Properties

Label 1881.2.a.i.1.2
Level $1881$
Weight $2$
Character 1881.1
Self dual yes
Analytic conductor $15.020$
Analytic rank $0$
Dimension $3$
CM no
Inner twists $1$

Related objects

Downloads

Learn more

Show commands: Magma / PariGP / SageMath

Newspace parameters

comment: Compute space of new eigenforms
 
[N,k,chi] = [1881,2,Mod(1,1881)]
 
mf = mfinit([N,k,chi],0)
 
lf = mfeigenbasis(mf)
 
from sage.modular.dirichlet import DirichletCharacter
 
H = DirichletGroup(1881, base_ring=CyclotomicField(2))
 
chi = DirichletCharacter(H, H._module([0, 0, 0]))
 
N = Newforms(chi, 2, names="a")
 
//Please install CHIMP (https://github.com/edgarcosta/CHIMP) if you want to run this code
 
chi := DirichletCharacter("1881.1");
 
S:= CuspForms(chi, 2);
 
N := Newforms(S);
 
Level: \( N \) \(=\) \( 1881 = 3^{2} \cdot 11 \cdot 19 \)
Weight: \( k \) \(=\) \( 2 \)
Character orbit: \([\chi]\) \(=\) 1881.a (trivial)

Newform invariants

comment: select newform
 
sage: f = N[0] # Warning: the index may be different
 
gp: f = lf[1] \\ Warning: the index may be different
 
Self dual: yes
Analytic conductor: \(15.0198606202\)
Analytic rank: \(0\)
Dimension: \(3\)
Coefficient field: 3.3.321.1
comment: defining polynomial
 
gp: f.mod \\ as an extension of the character field
 
Defining polynomial: \( x^{3} - x^{2} - 4x + 1 \) Copy content Toggle raw display
Coefficient ring: \(\Z[a_1, a_2]\)
Coefficient ring index: \( 1 \)
Twist minimal: no (minimal twist has level 627)
Fricke sign: \(-1\)
Sato-Tate group: $\mathrm{SU}(2)$

Embedding invariants

Embedding label 1.2
Root \(0.239123\) of defining polynomial
Character \(\chi\) \(=\) 1881.1

$q$-expansion

comment: q-expansion
 
sage: f.q_expansion() # note that sage often uses an isomorphic number field
 
gp: mfcoefs(f, 20)
 
\(f(q)\) \(=\) \(q+0.760877 q^{2} -1.42107 q^{4} -1.94282 q^{5} -5.18194 q^{7} -2.60301 q^{8} -1.47825 q^{10} -1.00000 q^{11} -4.23912 q^{13} -3.94282 q^{14} +0.861564 q^{16} +2.28263 q^{17} -1.00000 q^{19} +2.76088 q^{20} -0.760877 q^{22} +5.00000 q^{23} -1.22545 q^{25} -3.22545 q^{26} +7.36389 q^{28} +5.13844 q^{29} +6.66019 q^{31} +5.86156 q^{32} +1.73680 q^{34} +10.0676 q^{35} -9.72777 q^{37} -0.760877 q^{38} +5.05718 q^{40} +0.239123 q^{41} -0.578933 q^{43} +1.42107 q^{44} +3.80438 q^{46} -3.12476 q^{47} +19.8525 q^{49} -0.932417 q^{50} +6.02408 q^{52} +8.82846 q^{53} +1.94282 q^{55} +13.4887 q^{56} +3.90972 q^{58} -9.54583 q^{59} -9.46457 q^{61} +5.06758 q^{62} +2.73680 q^{64} +8.23585 q^{65} -10.9669 q^{67} -3.24377 q^{68} +7.66019 q^{70} +7.23912 q^{71} -5.12476 q^{73} -7.40164 q^{74} +1.42107 q^{76} +5.18194 q^{77} +7.03775 q^{79} -1.67386 q^{80} +0.181943 q^{82} -13.3502 q^{83} -4.43474 q^{85} -0.440497 q^{86} +2.60301 q^{88} +6.66019 q^{89} +21.9669 q^{91} -7.10533 q^{92} -2.37756 q^{94} +1.94282 q^{95} -8.74720 q^{97} +15.1053 q^{98} +O(q^{100})\)
\(\operatorname{Tr}(f)(q)\) \(=\) \( 3 q + 2 q^{2} + 4 q^{4} + 3 q^{5} - 7 q^{7} + 9 q^{8} - 5 q^{10} - 3 q^{11} - 13 q^{13} - 3 q^{14} + 10 q^{16} + 6 q^{17} - 3 q^{19} + 8 q^{20} - 2 q^{22} + 15 q^{23} + 6 q^{25} + 5 q^{28} + 8 q^{29} + 12 q^{31}+ \cdots + 4 q^{98}+O(q^{100}) \) Copy content Toggle raw display

Coefficient data

For each \(n\) we display the coefficients of the \(q\)-expansion \(a_n\), the Satake parameters \(\alpha_p\), and the Satake angles \(\theta_p = \textrm{Arg}(\alpha_p)\).



Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))
Significant digits:
\(n\) \(a_n\) \(a_n / n^{(k-1)/2}\) \( \alpha_n \) \( \theta_n \)
\(p\) \(a_p\) \(a_p / p^{(k-1)/2}\) \( \alpha_p\) \( \theta_p \)
\(2\) 0.760877 0.538021 0.269011 0.963137i \(-0.413303\pi\)
0.269011 + 0.963137i \(0.413303\pi\)
\(3\) 0 0
\(4\) −1.42107 −0.710533
\(5\) −1.94282 −0.868856 −0.434428 0.900707i \(-0.643049\pi\)
−0.434428 + 0.900707i \(0.643049\pi\)
\(6\) 0 0
\(7\) −5.18194 −1.95859 −0.979295 0.202437i \(-0.935114\pi\)
−0.979295 + 0.202437i \(0.935114\pi\)
\(8\) −2.60301 −0.920303
\(9\) 0 0
\(10\) −1.47825 −0.467463
\(11\) −1.00000 −0.301511
\(12\) 0 0
\(13\) −4.23912 −1.17572 −0.587861 0.808962i \(-0.700030\pi\)
−0.587861 + 0.808962i \(0.700030\pi\)
\(14\) −3.94282 −1.05376
\(15\) 0 0
\(16\) 0.861564 0.215391
\(17\) 2.28263 0.553619 0.276810 0.960925i \(-0.410723\pi\)
0.276810 + 0.960925i \(0.410723\pi\)
\(18\) 0 0
\(19\) −1.00000 −0.229416
\(20\) 2.76088 0.617351
\(21\) 0 0
\(22\) −0.760877 −0.162219
\(23\) 5.00000 1.04257 0.521286 0.853382i \(-0.325452\pi\)
0.521286 + 0.853382i \(0.325452\pi\)
\(24\) 0 0
\(25\) −1.22545 −0.245090
\(26\) −3.22545 −0.632563
\(27\) 0 0
\(28\) 7.36389 1.39164
\(29\) 5.13844 0.954184 0.477092 0.878853i \(-0.341691\pi\)
0.477092 + 0.878853i \(0.341691\pi\)
\(30\) 0 0
\(31\) 6.66019 1.19621 0.598103 0.801419i \(-0.295921\pi\)
0.598103 + 0.801419i \(0.295921\pi\)
\(32\) 5.86156 1.03619
\(33\) 0 0
\(34\) 1.73680 0.297859
\(35\) 10.0676 1.70173
\(36\) 0 0
\(37\) −9.72777 −1.59924 −0.799618 0.600509i \(-0.794965\pi\)
−0.799618 + 0.600509i \(0.794965\pi\)
\(38\) −0.760877 −0.123431
\(39\) 0 0
\(40\) 5.05718 0.799610
\(41\) 0.239123 0.0373448 0.0186724 0.999826i \(-0.494056\pi\)
0.0186724 + 0.999826i \(0.494056\pi\)
\(42\) 0 0
\(43\) −0.578933 −0.0882865 −0.0441433 0.999025i \(-0.514056\pi\)
−0.0441433 + 0.999025i \(0.514056\pi\)
\(44\) 1.42107 0.214234
\(45\) 0 0
\(46\) 3.80438 0.560926
\(47\) −3.12476 −0.455794 −0.227897 0.973685i \(-0.573185\pi\)
−0.227897 + 0.973685i \(0.573185\pi\)
\(48\) 0 0
\(49\) 19.8525 2.83608
\(50\) −0.932417 −0.131864
\(51\) 0 0
\(52\) 6.02408 0.835389
\(53\) 8.82846 1.21268 0.606341 0.795205i \(-0.292637\pi\)
0.606341 + 0.795205i \(0.292637\pi\)
\(54\) 0 0
\(55\) 1.94282 0.261970
\(56\) 13.4887 1.80250
\(57\) 0 0
\(58\) 3.90972 0.513371
\(59\) −9.54583 −1.24276 −0.621381 0.783509i \(-0.713428\pi\)
−0.621381 + 0.783509i \(0.713428\pi\)
\(60\) 0 0
\(61\) −9.46457 −1.21181 −0.605907 0.795535i \(-0.707190\pi\)
−0.605907 + 0.795535i \(0.707190\pi\)
\(62\) 5.06758 0.643584
\(63\) 0 0
\(64\) 2.73680 0.342100
\(65\) 8.23585 1.02153
\(66\) 0 0
\(67\) −10.9669 −1.33982 −0.669910 0.742442i \(-0.733667\pi\)
−0.669910 + 0.742442i \(0.733667\pi\)
\(68\) −3.24377 −0.393365
\(69\) 0 0
\(70\) 7.66019 0.915568
\(71\) 7.23912 0.859126 0.429563 0.903037i \(-0.358668\pi\)
0.429563 + 0.903037i \(0.358668\pi\)
\(72\) 0 0
\(73\) −5.12476 −0.599808 −0.299904 0.953969i \(-0.596955\pi\)
−0.299904 + 0.953969i \(0.596955\pi\)
\(74\) −7.40164 −0.860423
\(75\) 0 0
\(76\) 1.42107 0.163008
\(77\) 5.18194 0.590537
\(78\) 0 0
\(79\) 7.03775 0.791809 0.395904 0.918292i \(-0.370431\pi\)
0.395904 + 0.918292i \(0.370431\pi\)
\(80\) −1.67386 −0.187144
\(81\) 0 0
\(82\) 0.181943 0.0200923
\(83\) −13.3502 −1.46538 −0.732688 0.680565i \(-0.761735\pi\)
−0.732688 + 0.680565i \(0.761735\pi\)
\(84\) 0 0
\(85\) −4.43474 −0.481015
\(86\) −0.440497 −0.0475000
\(87\) 0 0
\(88\) 2.60301 0.277482
\(89\) 6.66019 0.705979 0.352989 0.935627i \(-0.385165\pi\)
0.352989 + 0.935627i \(0.385165\pi\)
\(90\) 0 0
\(91\) 21.9669 2.30276
\(92\) −7.10533 −0.740782
\(93\) 0 0
\(94\) −2.37756 −0.245227
\(95\) 1.94282 0.199329
\(96\) 0 0
\(97\) −8.74720 −0.888144 −0.444072 0.895991i \(-0.646467\pi\)
−0.444072 + 0.895991i \(0.646467\pi\)
\(98\) 15.1053 1.52587
\(99\) 0 0
\(100\) 1.74145 0.174145
\(101\) 1.94282 0.193318 0.0966589 0.995318i \(-0.469184\pi\)
0.0966589 + 0.995318i \(0.469184\pi\)
\(102\) 0 0
\(103\) 17.7954 1.75343 0.876714 0.481011i \(-0.159730\pi\)
0.876714 + 0.481011i \(0.159730\pi\)
\(104\) 11.0345 1.08202
\(105\) 0 0
\(106\) 6.71737 0.652449
