0.888144 −0.444072 0.895991i 0.646467π-0.646467\pi
−0.444072 + 0.895991i 0.646467π0.646467\pi
9898 15.1053 1.52587
9999 0 0
100100 1.74145 0.174145
101101 1.94282 0.193318 0.0966589 0.995318i 0.469184π-0.469184\pi
0.0966589 + 0.995318i 0.469184π0.469184\pi
102102 0 0
103103 17.7954 1.75343 0.876714 0.481011i 0.159730π-0.159730\pi
0.876714 + 0.481011i 0.159730π0.159730\pi
104104 11.0345 1.08202
105105 0 0
106106 6.71737 0.652449
107107 5.29630 0.512013 0.256006 0.966675i 0.417593π-0.417593\pi
0.256006 + 0.966675i 0.417593π0.417593\pi
108108 0 0
109109 2.54583 0.243846 0.121923 0.992540i 0.461094π-0.461094\pi
0.121923 + 0.992540i 0.461094π0.461094\pi
110110 1.47825 0.140945
111111 0 0
112112 −4.46457 −0.421863
113113 −16.1923 −1.52325 −0.761624 0.648019i 0.775598π-0.775598\pi
−0.761624 + 0.648019i 0.775598π0.775598\pi
114114 0 0
115115 −9.71410 −0.905845
116116 −7.30206 −0.677979
117117 0 0
118118 −7.26320 −0.668632
119119 −11.8285 −1.08431
120120 0 0
121121 1.00000 0.0909091
122122 −7.20137 −0.651982
123123 0 0
124124 −9.46457 −0.849944
125125 12.0949 1.08180
126126 0 0
127127 12.1111 1.07469 0.537343 0.843364i 0.319428π-0.319428\pi
0.537343 + 0.843364i 0.319428π0.319428\pi
128128 −9.64076 −0.852131
129129 0 0
130130 6.26647 0.549606
131131 −12.8148 −1.11963 −0.559817 0.828617i 0.689128π-0.689128\pi
−0.559817 + 0.828617i 0.689128π0.689128\pi
132132 0 0
133133 5.18194 0.449331
134134 −8.34446 −0.720851
135135 0 0
136136 −5.94171 −0.509497
137137 19.1923 1.63971 0.819856 0.572569i 0.194053π-0.194053\pi
0.819856 + 0.572569i 0.194053π0.194053\pi
138138 0 0
139139 9.01040 0.764252 0.382126 0.924110i 0.375192π-0.375192\pi
0.382126 + 0.924110i 0.375192π0.375192\pi
140140 −14.3067 −1.20914
141141 0 0
142142 5.50808 0.462228
143143 4.23912 0.354493
144144 0 0
145145 −9.98306 −0.829048
146146 −3.89931 −0.322709
147147 0 0
148148 13.8238 1.13631
149149 −10.2391 −0.838822 −0.419411 0.907797i 0.637763π-0.637763\pi
−0.419411 + 0.907797i 0.637763π0.637763\pi
150150 0 0
151151 −10.0345 −0.816594 −0.408297 0.912849i 0.633877π-0.633877\pi
−0.408297 + 0.912849i 0.633877π0.633877\pi
152152 2.60301 0.211132
153153 0 0
154154 3.94282 0.317721
155155 −12.9396 −1.03933
156156 0 0
157157 3.53216 0.281897 0.140948 0.990017i 0.454985π-0.454985\pi
0.140948 + 0.990017i 0.454985π0.454985\pi
158158 5.35486 0.426010
159159 0 0
160160 −11.3880 −0.900298
161161 −25.9097 −2.04197
162162 0 0
163163 11.7472 0.920112 0.460056 0.887890i 0.347829π-0.347829\pi
0.460056 + 0.887890i 0.347829π0.347829\pi
164164 −0.339810 −0.0265347
165165 0 0
166166 −10.1579 −0.788403
167167 3.94282 0.305105 0.152552 0.988295i 0.451251π-0.451251\pi
0.152552 + 0.988295i 0.451251π0.451251\pi
168168 0 0
169169 4.97017 0.382320
170170 −3.37429 −0.258796
171171 0 0
172172 0.822703 0.0627305
173173 1.17154 0.0890705 0.0445353 0.999008i 0.485819π-0.485819\pi
0.0445353 + 0.999008i 0.485819π0.485819\pi
174174 0 0
175175 6.35021 0.480031
176176 −0.861564 −0.0649428
177177 0 0
178178 5.06758 0.379831
179179 −3.93242 −0.293923 −0.146961 0.989142i 0.546949π-0.546949\pi
−0.146961 + 0.989142i 0.546949π0.546949\pi
180180 0 0
181181 13.5322 1.00584 0.502919 0.864334i 0.332260π-0.332260\pi
0.502919 + 0.864334i 0.332260π0.332260\pi
182182 16.7141 1.23893
183183 0 0
184184 −13.0150 −0.959482
185185 18.8993 1.38951
186186 0 0
187187 −2.28263 −0.166922
188188 4.44050 0.323857
189189 0 0
190190 1.47825 0.107243
191191 15.2255 1.10167 0.550837 0.834613i 0.314308π-0.314308\pi
0.550837 + 0.834613i 0.314308π0.314308\pi
192192 0 0
193193 18.2826 1.31601 0.658006 0.753012i 0.271400π-0.271400\pi
0.658006 + 0.753012i 0.271400π0.271400\pi
194194 −6.65554 −0.477840
195195 0 0
196196 −28.2118 −2.01513
197197 −14.1625 −1.00904 −0.504519 0.863401i 0.668330π-0.668330\pi
−0.504519 + 0.863401i 0.668330π0.668330\pi
198198 0 0
199199 17.7850 1.26074 0.630371 0.776294i 0.282903π-0.282903\pi
0.630371 + 0.776294i 0.282903π0.282903\pi
200200 3.18986 0.225557
201201 0 0
202202 1.47825 0.104009
203203 −26.6271 −1.86886
204204 0 0
205205 −0.464574 −0.0324472
206206 13.5401 0.943382
207207 0 0
208208 −3.65227 −0.253240
209209 1.00000 0.0691714
210210 0 0
211211 −18.5562 −1.27746 −0.638732 0.769429i 0.720541π-0.720541\pi
−0.638732 + 0.769429i 0.720541π0.720541\pi
212212 −12.5458 −0.861651
213213 0 0
214214 4.02983 0.275474
215215 1.12476 0.0767082
216216 0 0
217217 −34.5127 −2.34288
218218 1.93706 0.131194
219219 0 0
220220 −2.76088 −0.186138
221221 −9.67635 −0.650902
222222 0 0
223223 −7.72777 −0.517490 −0.258745 0.965946i 0.583309π-0.583309\pi
−0.258745 + 0.965946i 0.583309π0.583309\pi
224224 −30.3743 −2.02947
225225 0 0
226226 −12.3204 −0.819539
227227 −0.545830 −0.0362280 −0.0181140 0.999836i 0.505766π-0.505766\pi
−0.0181140 + 0.999836i 0.505766π0.505766\pi
228228 0 0
229229 7.16251 0.473312 0.236656 0.971593i 0.423949π-0.423949\pi
0.236656 + 0.971593i 0.423949π0.423949\pi
230230 −7.39123 −0.487363
231231 0 0
232232 −13.3754 −0.878138
233233 −3.25855 −0.213475 −0.106737 0.994287i 0.534040π-0.534040\pi
−0.106737 + 0.994287i 0.534040π0.534040\pi
234234 0 0
235235 6.07085 0.396019
236236 13.5653 0.883023
237237 0 0
238238 −9.00000 −0.583383
239239 25.3171 1.63763 0.818814 0.574059i 0.194632π-0.194632\pi
0.818814 + 0.574059i 0.194632π0.194632\pi
240240 0 0
241241 −10.5836 −0.681748 −0.340874 0.940109i 0.610723π-0.610723\pi
−0.340874 + 0.940109i 0.610723π0.610723\pi
242242 0.760877 0.0489110
243243 0 0
244244 13.4498 0.861035
245245 −38.5699 −2.46414
246246 0 0
247247 4.23912 0.269729
248248 −17.3365 −1.10087
249249 0 0
250250 9.20275 0.582033
251251 30.7187 1.93895 0.969475 0.245190i 0.0788503π-0.0788503\pi
0.969475 + 0.245190i 0.0788503π0.0788503\pi
252252 0 0
253253 −5.00000 −0.314347
254254 9.21505 0.578203
255255 0 0
256256 −12.8090 −0.800564
257257 −25.7817 −1.60822 −0.804109 0.594482i 0.797357π-0.797357\pi
−0.804109 + 0.594482i 0.797357π0.797357\pi
258258 0 0
259259 50.4088 3.13225
260260 −11.7037 −0.725832
261261 0 0
262262 −9.75047 −0.602386
263263 25.5893 1.57791 0.788953 0.614453i 0.210623π-0.210623\pi
0.788953 + 0.614453i 0.210623π0.210623\pi
264264 0 0
265265 −17.1521 −1.05365
266266 3.94282 0.241750
267267 0 0
268268 15.5847 0.951986
269269 26.4555 1.61302 0.806512 0.591218i 0.201353π-0.201353\pi
0.806512 + 0.591218i 0.201353π0.201353\pi
270270 0 0
271271 9.44514 0.573752 0.286876 0.957968i 0.407383π-0.407383\pi
0.286876 + 0.957968i 0.407383π0.407383\pi
272272 1.96663 0.119245
273273 0 0
274274 14.6030 0.882200
275275 1.22545 0.0738974
276276 0 0
277277 −12.3398 −0.741427 −0.370714 0.928747i 0.620887π-0.620887\pi
−0.370714 + 0.928747i 0.620887π0.620887\pi
278278 6.85581 0.411184
279279 0 0
280280 −26.2060 −1.56611
281281 0.899313 0.0536485 0.0268243 0.999640i 0.491461π-0.491461\pi
0.0268243 + 0.999640i 0.491461π0.491461\pi
282282 0 0
283283 −1.37756 −0.0818874 −0.0409437 0.999161i 0.513036π-0.513036\pi
−0.0409437 + 0.999161i 0.513036π0.513036\pi
284284 −10.2873 −0.610438
285285 0 0
286286 3.22545 0.190725
287287 −1.23912 −0.0731431
288288 0 0
289289 −11.7896 −0.693506
290290 −7.59588 −0.446045
291291 0 0
292292 7.28263 0.426184
293293 28.5322 1.66687 0.833433 0.552620i 0.186372π-0.186372\pi
0.833433 + 0.552620i 0.186372π0.186372\pi
294294 0 0
295295 18.5458 1.07978
296296 25.3215 1.47178
297297 0 0
298298 −7.79071 −0.451304
299299 −21.1956 −1.22577
300300 0 0
301301 3.00000 0.172917
302302 −7.63500 −0.439345
303303 0 0
304304 −0.861564 −0.0494141
305305 18.3880 1.05289
306306 0 0
307307 3.42107 0.195251 0.0976253 0.995223i 0.468875π-0.468875\pi
0.0976253 + 0.995223i 0.468875π0.468875\pi
308308 −7.36389 −0.419596
309309 0 0
310310 −9.84540 −0.559181
311311 16.8525 0.955620 0.477810 0.878463i 0.341431π-0.341431\pi
0.477810 + 0.878463i 0.341431π0.341431\pi
312312 0 0