\(107\) 5.29630 0.512013 0.256006 0.966675i \(-0.417593\pi\)
0.256006 + 0.966675i \(0.417593\pi\)
\(108\) 0 0
\(109\) 2.54583 0.243846 0.121923 0.992540i \(-0.461094\pi\)
0.121923 + 0.992540i \(0.461094\pi\)
\(110\) 1.47825 0.140945
\(111\) 0 0
\(112\) −4.46457 −0.421863
\(113\) −16.1923 −1.52325 −0.761624 0.648019i \(-0.775598\pi\)
−0.761624 + 0.648019i \(0.775598\pi\)
\(114\) 0 0
\(115\) −9.71410 −0.905845
\(116\) −7.30206 −0.677979
\(117\) 0 0
\(118\) −7.26320 −0.668632
\(119\) −11.8285 −1.08431
\(120\) 0 0
\(121\) 1.00000 0.0909091
\(122\) −7.20137 −0.651982
\(123\) 0 0
\(124\) −9.46457 −0.849944
\(125\) 12.0949 1.08180
\(126\) 0 0
\(127\) 12.1111 1.07469 0.537343 0.843364i \(-0.319428\pi\)
0.537343 + 0.843364i \(0.319428\pi\)
\(128\) −9.64076 −0.852131
\(129\) 0 0
\(130\) 6.26647 0.549606
\(131\) −12.8148 −1.11963 −0.559817 0.828617i \(-0.689128\pi\)
−0.559817 + 0.828617i \(0.689128\pi\)
\(132\) 0 0
\(133\) 5.18194 0.449331
\(134\) −8.34446 −0.720851
\(135\) 0 0
\(136\) −5.94171 −0.509497
\(137\) 19.1923 1.63971 0.819856 0.572569i \(-0.194053\pi\)
0.819856 + 0.572569i \(0.194053\pi\)
\(138\) 0 0
\(139\) 9.01040 0.764252 0.382126 0.924110i \(-0.375192\pi\)
0.382126 + 0.924110i \(0.375192\pi\)
\(140\) −14.3067 −1.20914
\(141\) 0 0
\(142\) 5.50808 0.462228
\(143\) 4.23912 0.354493
\(144\) 0 0
\(145\) −9.98306 −0.829048
\(146\) −3.89931 −0.322709
\(147\) 0 0
\(148\) 13.8238 1.13631
\(149\) −10.2391 −0.838822 −0.419411 0.907797i \(-0.637763\pi\)
−0.419411 + 0.907797i \(0.637763\pi\)
\(150\) 0 0
\(151\) −10.0345 −0.816594 −0.408297 0.912849i \(-0.633877\pi\)
−0.408297 + 0.912849i \(0.633877\pi\)
\(152\) 2.60301 0.211132
\(153\) 0 0
\(154\) 3.94282 0.317721
\(155\) −12.9396 −1.03933
\(156\) 0 0
\(157\) 3.53216 0.281897 0.140948 0.990017i \(-0.454985\pi\)
0.140948 + 0.990017i \(0.454985\pi\)
\(158\) 5.35486 0.426010
\(159\) 0 0
\(160\) −11.3880 −0.900298
\(161\) −25.9097 −2.04197
\(162\) 0 0
\(163\) 11.7472 0.920112 0.460056 0.887890i \(-0.347829\pi\)
0.460056 + 0.887890i \(0.347829\pi\)
\(164\) −0.339810 −0.0265347
\(165\) 0 0
\(166\) −10.1579 −0.788403
\(167\) 3.94282 0.305105 0.152552 0.988295i \(-0.451251\pi\)
0.152552 + 0.988295i \(0.451251\pi\)
\(168\) 0 0
\(169\) 4.97017 0.382320
\(170\) −3.37429 −0.258796
\(171\) 0 0
\(172\) 0.822703 0.0627305
\(173\) 1.17154 0.0890705 0.0445353 0.999008i \(-0.485819\pi\)
0.0445353 + 0.999008i \(0.485819\pi\)
\(174\) 0 0
\(175\) 6.35021 0.480031
\(176\) −0.861564 −0.0649428
\(177\) 0 0
\(178\) 5.06758 0.379831
\(179\) −3.93242 −0.293923 −0.146961 0.989142i \(-0.546949\pi\)
−0.146961 + 0.989142i \(0.546949\pi\)
\(180\) 0 0
\(181\) 13.5322 1.00584 0.502919 0.864334i \(-0.332260\pi\)
0.502919 + 0.864334i \(0.332260\pi\)
\(182\) 16.7141 1.23893
\(183\) 0 0
\(184\) −13.0150 −0.959482
\(185\) 18.8993 1.38951
\(186\) 0 0
\(187\) −2.28263 −0.166922
\(188\) 4.44050 0.323857
\(189\) 0 0
\(190\) 1.47825 0.107243
\(191\) 15.2255 1.10167 0.550837 0.834613i \(-0.314308\pi\)
0.550837 + 0.834613i \(0.314308\pi\)
\(192\) 0 0
\(193\) 18.2826 1.31601 0.658006 0.753012i \(-0.271400\pi\)
0.658006 + 0.753012i \(0.271400\pi\)
\(194\) −6.65554 −0.477840
\(195\) 0 0
\(196\) −28.2118 −2.01513
\(197\) −14.1625 −1.00904 −0.504519 0.863401i \(-0.668330\pi\)
−0.504519 + 0.863401i \(0.668330\pi\)
\(198\) 0 0
\(199\) 17.7850 1.26074 0.630371 0.776294i \(-0.282903\pi\)
0.630371 + 0.776294i \(0.282903\pi\)
\(200\) 3.18986 0.225557
\(201\) 0 0
\(202\) 1.47825 0.104009
\(203\) −26.6271 −1.86886
\(204\) 0 0
\(205\) −0.464574 −0.0324472
\(206\) 13.5401 0.943382
\(207\) 0 0
\(208\) −3.65227 −0.253240
\(209\) 1.00000 0.0691714
\(210\) 0 0
\(211\) −18.5562 −1.27746 −0.638732 0.769429i \(-0.720541\pi\)
−0.638732 + 0.769429i \(0.720541\pi\)
\(212\) −12.5458 −0.861651
\(213\) 0 0
\(214\) 4.02983 0.275474
\(215\) 1.12476 0.0767082
\(216\) 0 0
\(217\) −34.5127 −2.34288
\(218\) 1.93706 0.131194
\(219\) 0 0
\(220\) −2.76088 −0.186138
\(221\) −9.67635 −0.650902
\(222\) 0 0
\(223\) −7.72777 −0.517490 −0.258745 0.965946i \(-0.583309\pi\)
−0.258745 + 0.965946i \(0.583309\pi\)
\(224\) −30.3743 −2.02947
\(225\) 0 0
\(226\) −12.3204 −0.819539
\(227\) −0.545830 −0.0362280 −0.0181140 0.999836i \(-0.505766\pi\)
−0.0181140 + 0.999836i \(0.505766\pi\)
\(228\) 0 0
\(229\) 7.16251 0.473312 0.236656 0.971593i \(-0.423949\pi\)
0.236656 + 0.971593i \(0.423949\pi\)
\(230\) −7.39123 −0.487363
\(231\) 0 0
\(232\) −13.3754 −0.878138
\(233\) −3.25855 −0.213475 −0.106737 0.994287i \(-0.534040\pi\)
−0.106737 + 0.994287i \(0.534040\pi\)
\(234\) 0 0
\(235\) 6.07085 0.396019
\(236\) 13.5653 0.883023
\(237\) 0 0
\(238\) −9.00000 −0.583383
\(239\) 25.3171 1.63763 0.818814 0.574059i \(-0.194632\pi\)
0.818814 + 0.574059i \(0.194632\pi\)
\(240\) 0 0
\(241\) −10.5836 −0.681748 −0.340874 0.940109i \(-0.610723\pi\)
−0.340874 + 0.940109i \(0.610723\pi\)
\(242\) 0.760877 0.0489110
\(243\) 0 0
\(244\) 13.4498 0.861035
\(245\) −38.5699 −2.46414
\(246\) 0 0
\(247\) 4.23912 0.269729
\(248\) −17.3365 −1.10087
\(249\) 0 0
\(250\) 9.20275 0.582033
\(251\) 30.7187 1.93895 0.969475 0.245190i \(-0.0788503\pi\)
0.969475 + 0.245190i \(0.0788503\pi\)
\(252\) 0 0
\(253\) −5.00000 −0.314347
\(254\) 9.21505 0.578203
\(255\) 0 0
\(256\) −12.8090 −0.800564
\(257\) −25.7817 −1.60822 −0.804109 0.594482i \(-0.797357\pi\)
−0.804109 + 0.594482i \(0.797357\pi\)
\(258\) 0 0
\(259\) 50.4088 3.13225
\(260\) −11.7037 −0.725832
\(261\) 0 0
\(262\) −9.75047 −0.602386
\(263\) 25.5893 1.57791 0.788953 0.614453i \(-0.210623\pi\)
0.788953 + 0.614453i \(0.210623\pi\)
\(264\) 0 0
\(265\) −17.1521 −1.05365
\(266\) 3.94282 0.241750
\(267\) 0 0
\(268\) 15.5847 0.951986
\(269\) 26.4555 1.61302 0.806512 0.591218i \(-0.201353\pi\)
0.806512 + 0.591218i \(0.201353\pi\)
\(270\) 0 0
\(271\) 9.44514 0.573752 0.286876 0.957968i \(-0.407383\pi\)
0.286876 + 0.957968i \(0.407383\pi\)
\(272\) 1.96663 0.119245
\(273\) 0 0
\(274\) 14.6030 0.882200
\(275\) 1.22545 0.0738974
\(276\) 0 0
\(277\) −12.3398 −0.741427 −0.370714 0.928747i \(-0.620887\pi\)
−0.370714 + 0.928747i \(0.620887\pi\)
\(278\) 6.85581 0.411184
\(279\) 0 0
\(280\) −26.2060 −1.56611
\(281\) 0.899313 0.0536485 0.0268243 0.999640i \(-0.491461\pi\)
0.0268243 + 0.999640i \(0.491461\pi\)
\(282\) 0 0
\(283\) −1.37756 −0.0818874 −0.0409437 0.999161i \(-0.513036\pi\)
−0.0409437 + 0.999161i \(0.513036\pi\)
\(284\) −10.2873 −0.610438
\(285\) 0 0
\(286\) 3.22545 0.190725
\(287\) −1.23912 −0.0731431
\(288\) 0 0
\(289\) −11.7896 −0.693506
\(290\) −7.59588 −0.446045
\(291\) 0 0
\(292\) 7.28263 0.426184
\(293\) 28.5322 1.66687 0.833433 0.552620i \(-0.186372\pi\)
0.833433 + 0.552620i \(0.186372\pi\)
\(294\) 0 0
\(295\) 18.5458 1.07978
\(296\) 25.3215 1.47178
\(297\) 0 0
\(298\) −7.79071 −0.451304
\(299\) −21.1956 −1.22577
\(300\) 0 0
\(301\) 3.00000 0.172917
\(302\) −7.63500 −0.439345
\(303\) 0 0
\(304\) −0.861564 −0.0494141
\(305\) 18.3880 1.05289
\(306\) 0 0
\(307\) 3.42107 0.195251 0.0976253 0.995223i \(-0.468875\pi\)
0.0976253 + 0.995223i \(0.468875\pi\)
\(308\) −7.36389 −0.419596
\(309\) 0 0
\(310\) −9.84540 −0.559181
\(311\) 16.8525 0.955620 0.477810 0.878463i \(-0.341431\pi\)
0.477810 + 0.878463i \(0.341431\pi\)
\(312\) 0 0
\(313\) −1.07661 −0.0608536 −0.0304268 0.999537i \(-0.509687\pi\)
−0.0304268 + 0.999537i \(0.509687\pi\)
\(314\) 2.68754 0.151666
\(315\) 0 0
\(316\) −10.0011 −0.562606
\(317\) −18.2197 −1.02332 −0.511660 0.859188i \(-0.670969\pi\)
−0.511660 + 0.859188i \(0.670969\pi\)
\(318\) 0 0
\(319\) −5.13844 −0.287697
\(320\) −5.31711 −0.297235
\(321\) 0 0
\(322\) −19.7141 −1.09862
\(323\) −2.28263 −0.127009
\(324\) 0 0
\(325\) 5.19483 0.288158
\(326\) 8.93817 0.495040
\(327\) 0 0
\(328\) −0.622440 −0.0343685
\(329\) 16.1923 0.892713
\(330\) 0 0
\(331\) −8.82846 −0.485256 −0.242628 0.970119i \(-0.578009\pi\)
−0.242628 + 0.970119i \(0.578009\pi\)
\(332\) 18.9715 1.04120
\(333\) 0 0
\(334\) 3.00000 0.164153
\(335\) 21.3067 1.16411
\(336\) 0 0
\(337\) −3.85254 −0.209861 −0.104931 0.994480i \(-0.533462\pi\)
−0.104931 + 0.994480i \(0.533462\pi\)
\(338\) 3.78168 0.205696
\(339\) 0 0
\(340\) 6.30206 0.341777
\(341\) −6.66019 −0.360670
\(342\) 0 0
\(343\) −66.6011 −3.59612
\(344\) 1.50697 0.0812503
\(345\) 0 0
\(346\) 0.891397 0.0479218
\(347\) 19.4120 1.04209 0.521046 0.853528i \(-0.325542\pi\)
0.521046 + 0.853528i \(0.325542\pi\)
\(348\) 0 0