313313 −1.07661 −0.0608536 −0.0304268 0.999537i 0.509687π-0.509687\pi
−0.0304268 + 0.999537i 0.509687π0.509687\pi
314314 2.68754 0.151666
315315 0 0
316316 −10.0011 −0.562606
317317 −18.2197 −1.02332 −0.511660 0.859188i 0.670969π-0.670969\pi
−0.511660 + 0.859188i 0.670969π0.670969\pi
318318 0 0
319319 −5.13844 −0.287697
320320 −5.31711 −0.297235
321321 0 0
322322 −19.7141 −1.09862
323323 −2.28263 −0.127009
324324 0 0
325325 5.19483 0.288158
326326 8.93817 0.495040
327327 0 0
328328 −0.622440 −0.0343685
329329 16.1923 0.892713
330330 0 0
331331 −8.82846 −0.485256 −0.242628 0.970119i 0.578009π-0.578009\pi
−0.242628 + 0.970119i 0.578009π0.578009\pi
332332 18.9715 1.04120
333333 0 0
334334 3.00000 0.164153
335335 21.3067 1.16411
336336 0 0
337337 −3.85254 −0.209861 −0.104931 0.994480i 0.533462π-0.533462\pi
−0.104931 + 0.994480i 0.533462π0.533462\pi
338338 3.78168 0.205696
339339 0 0
340340 6.30206 0.341777
341341 −6.66019 −0.360670
342342 0 0
343343 −66.6011 −3.59612
344344 1.50697 0.0812503
345345 0 0
346346 0.891397 0.0479218
347347 19.4120 1.04209 0.521046 0.853528i 0.325542π-0.325542\pi
0.521046 + 0.853528i 0.325542π0.325542\pi
348348 0 0
349349 −32.9669 −1.76468 −0.882339 0.470615i 0.844032π-0.844032\pi
−0.882339 + 0.470615i 0.844032π0.844032\pi
350350 4.83173 0.258267
351351 0 0
352352 −5.86156 −0.312422
353353 −23.1546 −1.23239 −0.616197 0.787592i 0.711328π-0.711328\pi
−0.616197 + 0.787592i 0.711328π0.711328\pi
354354 0 0
355355 −14.0643 −0.746456
356356 −9.46457 −0.501621
357357 0 0
358358 −2.99208 −0.158137
359359 35.3685 1.86668 0.933340 0.358994i 0.116880π-0.116880\pi
0.933340 + 0.358994i 0.116880π0.116880\pi
360360 0 0
361361 1.00000 0.0526316
362362 10.2963 0.541162
363363 0 0
364364 −31.2164 −1.63619
365365 9.95649 0.521147
366366 0 0
367367 −28.4224 −1.48364 −0.741820 0.670599i 0.766037π-0.766037\pi
−0.741820 + 0.670599i 0.766037π0.766037\pi
368368 4.30782 0.224561
369369 0 0
370370 14.3800 0.747583
371371 −45.7486 −2.37515
372372 0 0
373373 17.5997 0.911280 0.455640 0.890164i 0.349410π-0.349410\pi
0.455640 + 0.890164i 0.349410π0.349410\pi
374374 −1.73680 −0.0898078
375375 0 0
376376 8.13379 0.419468
377377 −21.7825 −1.12185
378378 0 0
379379 12.9669 0.666065 0.333032 0.942915i 0.391928π-0.391928\pi
0.333032 + 0.942915i 0.391928π0.391928\pi
380380 −2.76088 −0.141630
381381 0 0
382382 11.5847 0.592724
383383 −8.91299 −0.455432 −0.227716 0.973728i 0.573126π-0.573126\pi
−0.227716 + 0.973728i 0.573126π0.573126\pi
384384 0 0
385385 −10.0676 −0.513092
386386 13.9108 0.708042
387387 0 0
388388 12.4304 0.631056
389389 17.2118 0.872672 0.436336 0.899784i 0.356276π-0.356276\pi
0.436336 + 0.899784i 0.356276π0.356276\pi
390390 0 0
391391 11.4132 0.577188
392392 −51.6764 −2.61005
393393 0 0
394394 −10.7759 −0.542883
395395 −13.6731 −0.687967
396396 0 0
397397 −11.0733 −0.555755 −0.277878 0.960617i 0.589631π-0.589631\pi
−0.277878 + 0.960617i 0.589631π0.589631\pi
398398 13.5322 0.678306
399399 0 0
400400 −1.05580 −0.0527902
401401 15.9759 0.797800 0.398900 0.916995i 0.369392π-0.369392\pi
0.398900 + 0.916995i 0.369392π0.369392\pi
402402 0 0
403403 −28.2334 −1.40640
404404 −2.76088 −0.137359
405405 0 0
406406 −20.2599 −1.00548
407407 9.72777 0.482188
408408 0 0
409409 0.336541 0.0166409 0.00832043 0.999965i 0.497351π-0.497351\pi
0.00832043 + 0.999965i 0.497351π0.497351\pi
410410 −0.353483 −0.0174573
411411 0 0
412412 −25.2884 −1.24587
413413 49.4660 2.43406
414414 0 0
415415 25.9371 1.27320
416416 −24.8479 −1.21827
417417 0 0
418418 0.760877 0.0372157
419419 33.4088 1.63213 0.816063 0.577964i 0.196152π-0.196152\pi
0.816063 + 0.577964i 0.196152π0.196152\pi
420420 0 0
421421 −8.09742 −0.394644 −0.197322 0.980339i 0.563224π-0.563224\pi
−0.197322 + 0.980339i 0.563224π0.563224\pi
422422 −14.1190 −0.687302
423423 0 0
424424 −22.9806 −1.11604
425425 −2.79725 −0.135687
426426 0 0
427427 49.0449 2.37345
428428 −7.52640 −0.363802