\(349\) −32.9669 −1.76468 −0.882339 0.470615i \(-0.844032\pi\)
−0.882339 + 0.470615i \(0.844032\pi\)
\(350\) 4.83173 0.258267
\(351\) 0 0
\(352\) −5.86156 −0.312422
\(353\) −23.1546 −1.23239 −0.616197 0.787592i \(-0.711328\pi\)
−0.616197 + 0.787592i \(0.711328\pi\)
\(354\) 0 0
\(355\) −14.0643 −0.746456
\(356\) −9.46457 −0.501621
\(357\) 0 0
\(358\) −2.99208 −0.158137
\(359\) 35.3685 1.86668 0.933340 0.358994i \(-0.116880\pi\)
0.933340 + 0.358994i \(0.116880\pi\)
\(360\) 0 0
\(361\) 1.00000 0.0526316
\(362\) 10.2963 0.541162
\(363\) 0 0
\(364\) −31.2164 −1.63619
\(365\) 9.95649 0.521147
\(366\) 0 0
\(367\) −28.4224 −1.48364 −0.741820 0.670599i \(-0.766037\pi\)
−0.741820 + 0.670599i \(0.766037\pi\)
\(368\) 4.30782 0.224561
\(369\) 0 0
\(370\) 14.3800 0.747583
\(371\) −45.7486 −2.37515
\(372\) 0 0
\(373\) 17.5997 0.911280 0.455640 0.890164i \(-0.349410\pi\)
0.455640 + 0.890164i \(0.349410\pi\)
\(374\) −1.73680 −0.0898078
\(375\) 0 0
\(376\) 8.13379 0.419468
\(377\) −21.7825 −1.12185
\(378\) 0 0
\(379\) 12.9669 0.666065 0.333032 0.942915i \(-0.391928\pi\)
0.333032 + 0.942915i \(0.391928\pi\)
\(380\) −2.76088 −0.141630
\(381\) 0 0
\(382\) 11.5847 0.592724
\(383\) −8.91299 −0.455432 −0.227716 0.973728i \(-0.573126\pi\)
−0.227716 + 0.973728i \(0.573126\pi\)
\(384\) 0 0
\(385\) −10.0676 −0.513092
\(386\) 13.9108 0.708042
\(387\) 0 0
\(388\) 12.4304 0.631056
\(389\) 17.2118 0.872672 0.436336 0.899784i \(-0.356276\pi\)
0.436336 + 0.899784i \(0.356276\pi\)
\(390\) 0 0
\(391\) 11.4132 0.577188
\(392\) −51.6764 −2.61005
\(393\) 0 0
\(394\) −10.7759 −0.542883
\(395\) −13.6731 −0.687967
\(396\) 0 0
\(397\) −11.0733 −0.555755 −0.277878 0.960617i \(-0.589631\pi\)
−0.277878 + 0.960617i \(0.589631\pi\)
\(398\) 13.5322 0.678306
\(399\) 0 0
\(400\) −1.05580 −0.0527902
\(401\) 15.9759 0.797800 0.398900 0.916995i \(-0.369392\pi\)
0.398900 + 0.916995i \(0.369392\pi\)
\(402\) 0 0
\(403\) −28.2334 −1.40640
\(404\) −2.76088 −0.137359
\(405\) 0 0
\(406\) −20.2599 −1.00548
\(407\) 9.72777 0.482188
\(408\) 0 0
\(409\) 0.336541 0.0166409 0.00832043 0.999965i \(-0.497351\pi\)
0.00832043 + 0.999965i \(0.497351\pi\)
\(410\) −0.353483 −0.0174573
\(411\) 0 0
\(412\) −25.2884 −1.24587
\(413\) 49.4660 2.43406
\(414\) 0 0
\(415\) 25.9371 1.27320
\(416\) −24.8479 −1.21827
\(417\) 0 0
\(418\) 0.760877 0.0372157
\(419\) 33.4088 1.63213 0.816063 0.577964i \(-0.196152\pi\)
0.816063 + 0.577964i \(0.196152\pi\)
\(420\) 0 0
\(421\) −8.09742 −0.394644 −0.197322 0.980339i \(-0.563224\pi\)
−0.197322 + 0.980339i \(0.563224\pi\)
\(422\) −14.1190 −0.687302
\(423\) 0 0
\(424\) −22.9806 −1.11604
\(425\) −2.79725 −0.135687
\(426\) 0 0
\(427\) 49.0449 2.37345
\(428\) −7.52640 −0.363802
\(429\) 0 0
\(430\) 0.855806 0.0412706
\(431\) −37.4660 −1.80467 −0.902336 0.431034i \(-0.858149\pi\)
−0.902336 + 0.431034i \(0.858149\pi\)
\(432\) 0 0
\(433\) 2.39372 0.115035 0.0575174 0.998345i \(-0.481682\pi\)
0.0575174 + 0.998345i \(0.481682\pi\)
\(434\) −26.2599 −1.26052
\(435\) 0 0
\(436\) −3.61779 −0.173261
\(437\) −5.00000 −0.239182
\(438\) 0 0
\(439\) 12.4016 0.591898 0.295949 0.955204i \(-0.404364\pi\)
0.295949 + 0.955204i \(0.404364\pi\)
\(440\) −5.05718 −0.241092
\(441\) 0 0
\(442\) −7.36251 −0.350199
\(443\) −1.73818 −0.0825833 −0.0412916 0.999147i \(-0.513147\pi\)
−0.0412916 + 0.999147i \(0.513147\pi\)
\(444\) 0 0
\(445\) −12.9396 −0.613394
\(446\) −5.87988 −0.278421
\(447\) 0 0
\(448\) −14.1819 −0.670034
\(449\) 0.185213 0.00874074 0.00437037 0.999990i \(-0.498609\pi\)
0.00437037 + 0.999990i \(0.498609\pi\)
\(450\) 0 0
\(451\) −0.239123 −0.0112599
\(452\) 23.0104 1.08232
\(453\) 0 0
\(454\) −0.415309 −0.0194914
\(455\) −42.6777 −2.00076
\(456\) 0 0
\(457\) 18.3034 0.856199 0.428099 0.903732i \(-0.359183\pi\)
0.428099 + 0.903732i \(0.359183\pi\)
\(458\) 5.44979 0.254652
\(459\) 0 0
\(460\) 13.8044 0.643633
\(461\) −30.1488 −1.40417 −0.702086 0.712092i \(-0.747748\pi\)
−0.702086 + 0.712092i \(0.747748\pi\)
\(462\) 0 0
\(463\) −4.46922 −0.207702 −0.103851 0.994593i \(-0.533117\pi\)
−0.103851 + 0.994593i \(0.533117\pi\)
\(464\) 4.42709 0.205522
\(465\) 0 0
\(466\) −2.47936 −0.114854
\(467\) 6.63611 0.307083 0.153541 0.988142i \(-0.450932\pi\)
0.153541 + 0.988142i \(0.450932\pi\)
\(468\) 0 0
\(469\) 56.8298 2.62416
\(470\) 4.61917 0.213066
\(471\) 0 0
\(472\) 24.8479 1.14372
\(473\) 0.578933 0.0266194
\(474\) 0 0
\(475\) 1.22545 0.0562275
\(476\) 16.8090 0.770441
\(477\) 0 0
\(478\) 19.2632 0.881078
\(479\) −24.5368 −1.12112 −0.560558 0.828115i \(-0.689413\pi\)
−0.560558 + 0.828115i \(0.689413\pi\)
\(480\) 0 0
\(481\) 41.2372 1.88026
\(482\) −8.05280 −0.366795
\(483\) 0 0
\(484\) −1.42107 −0.0645939
\(485\) 16.9942 0.771669
\(486\) 0 0
\(487\) 16.6498 0.754474 0.377237 0.926117i \(-0.376874\pi\)
0.377237 + 0.926117i \(0.376874\pi\)
\(488\) 24.6364 1.11524
\(489\) 0 0
\(490\) −29.3469 −1.32576
\(491\) −7.77128 −0.350713 −0.175356 0.984505i \(-0.556108\pi\)
−0.175356 + 0.984505i \(0.556108\pi\)
\(492\) 0 0
\(493\) 11.7292 0.528254
\(494\) 3.22545 0.145120
\(495\) 0 0
\(496\) 5.73818 0.257652
\(497\) −37.5127 −1.68268
\(498\) 0 0
\(499\) 2.10860 0.0943940 0.0471970 0.998886i \(-0.484971\pi\)
0.0471970 + 0.998886i \(0.484971\pi\)
\(500\) −17.1877 −0.768657
\(501\) 0 0
\(502\) 23.3732 1.04320
\(503\) 18.0722 0.805801 0.402900 0.915244i \(-0.368002\pi\)
0.402900 + 0.915244i \(0.368002\pi\)
\(504\) 0 0
\(505\) −3.77455 −0.167965
\(506\) −3.80438 −0.169125
\(507\) 0 0
\(508\) −17.2107 −0.763600
\(509\) −30.6077 −1.35666 −0.678330 0.734757i \(-0.737296\pi\)
−0.678330 + 0.734757i \(0.737296\pi\)
\(510\) 0 0
\(511\) 26.5562 1.17478
\(512\) 9.53543 0.421410
\(513\) 0 0
\(514\) −19.6167 −0.865255
\(515\) −34.5732 −1.52348
\(516\) 0 0
\(517\) 3.12476 0.137427
\(518\) 38.3549 1.68522
\(519\) 0 0
\(520\) −21.4380 −0.940119
\(521\) −12.9748 −0.568437 −0.284218 0.958760i \(-0.591734\pi\)
−0.284218 + 0.958760i \(0.591734\pi\)
\(522\) 0 0
\(523\) −28.2977 −1.23737 −0.618686 0.785639i \(-0.712335\pi\)
−0.618686 + 0.785639i \(0.712335\pi\)
\(524\) 18.2107 0.795537
\(525\) 0 0
\(526\) 19.4703 0.848947
\(527\) 15.2028 0.662242
\(528\) 0 0
\(529\) 2.00000 0.0869565
\(530\) −13.0506 −0.566884
\(531\) 0 0
\(532\) −7.36389 −0.319265
\(533\) −1.01367 −0.0439071
\(534\) 0 0
\(535\) −10.2898 −0.444865
\(536\) 28.5469 1.23304
\(537\) 0 0
\(538\) 20.1294 0.867840
\(539\) −19.8525 −0.855109
\(540\) 0 0
\(541\) 40.2359 1.72987 0.864937 0.501880i \(-0.167358\pi\)
0.864937 + 0.501880i \(0.167358\pi\)
\(542\) 7.18659 0.308690
\(543\) 0 0
\(544\) 13.3798 0.573653
\(545\) −4.94609 −0.211867
\(546\) 0 0
\(547\) 1.33189 0.0569477 0.0284738 0.999595i \(-0.490935\pi\)
0.0284738 + 0.999595i \(0.490935\pi\)
\(548\) −27.2736 −1.16507
\(549\) 0 0
\(550\) 0.932417 0.0397584
\(551\) −5.13844 −0.218905
\(552\) 0 0
\(553\) −36.4692 −1.55083
\(554\) −9.38907 −0.398904
\(555\) 0 0
\(556\) −12.8044 −0.543027
\(557\) 7.66019 0.324573 0.162286 0.986744i \(-0.448113\pi\)
0.162286 + 0.986744i \(0.448113\pi\)
\(558\) 0 0
\(559\) 2.45417 0.103800
\(560\) 8.67386 0.366538
\(561\) 0 0
\(562\) 0.684266 0.0288640
\(563\) −8.07085 −0.340146 −0.170073 0.985431i \(-0.554400\pi\)
−0.170073 + 0.985431i \(0.554400\pi\)
\(564\) 0 0
\(565\) 31.4588 1.32348
\(566\) −1.04815 −0.0440572
\(567\) 0 0
\(568\) −18.8435 −0.790656
\(569\) 37.2107 1.55995 0.779976 0.625809i \(-0.215231\pi\)
0.779976 + 0.625809i \(0.215231\pi\)
\(570\) 0 0
\(571\) −33.3606 −1.39610 −0.698049 0.716050i \(-0.745948\pi\)
−0.698049 + 0.716050i \(0.745948\pi\)
\(572\) −6.02408 −0.251879
\(573\) 0 0
\(574\) −0.942820 −0.0393525
\(575\) −6.12725 −0.255524
\(576\) 0 0
\(577\) −32.9234 −1.37062 −0.685309 0.728252i \(-0.740333\pi\)
−0.685309 + 0.728252i \(0.740333\pi\)
\(578\) −8.97043 −0.373121
\(579\) 0 0
\(580\) 14.1866 0.589066
\(581\) 69.1801 2.87007
\(582\) 0 0
\(583\) −8.82846 −0.365637
\(584\) 13.3398 0.552005
\(585\) 0 0
\(586\) 21.7095 0.896809
\(587\) 16.0837 0.663847 0.331924 0.943306i \(-0.392302\pi\)
0.331924 + 0.943306i \(0.392302\pi\)
\(588\) 0 0
\(589\) −6.66019 −0.274428
\(590\) 14.1111 0.580944
\(591\) 0 0
\(592\) −8.38109 −0.344461
\(593\) 22.8856 0.939801 0.469900 0.882719i \(-0.344290\pi\)
0.469900 + 0.882719i \(0.344290\pi\)
\(594\) 0 0
\(595\) 22.9806 0.942112
\(596\) 14.5505 0.596011
\(597\) 0 0
\(598\) −16.1273 −0.659492
\(599\) −30.2438 −1.23573 −0.617863 0.786285i \(-0.712002\pi\)