429429 0 0
430430 0.855806 0.0412706
431431 −37.4660 −1.80467 −0.902336 0.431034i 0.858149π-0.858149\pi
−0.902336 + 0.431034i 0.858149π0.858149\pi
432432 0 0
433433 2.39372 0.115035 0.0575174 0.998345i 0.481682π-0.481682\pi
0.0575174 + 0.998345i 0.481682π0.481682\pi
434434 −26.2599 −1.26052
435435 0 0
436436 −3.61779 −0.173261
437437 −5.00000 −0.239182
438438 0 0
439439 12.4016 0.591898 0.295949 0.955204i 0.404364π-0.404364\pi
0.295949 + 0.955204i 0.404364π0.404364\pi
440440 −5.05718 −0.241092
441441 0 0
442442 −7.36251 −0.350199
443443 −1.73818 −0.0825833 −0.0412916 0.999147i 0.513147π-0.513147\pi
−0.0412916 + 0.999147i 0.513147π0.513147\pi
444444 0 0
445445 −12.9396 −0.613394
446446 −5.87988 −0.278421
447447 0 0
448448 −14.1819 −0.670034
449449 0.185213 0.00874074 0.00437037 0.999990i 0.498609π-0.498609\pi
0.00437037 + 0.999990i 0.498609π0.498609\pi
450450 0 0
451451 −0.239123 −0.0112599
452452 23.0104 1.08232
453453 0 0
454454 −0.415309 −0.0194914
455455 −42.6777 −2.00076
456456 0 0
457457 18.3034 0.856199 0.428099 0.903732i 0.359183π-0.359183\pi
0.428099 + 0.903732i 0.359183π0.359183\pi
458458 5.44979 0.254652
459459 0 0
460460 13.8044 0.643633
461461 −30.1488 −1.40417 −0.702086 0.712092i 0.747748π-0.747748\pi
−0.702086 + 0.712092i 0.747748π0.747748\pi
462462 0 0
463463 −4.46922 −0.207702 −0.103851 0.994593i 0.533117π-0.533117\pi
−0.103851 + 0.994593i 0.533117π0.533117\pi
464464 4.42709 0.205522
465465 0 0
466466 −2.47936 −0.114854
467467 6.63611 0.307083 0.153541 0.988142i 0.450932π-0.450932\pi
0.153541 + 0.988142i 0.450932π0.450932\pi
468468 0 0
469469 56.8298 2.62416
470470 4.61917 0.213066
471471 0 0
472472 24.8479 1.14372
473473 0.578933 0.0266194
474474 0 0
475475 1.22545 0.0562275
476476 16.8090 0.770441
477477 0 0
478478 19.2632 0.881078
479479 −24.5368 −1.12112 −0.560558 0.828115i 0.689413π-0.689413\pi
−0.560558 + 0.828115i 0.689413π0.689413\pi
480480 0 0
481481 41.2372 1.88026
482482 −8.05280 −0.366795
483483 0 0
484484 −1.42107 −0.0645939
485485 16.9942 0.771669
486486 0 0
487487 16.6498 0.754474 0.377237 0.926117i 0.376874π-0.376874\pi
0.377237 + 0.926117i 0.376874π0.376874\pi
488488 24.6364 1.11524
489489 0 0
490490 −29.3469 −1.32576
491491 −7.77128 −0.350713 −0.175356 0.984505i 0.556108π-0.556108\pi
−0.175356 + 0.984505i 0.556108π0.556108\pi
492492 0 0
493493 11.7292 0.528254
494494 3.22545 0.145120
495495 0 0
496496 5.73818 0.257652
497497 −37.5127 −1.68268
498498 0 0
499499 2.10860 0.0943940 0.0471970 0.998886i 0.484971π-0.484971\pi
0.0471970 + 0.998886i 0.484971π0.484971\pi
500500 −17.1877 −0.768657
501501 0 0
502502 23.3732 1.04320
503503 18.0722 0.805801 0.402900 0.915244i 0.368002π-0.368002\pi
0.402900 + 0.915244i 0.368002π0.368002\pi
504504 0 0
505505 −3.77455 −0.167965
506506 −3.80438 −0.169125
507507 0 0
508508 −17.2107 −0.763600
509509 −30.6077 −1.35666 −0.678330 0.734757i 0.737296π-0.737296\pi
−0.678330 + 0.734757i 0.737296π0.737296\pi
510510 0 0
511511 26.5562 1.17478
512512 9.53543 0.421410
513513 0 0
514514 −19.6167 −0.865255
515515 −34.5732 −1.52348
516516 0 0
517517 3.12476 0.137427
518518 38.3549 1.68522
519519 0 0
520520 −21.4380 −0.940119
521521 −12.9748 −0.568437 −0.284218 0.958760i 0.591734π-0.591734\pi
−0.284218 + 0.958760i 0.591734π0.591734\pi
522522 0 0
523523 −28.2977 −1.23737 −0.618686 0.785639i 0.712335π-0.712335\pi
−0.618686 + 0.785639i 0.712335π0.712335\pi
524524 18.2107 0.795537
525525 0 0
526526 19.4703 0.848947
527527 15.2028 0.662242
528528 0 0
529529 2.00000 0.0869565
530530 −13.0506 −0.566884
531531 0 0
532532 −7.36389 −0.319265
533533 −1.01367 −0.0439071
534534 0 0
535535 −10.2898 −0.444865
536536 28.5469 1.23304
537537 0 0
538538 20.1294 0.867840
539539 −19.8525 −0.855109
540540 0 0
541541 40.2359 1.72987 0.864937 0.501880i 0.167358π-0.167358\pi
0.864937 + 0.501880i 0.167358π0.167358\pi
542542 7.18659 0.308690
543543 0 0
544544 13.3798 0.573653