−0.617863 + 0.786285i \(0.712002\pi\)
\(600\) 0 0
\(601\) 3.89356 0.158821 0.0794107 0.996842i \(-0.474696\pi\)
0.0794107 + 0.996842i \(0.474696\pi\)
\(602\) 2.28263 0.0930331
\(603\) 0 0
\(604\) 14.2597 0.580218
\(605\) −1.94282 −0.0789869
\(606\) 0 0
\(607\) −22.0377 −0.894485 −0.447242 0.894413i \(-0.647594\pi\)
−0.447242 + 0.894413i \(0.647594\pi\)
\(608\) −5.86156 −0.237718
\(609\) 0 0
\(610\) 13.9910 0.566478
\(611\) 13.2463 0.535886
\(612\) 0 0
\(613\) 11.8752 0.479636 0.239818 0.970818i \(-0.422912\pi\)
0.239818 + 0.970818i \(0.422912\pi\)
\(614\) 2.60301 0.105049
\(615\) 0 0
\(616\) −13.4887 −0.543473
\(617\) 37.9557 1.52804 0.764020 0.645193i \(-0.223223\pi\)
0.764020 + 0.645193i \(0.223223\pi\)
\(618\) 0 0
\(619\) 17.4977 0.703291 0.351646 0.936133i \(-0.385622\pi\)
0.351646 + 0.936133i \(0.385622\pi\)
\(620\) 18.3880 0.738478
\(621\) 0 0
\(622\) 12.8227 0.514144
\(623\) −34.5127 −1.38272
\(624\) 0 0
\(625\) −17.3710 −0.694841
\(626\) −0.819168 −0.0327405
\(627\) 0 0
\(628\) −5.01943 −0.200297
\(629\) −22.2049 −0.885368
\(630\) 0 0
\(631\) 7.45090 0.296616 0.148308 0.988941i \(-0.452617\pi\)
0.148308 + 0.988941i \(0.452617\pi\)
\(632\) −18.3193 −0.728704
\(633\) 0 0
\(634\) −13.8629 −0.550568
\(635\) −23.5297 −0.933746
\(636\) 0 0
\(637\) −84.1574 −3.33444
\(638\) −3.90972 −0.154787
\(639\) 0 0
\(640\) 18.7303 0.740379
\(641\) −19.3009 −0.762342 −0.381171 0.924505i \(-0.624479\pi\)
−0.381171 + 0.924505i \(0.624479\pi\)
\(642\) 0 0
\(643\) 29.3984 1.15936 0.579679 0.814845i \(-0.303178\pi\)
0.579679 + 0.814845i \(0.303178\pi\)
\(644\) 36.8194 1.45089
\(645\) 0 0
\(646\) −1.73680 −0.0683335
\(647\) −25.9989 −1.02212 −0.511061 0.859545i \(-0.670747\pi\)
−0.511061 + 0.859545i \(0.670747\pi\)
\(648\) 0 0
\(649\) 9.54583 0.374707
\(650\) 3.95263 0.155035
\(651\) 0 0
\(652\) −16.6936 −0.653770
\(653\) 29.7609 1.16463 0.582317 0.812962i \(-0.302146\pi\)
0.582317 + 0.812962i \(0.302146\pi\)
\(654\) 0 0
\(655\) 24.8968 0.972799
\(656\) 0.206020 0.00804373
\(657\) 0 0
\(658\) 12.3204 0.480298
\(659\) −32.2463 −1.25614 −0.628068 0.778159i \(-0.716154\pi\)
−0.628068 + 0.778159i \(0.716154\pi\)
\(660\) 0 0
\(661\) 7.21505 0.280633 0.140316 0.990107i \(-0.455188\pi\)
0.140316 + 0.990107i \(0.455188\pi\)
\(662\) −6.71737 −0.261078
\(663\) 0 0
\(664\) 34.7507 1.34859
\(665\) −10.0676 −0.390404
\(666\) 0 0
\(667\) 25.6922 0.994805
\(668\) −5.60301 −0.216787
\(669\) 0 0
\(670\) 16.2118 0.626316
\(671\) 9.46457 0.365376
\(672\) 0 0
\(673\) −21.3833 −0.824266 −0.412133 0.911124i \(-0.635216\pi\)
−0.412133 + 0.911124i \(0.635216\pi\)
\(674\) −2.93131 −0.112910
\(675\) 0 0
\(676\) −7.06294 −0.271651
\(677\) −18.9579 −0.728610 −0.364305 0.931280i \(-0.618693\pi\)
−0.364305 + 0.931280i \(0.618693\pi\)
\(678\) 0 0
\(679\) 45.3275 1.73951
\(680\) 11.5437 0.442680
\(681\) 0 0
\(682\) −5.06758 −0.194048
\(683\) 10.7792 0.412454 0.206227 0.978504i \(-0.433881\pi\)
0.206227 + 0.978504i \(0.433881\pi\)
\(684\) 0 0
\(685\) −37.2873 −1.42467
\(686\) −50.6752 −1.93479
\(687\) 0 0
\(688\) −0.498788 −0.0190161
\(689\) −37.4249 −1.42578
\(690\) 0 0
\(691\) 49.8824 1.89761 0.948807 0.315855i \(-0.102291\pi\)
0.948807 + 0.315855i \(0.102291\pi\)
\(692\) −1.66484 −0.0632876
\(693\) 0 0
\(694\) 14.7702 0.560668
\(695\) −17.5056 −0.664025
\(696\) 0 0
\(697\) 0.545830 0.0206748
\(698\) −25.0837 −0.949434
\(699\) 0 0
\(700\) −9.02408 −0.341078
\(701\) −2.25855 −0.0853044 −0.0426522 0.999090i \(-0.513581\pi\)
−0.0426522 + 0.999090i \(0.513581\pi\)
\(702\) 0 0
\(703\) 9.72777 0.366890
\(704\) −2.73680 −0.103147
\(705\) 0 0
\(706\) −17.6178 −0.663054
\(707\) −10.0676 −0.378630
\(708\) 0 0
\(709\) −2.00792 −0.0754089 −0.0377044 0.999289i \(-0.512005\pi\)
−0.0377044 + 0.999289i \(0.512005\pi\)
\(710\) −10.7012 −0.401609
\(711\) 0 0
\(712\) −17.3365 −0.649714
\(713\) 33.3009 1.24713
\(714\) 0 0
\(715\) −8.23585 −0.308003
\(716\) 5.58823 0.208842
\(717\) 0 0
\(718\) 26.9111 1.00431
\(719\) 31.8824 1.18901 0.594506 0.804091i \(-0.297348\pi\)
0.594506 + 0.804091i \(0.297348\pi\)
\(720\) 0 0
\(721\) −92.2145 −3.43425
\(722\) 0.760877 0.0283169
\(723\) 0 0
\(724\) −19.2301 −0.714681