545545 −4.94609 −0.211867
546546 0 0
547547 1.33189 0.0569477 0.0284738 0.999595i 0.490935π-0.490935\pi
0.0284738 + 0.999595i 0.490935π0.490935\pi
548548 −27.2736 −1.16507
549549 0 0
550550 0.932417 0.0397584
551551 −5.13844 −0.218905
552552 0 0
553553 −36.4692 −1.55083
554554 −9.38907 −0.398904
555555 0 0
556556 −12.8044 −0.543027
557557 7.66019 0.324573 0.162286 0.986744i 0.448113π-0.448113\pi
0.162286 + 0.986744i 0.448113π0.448113\pi
558558 0 0
559559 2.45417 0.103800
560560 8.67386 0.366538
561561 0 0
562562 0.684266 0.0288640
563563 −8.07085 −0.340146 −0.170073 0.985431i 0.554400π-0.554400\pi
−0.170073 + 0.985431i 0.554400π0.554400\pi
564564 0 0
565565 31.4588 1.32348
566566 −1.04815 −0.0440572
567567 0 0
568568 −18.8435 −0.790656
569569 37.2107 1.55995 0.779976 0.625809i 0.215231π-0.215231\pi
0.779976 + 0.625809i 0.215231π0.215231\pi
570570 0 0
571571 −33.3606 −1.39610 −0.698049 0.716050i 0.745948π-0.745948\pi
−0.698049 + 0.716050i 0.745948π0.745948\pi
572572 −6.02408 −0.251879
573573 0 0
574574 −0.942820 −0.0393525
575575 −6.12725 −0.255524
576576 0 0
577577 −32.9234 −1.37062 −0.685309 0.728252i 0.740333π-0.740333\pi
−0.685309 + 0.728252i 0.740333π0.740333\pi
578578 −8.97043 −0.373121
579579 0 0
580580 14.1866 0.589066
581581 69.1801 2.87007
582582 0 0
583583 −8.82846 −0.365637
584584 13.3398 0.552005
585585 0 0
586586 21.7095 0.896809
587587 16.0837 0.663847 0.331924 0.943306i 0.392302π-0.392302\pi
0.331924 + 0.943306i 0.392302π0.392302\pi
588588 0 0
589589 −6.66019 −0.274428
590590 14.1111 0.580944
591591 0 0
592592 −8.38109 −0.344461
593593 22.8856 0.939801 0.469900 0.882719i 0.344290π-0.344290\pi
0.469900 + 0.882719i 0.344290π0.344290\pi
594594 0 0
595595 22.9806 0.942112
596596 14.5505 0.596011
597597 0 0
598598 −16.1273 −0.659492
599599 −30.2438 −1.23573 −0.617863 0.786285i 0.712002π-0.712002\pi
−0.617863 + 0.786285i 0.712002π0.712002\pi
600600 0 0
601601 3.89356 0.158821 0.0794107 0.996842i 0.474696π-0.474696\pi
0.0794107 + 0.996842i 0.474696π0.474696\pi
602602 2.28263 0.0930331
603603 0 0
604604 14.2597 0.580218
605605 −1.94282 −0.0789869
606606 0 0
607607 −22.0377 −0.894485 −0.447242 0.894413i 0.647594π-0.647594\pi
−0.447242 + 0.894413i 0.647594π0.647594\pi
608608 −5.86156 −0.237718
609609 0 0
610610 13.9910 0.566478
611611 13.2463 0.535886
612612 0 0
613613 11.8752 0.479636 0.239818 0.970818i 0.422912π-0.422912\pi
0.239818 + 0.970818i 0.422912π0.422912\pi
614614 2.60301 0.105049
615615 0 0
616616 −13.4887 −0.543473
617617 37.9557 1.52804 0.764020 0.645193i 0.223223π-0.223223\pi
0.764020 + 0.645193i 0.223223π0.223223\pi
618618 0 0
619619 17.4977 0.703291 0.351646 0.936133i 0.385622π-0.385622\pi
0.351646 + 0.936133i 0.385622π0.385622\pi
620620 18.3880 0.738478
621621 0 0
622622 12.8227 0.514144
623623 −34.5127 −1.38272
624624 0 0
625625 −17.3710 −0.694841
626626 −0.819168 −0.0327405
627627 0 0
628628 −5.01943 −0.200297
629629 −22.2049 −0.885368
630630 0 0
631631 7.45090 0.296616 0.148308 0.988941i 0.452617π-0.452617\pi
0.148308 + 0.988941i 0.452617π0.452617\pi
632632 −18.3193 −0.728704
633633 0 0
634634 −13.8629 −0.550568
635635 −23.5297 −0.933746
636636 0 0
637637 −84.1574 −3.33444
638638 −3.90972 −0.154787
639639 0 0
640640 18.7303 0.740379
641641 −19.3009 −0.762342 −0.381171 0.924505i 0.624479π-0.624479\pi
−0.381171 + 0.924505i 0.624479π0.624479\pi
642642 0 0
643643 29.3984 1.15936 0.579679 0.814845i 0.303178π-0.303178\pi
0.579679 + 0.814845i 0.303178π0.303178\pi
644644 36.8194 1.45089
645645 0 0
646646 −1.73680 −0.0683335
647647 −25.9989 −1.02212 −0.511061 0.859545i 0.670747π-0.670747\pi
−0.511061 + 0.859545i 0.670747π0.670747\pi
648648 0 0
649649 9.54583 0.374707
650650 3.95263 0.155035
651651 0 0
652652 −16.6936 −0.653770
653653 29.7609 1.16463 0.582317 0.812962i 0.302146π-0.302146\pi
0.582317 + 0.812962i 0.302146π0.302146\pi
654654 0 0
655655 24.8968 0.972799
656656 0.206020 0.00804373
657657 0 0
658658 12.3204 0.480298
659659 −32.2463 −1.25614 −0.628068 0.778159i 0.716154π-0.716154\pi
−0.628068 + 0.778159i 0.716154π0.716154\pi
660660 0 0
661661 7.21505 0.280633 0.140316 0.990107i 0.455188π-0.455188\pi
0.140316 + 0.990107i 0.455188π0.455188\pi
662662 −6.71737 −0.261078
663663 0 0
664664 34.7507 1.34859
665665 −10.0676 −0.390404
666666 0 0
667667 25.6922 0.994805
668668 −5.60301 −0.216787
669669 0 0
670670 16.2118 0.626316
671671 9.46457 0.365376
672672 0 0
673673 −21.3833 −0.824266 −0.412133 0.911124i 0.635216π-0.635216\pi
−0.412133 + 0.911124i 0.635216π0.635216\pi
674674 −2.93131 −0.112910
675675 0 0
676676 −7.06294 −0.271651
677677 −18.9579 −0.728610 −0.364305 0.931280i 0.618693π-0.618693\pi
−0.364305 + 0.931280i 0.618693π0.618693\pi
678678 0 0
679679 45.3275 1.73951
680680 11.5437 0.442680
681681 0 0
682682 −5.06758 −0.194048
683683 10.7792 0.412454 0.206227 0.978504i 0.433881π-0.433881\pi
0.206227 + 0.978504i 0.433881π0.433881\pi
684684 0 0
685685 −37.2873 −1.42467
686686 −50.6752 −1.93479
687687 0 0
688688 −0.498788 −0.0190161
689689 −37.4249 −1.42578
690690 0 0
691691 49.8824 1.89761 0.948807 0.315855i 0.102291π-0.102291\pi
0.948807 + 0.315855i 0.102291π0.102291\pi
692692 −1.66484 −0.0632876
693693 0 0
694694 14.7702 0.560668
695695 −17.5056 −0.664025
696696 0 0
697697 0.545830 0.0206748
698698 −25.0837 −0.949434
699699 0 0
700700 −9.02408 −0.341078
701701 −2.25855 −0.0853044 −0.0426522 0.999090i 0.513581π-0.513581\pi
−0.0426522 + 0.999090i 0.513581π0.513581\pi
702702 0 0
703703 9.72777 0.366890
704704 −2.73680 −0.103147
705705 0 0
706706 −17.6178 −0.663054
707707 −10.0676 −0.378630
708708 0 0
709709 −2.00792 −0.0754089 −0.0377044 0.999289i 0.512005π-0.512005\pi
−0.0377044 + 0.999289i 0.512005π0.512005\pi
710710 −10.7012 −0.401609
711711 0 0
712712 −17.3365 −0.649714
713713 33.3009 1.24713
714714 0 0
715715 −8.23585 −0.308003
716716 5.58823 0.208842
717717 0 0
718718 26.9111 1.00431
719719 31.8824 1.18901 0.594506 0.804091i 0.297348π-0.297348\pi
0.594506 + 0.804091i 0.297348π0.297348\pi
720720 0 0
721721 −92.2145 −3.43425
722722 0.760877 0.0283169
723723 0 0
724724 −19.2301 −0.714681
725725 −6.29690 −0.233861
726726 0 0
727727 −33.4088 −1.23906 −0.619531 0.784972i 0.712677π-0.712677\pi
−0.619531 + 0.784972i 0.712677π0.712677\pi
728728 −57.1801 −2.11923
729729 0 0
730730 7.57566 0.280388
731731 −1.32149 −0.0488771
732732 0 0
733733 −23.9187 −0.883459 −0.441729 0.897148i 0.645635π-0.645635\pi
−0.441729 + 0.897148i 0.645635π0.645635\pi
734734 −21.6260 −0.798229
735735 0 0
736736 29.3078 1.08030
737737 10.9669 0.403971
738738 0 0
739739 7.25744 0.266969 0.133485 0.991051i 0.457383π-0.457383\pi
0.133485 + 0.991051i 0.457383π0.457383\pi
740740 −26.8572 −0.987290
741741 0 0
742742 −34.8090 −1.27788
743743 6.15460 0.225790 0.112895 0.993607i 0.463988π-0.463988\pi
0.112895 + 0.993607i 0.463988π0.463988\pi
744744 0 0
745745 19.8928 0.728815
746746 13.3912 0.490288
747747 0 0
748748 3.24377 0.118604
749749 −27.4451 −1.00282
750750 0 0
751751 29.5666 1.07890 0.539451 0.842017i 0.318632π-0.318632\pi
0.539451 + 0.842017i 0.318632π0.318632\pi
752752 −2.69218 −0.0981738
753753 0 0
754754 −16.5738 −0.603581
755755 19.4952 0.709503
756756 0 0
757757 −37.9611 −1.37972 −0.689861 0.723942i 0.742328π-0.742328\pi
−0.689861 + 0.723942i 0.742328π0.742328\pi
758758 9.86621 0.358357
759759 0 0
760760 −5.05718 −0.183443
761761 5.10860 0.185187 0.0925934 0.995704i 0.470484π-0.470484\pi
0.0925934 + 0.995704i 0.470484π0.470484\pi
762762 0 0
763763 −13.1923 −0.477595
764764 −21.6364 −0.782777
765765 0 0
766766 −6.78168 −0.245032
767767 40.4660 1.46114
768768 0 0
769769 −34.9863 −1.26164 −0.630820 0.775930i 0.717281π-0.717281\pi
−0.630820 + 0.775930i 0.717281π0.717281\pi
770770 −7.66019 −0.276054
771771 0 0
772772 −25.9808 −0.935071
773773 17.2711 0.621199 0.310599 0.950541i 0.399470π-0.399470\pi
0.310599 + 0.950541i 0.399470π0.399470\pi
774774 0 0
775775 −8.16173 −0.293178
776776 22.7691 0.817362
777777 0 0
778778 13.0960 0.469516
779779 −0.239123 −0.00856748
780780 0 0
781781 −7.23912 −0.259036
782782 8.68400 0.310539
783783 0 0
784784 17.1042 0.610865
785785 −6.86235 −0.244928
786786 0 0
787787 40.8115 1.45477 0.727387 0.686228i 0.240735π-0.240735\pi
0.727387 + 0.686228i 0.240735π0.240735\pi
788788 20.1259 0.716955
789789 0 0
790790 −10.4035 −0.370141
791791 83.9078 2.98342
792792 0 0
793793 40.1215 1.42476
794794 −8.42545 −0.299008
795795 0 0
796796 −25.2736 −0.895799
797797 25.8090 0.914203 0.457101 0.889415i 0.348888π-0.348888\pi
0.457101 + 0.889415i 0.348888π0.348888\pi
798798 0 0
799799 −7.13268 −0.252336
800800 −7.18305 −0.253959
801801 0 0
802802 12.1557 0.429233
803803 5.12476 0.180849
804804 0 0
805805 50.3379 1.77418
806806 −21.4821 −0.756675
807807 0 0
808808 −5.05718 −0.177911
809809 −6.17946 −0.217258 −0.108629 0.994082i 0.534646π-0.534646\pi
−0.108629 + 0.994082i 0.534646π0.534646\pi
810810 0 0
811811 −11.0676 −0.388635 −0.194318 0.980939i 0.562249π-0.562249\pi
−0.194318 + 0.980939i 0.562249π0.562249\pi
812812 37.8389 1.32788
813813 0 0
814814 7.40164 0.259427
815815 −22.8227 −0.799444
816816 0 0
817817 0.578933 0.0202543
818818 0.256066 0.00895313
819819 0 0
820820 0.660190 0.0230548
821821 −13.6602 −0.476744 −0.238372 0.971174i 0.576614π-0.576614\pi
−0.238372 + 0.971174i 0.576614π0.576614\pi
822822 0 0
823823 11.4887 0.400469 0.200235 0.979748i 0.435830π-0.435830\pi
0.200235 + 0.979748i 0.435830π0.435830\pi
824824 −46.3215 −1.61369
825825 0 0
826826 37.6375 1.30958
827827 −19.9942 −0.695268 −0.347634 0.937630i 0.613015π-0.613015\pi
−0.347634 + 0.937630i 0.613015π0.613015\pi
828828 0 0
829829 −16.4451 −0.571163 −0.285582 0.958354i 0.592187π-0.592187\pi
−0.285582 + 0.958354i 0.592187π0.592187\pi
830830 19.7349 0.685009
831831 0 0
832832 −11.6016 −0.402214
833833 45.3160 1.57011
834834 0 0
835835 −7.66019 −0.265092
836836 −1.42107 −0.0491486
837837 0 0
838838 25.4200 0.878118
839839 55.3171 1.90976 0.954879 0.296994i 0.0959841π-0.0959841\pi
0.954879 + 0.296994i 0.0959841π0.0959841\pi
840840 0 0
841841 −2.59647 −0.0895335
842842 −6.16114 −0.212327
843843 0 0
844844 26.3696 0.907681
845845 −9.65614 −0.332181
846846 0 0
847847 −5.18194 −0.178054
848848 7.60628 0.261201
849849 0 0
850850 −2.12836 −0.0730022
851851 −48.6389 −1.66732
852852 0 0
853853 −9.85005 −0.337259 −0.168630 0.985679i 0.553934π-0.553934\pi
−0.168630 + 0.985679i 0.553934π0.553934\pi
854854 37.3171 1.27697
855855 0 0
856856 −13.7863 −0.471207
857857 19.7907 0.676038 0.338019 0.941139i 0.390243π-0.390243\pi
0.338019 + 0.941139i 0.390243π0.390243\pi
858858 0 0
859859 −6.95898 −0.237437 −0.118719 0.992928i 0.537879π-0.537879\pi
−0.118719 + 0.992928i 0.537879π0.537879\pi
860860 −1.59836 −0.0545038
861861 0 0
862862 −28.5070 −0.970951
863863 5.74393 0.195526 0.0977629 0.995210i 0.468831π-0.468831\pi
0.0977629 + 0.995210i 0.468831π0.468831\pi
864864 0 0
865865 −2.27609 −0.0773894
866866 1.82133 0.0618912
867867 0 0
868868 49.0449 1.66469
869869 −7.03775 −0.238739
870870 0 0
871871 46.4900 1.57525
872872 −6.62682 −0.224412
873873 0 0
874874 −3.80438 −0.128685
875875 −62.6752 −2.11881
876876 0 0
877877 42.5070 1.43536 0.717679 0.696374i 0.245204π-0.245204\pi
0.717679 + 0.696374i 0.245204π0.245204\pi
878878 9.43612 0.318454
879879 0 0
880880 1.67386 0.0564259
881881 −31.7655 −1.07021 −0.535104 0.844786i 0.679728π-0.679728\pi
−0.535104 + 0.844786i 0.679728π0.679728\pi
882882 0 0
883883 −30.5458 −1.02795 −0.513975 0.857805i 0.671827π-0.671827\pi
−0.513975 + 0.857805i 0.671827π0.671827\pi
884884 13.7507 0.462487
885885 0 0
886886 −1.32254 −0.0444315
887887 −45.0506 −1.51265 −0.756326 0.654195i 0.773008π-0.773008\pi
−0.756326 + 0.654195i 0.773008π0.773008\pi
888888 0 0
889889 −62.7590 −2.10487
890890 −9.84540 −0.330019
891891 0 0
892892 10.9817 0.367694
893893 3.12476 0.104566
894894 0 0
895895 7.63998 0.255376
896896 49.9579 1.66898
897897 0 0
898898 0.140924 0.00470270
899899 34.2230 1.14140
900900 0 0
901901 20.1521 0.671364
902902 −0.181943 −0.00605805
903903 0 0
904904 42.1488 1.40185
905905 −26.2905 −0.873927
906906 0 0
907907 12.9831 0.431095 0.215548 0.976493i 0.430846π-0.430846\pi
0.215548 + 0.976493i 0.430846π0.430846\pi
908908 0.775661 0.0257412
909909 0 0
910910 −32.4725 −1.07645
911911 32.1398 1.06484 0.532420 0.846480i 0.321283π-0.321283\pi
0.532420 + 0.846480i 0.321283π0.321283\pi
912912 0 0
913913 13.3502 0.441828
914914 13.9267 0.460653
915915 0 0
916916 −10.1784 −0.336304
917917 66.4055 2.19290
918918 0 0
919919 54.4476 1.79606 0.898031 0.439933i 0.144998π-0.144998\pi
0.898031 + 0.439933i 0.144998π0.144998\pi
920920 25.2859 0.833651
921921 0 0
922922 −22.9396 −0.755474
923923 −30.6875 −1.01009
924924 0 0
925925 11.9209 0.391957
926926 −3.40053 −0.111748
927927 0 0
928928 30.1193 0.988714
929929 11.3502 0.372388 0.186194 0.982513i 0.440385π-0.440385\pi
0.186194 + 0.982513i 0.440385π0.440385\pi
930930 0 0
931931 −19.8525 −0.650641
932932 4.63062 0.151681
933933 0 0
934934 5.04926 0.165217
935935 4.43474 0.145031
936936 0 0
937937 −5.70697 −0.186438 −0.0932192 0.995646i 0.529716π-0.529716\pi
−0.0932192 + 0.995646i 0.529716π0.529716\pi
938938 43.2405 1.41185
939939 0 0
940940 −8.62709 −0.281385
941941 17.4646 0.569329 0.284664 0.958627i 0.408118π-0.408118\pi
0.284664 + 0.958627i 0.408118π0.408118\pi
942942 0 0
943943 1.19562 0.0389346
944944 −8.22434 −0.267679
945945 0 0
946946 0.440497 0.0143218
947947 42.0449 1.36628 0.683138 0.730290i 0.260615π-0.260615\pi
0.683138 + 0.730290i 0.260615π0.260615\pi
948948 0 0
949949 21.7245 0.705207
950950 0.932417 0.0302516
951951 0 0
952952 30.7896 0.997897
953953 21.1704 0.685777 0.342889 0.939376i 0.388595π-0.388595\pi
0.342889 + 0.939376i 0.388595π0.388595\pi
954954 0 0
955955 −29.5803 −0.957196
956956 −35.9773 −1.16359
957957 0 0
958958 −18.6695 −0.603184
959959 −99.4537 −3.21153
960960 0 0
961961 13.3581 0.430907
962962 31.3764 1.01162
963963 0 0
964964 15.0400 0.484405
965965 −35.5199 −1.14342
966966 0 0
967967 36.9787 1.18915 0.594577 0.804039i 0.297320π-0.297320\pi
0.594577 + 0.804039i 0.297320π0.297320\pi
968968 −2.60301 −0.0836639
969969 0 0
970970 12.9305 0.415174
971971 34.0917 1.09405 0.547027 0.837115i 0.315760π-0.315760\pi
0.547027 + 0.837115i 0.315760π0.315760\pi
972972 0 0
973973 −46.6914 −1.49686
974974 12.6684 0.405923
975975 0 0
976976 −8.15433 −0.261014
977977 1.30422 0.0417257 0.0208628 0.999782i 0.493359π-0.493359\pi
0.0208628 + 0.999782i 0.493359π0.493359\pi
978978 0 0
979979 −6.66019 −0.212861
980980 54.8104 1.75085
981981 0 0
982982 −5.91299 −0.188691
983983 17.3387 0.553019 0.276509 0.961011i 0.410822π-0.410822\pi
0.276509 + 0.961011i 0.410822π0.410822\pi
984984 0 0
985985 27.5152 0.876708
986986 8.92444 0.284212
987987 0 0
988988 −6.02408 −0.191651
989989 −2.89467 −0.0920451
990990 0 0
991991 −19.9475 −0.633652 −0.316826 0.948484i 0.602617π-0.602617\pi
−0.316826 + 0.948484i 0.602617π0.602617\pi
992992 39.0391 1.23949
993993 0 0
994994 −28.5426 −0.905315
995995 −34.5530 −1.09540
996996 0 0
997997 −6.80438 −0.215497 −0.107748 0.994178i 0.534364π-0.534364\pi
−0.107748 + 0.994178i 0.534364π0.534364\pi
998998 1.60439 0.0507860
999999 0 0
Display apa_p with pp up to: 50 250 1000 (See ana_n instead) (See ana_n instead) (See ana_n instead) Display ana_n with nn up to: 50 250 1000 (See only apa_p) (See only apa_p) (See only apa_p)

Twists

       By twisting character
Char Parity Ord Type Twist Min Dim
1.1 even 1 trivial 1881.2.a.i.1.2 3
3.2 odd 2 627.2.a.e.1.2 3
33.32 even 2 6897.2.a.p.1.2 3
    
        By twisted newform
Twist Min Dim Char Parity Ord Type
627.2.a.e.1.2 3 3.2 odd 2
1881.2.a.i.1.2 3 1.1 even 1 trivial
6897.2.a.p.1.2 3 33.32 even 2