\(725\) −6.29690 −0.233861
\(726\) 0 0
\(727\) −33.4088 −1.23906 −0.619531 0.784972i \(-0.712677\pi\)
−0.619531 + 0.784972i \(0.712677\pi\)
\(728\) −57.1801 −2.11923
\(729\) 0 0
\(730\) 7.57566 0.280388
\(731\) −1.32149 −0.0488771
\(732\) 0 0
\(733\) −23.9187 −0.883459 −0.441729 0.897148i \(-0.645635\pi\)
−0.441729 + 0.897148i \(0.645635\pi\)
\(734\) −21.6260 −0.798229
\(735\) 0 0
\(736\) 29.3078 1.08030
\(737\) 10.9669 0.403971
\(738\) 0 0
\(739\) 7.25744 0.266969 0.133485 0.991051i \(-0.457383\pi\)
0.133485 + 0.991051i \(0.457383\pi\)
\(740\) −26.8572 −0.987290
\(741\) 0 0
\(742\) −34.8090 −1.27788
\(743\) 6.15460 0.225790 0.112895 0.993607i \(-0.463988\pi\)
0.112895 + 0.993607i \(0.463988\pi\)
\(744\) 0 0
\(745\) 19.8928 0.728815
\(746\) 13.3912 0.490288
\(747\) 0 0
\(748\) 3.24377 0.118604
\(749\) −27.4451 −1.00282
\(750\) 0 0
\(751\) 29.5666 1.07890 0.539451 0.842017i \(-0.318632\pi\)
0.539451 + 0.842017i \(0.318632\pi\)
\(752\) −2.69218 −0.0981738
\(753\) 0 0
\(754\) −16.5738 −0.603581
\(755\) 19.4952 0.709503
\(756\) 0 0
\(757\) −37.9611 −1.37972 −0.689861 0.723942i \(-0.742328\pi\)
−0.689861 + 0.723942i \(0.742328\pi\)
\(758\) 9.86621 0.358357
\(759\) 0 0
\(760\) −5.05718 −0.183443
\(761\) 5.10860 0.185187 0.0925934 0.995704i \(-0.470484\pi\)
0.0925934 + 0.995704i \(0.470484\pi\)
\(762\) 0 0
\(763\) −13.1923 −0.477595
\(764\) −21.6364 −0.782777
\(765\) 0 0
\(766\) −6.78168 −0.245032
\(767\) 40.4660 1.46114
\(768\) 0 0
\(769\) −34.9863 −1.26164 −0.630820 0.775930i \(-0.717281\pi\)
−0.630820 + 0.775930i \(0.717281\pi\)
\(770\) −7.66019 −0.276054
\(771\) 0 0
\(772\) −25.9808 −0.935071
\(773\) 17.2711 0.621199 0.310599 0.950541i \(-0.399470\pi\)
0.310599 + 0.950541i \(0.399470\pi\)
\(774\) 0 0
\(775\) −8.16173 −0.293178
\(776\) 22.7691 0.817362
\(777\) 0 0
\(778\) 13.0960 0.469516
\(779\) −0.239123 −0.00856748
\(780\) 0 0
\(781\) −7.23912 −0.259036
\(782\) 8.68400 0.310539
\(783\) 0 0
\(784\) 17.1042 0.610865
\(785\) −6.86235 −0.244928
\(786\) 0 0
\(787\) 40.8115 1.45477 0.727387 0.686228i \(-0.240735\pi\)
0.727387 + 0.686228i \(0.240735\pi\)
\(788\) 20.1259 0.716955
\(789\) 0 0
\(790\) −10.4035 −0.370141
\(791\) 83.9078 2.98342
\(792\) 0 0
\(793\) 40.1215 1.42476
\(794\) −8.42545 −0.299008
\(795\) 0 0
\(796\) −25.2736 −0.895799
\(797\) 25.8090 0.914203 0.457101 0.889415i \(-0.348888\pi\)
0.457101 + 0.889415i \(0.348888\pi\)
\(798\) 0 0
\(799\) −7.13268 −0.252336
\(800\) −7.18305 −0.253959
\(801\) 0 0
\(802\) 12.1557 0.429233
\(803\) 5.12476 0.180849
\(804\) 0 0
\(805\) 50.3379 1.77418
\(806\) −21.4821 −0.756675
\(807\) 0 0
\(808\) −5.05718 −0.177911
\(809\) −6.17946 −0.217258 −0.108629 0.994082i \(-0.534646\pi\)
−0.108629 + 0.994082i \(0.534646\pi\)
\(810\) 0 0
\(811\) −11.0676 −0.388635 −0.194318 0.980939i \(-0.562249\pi\)
−0.194318 + 0.980939i \(0.562249\pi\)
\(812\) 37.8389 1.32788
\(813\) 0 0
\(814\) 7.40164 0.259427
\(815\) −22.8227 −0.799444
\(816\) 0 0
\(817\) 0.578933 0.0202543
\(818\) 0.256066 0.00895313
\(819\) 0 0
\(820\) 0.660190 0.0230548
\(821\) −13.6602 −0.476744 −0.238372 0.971174i \(-0.576614\pi\)
−0.238372 + 0.971174i \(0.576614\pi\)
\(822\) 0 0
\(823\) 11.4887 0.400469 0.200235 0.979748i \(-0.435830\pi\)
0.200235 + 0.979748i \(0.435830\pi\)
\(824\) −46.3215 −1.61369
\(825\) 0 0
\(826\) 37.6375 1.30958
\(827\) −19.9942 −0.695268 −0.347634 0.937630i \(-0.613015\pi\)
−0.347634 + 0.937630i \(0.613015\pi\)
\(828\) 0 0
\(829\) −16.4451 −0.571163 −0.285582 0.958354i \(-0.592187\pi\)
−0.285582 + 0.958354i \(0.592187\pi\)
\(830\) 19.7349 0.685009
\(831\) 0 0
\(832\) −11.6016 −0.402214
\(833\) 45.3160 1.57011
\(834\) 0 0
\(835\) −7.66019 −0.265092
\(836\) −1.42107 −0.0491486
\(837\) 0 0
\(838\) 25.4200 0.878118
\(839\) 55.3171 1.90976 0.954879 0.296994i \(-0.0959841\pi\)
0.954879 + 0.296994i \(0.0959841\pi\)
\(840\) 0 0
\(841\) −2.59647 −0.0895335
\(842\) −6.16114 −0.212327
\(843\) 0 0
\(844\) 26.3696 0.907681
\(845\) −9.65614 −0.332181
\(846\) 0 0
\(847\) −5.18194 −0.178054
\(848\) 7.60628 0.261201
\(849\) 0 0
\(850\) −2.12836 −0.0730022
\(851\) −48.6389 −1.66732
\(852\) 0 0
\(853\) −9.85005 −0.337259 −0.168630 0.985679i \(-0.553934\pi\)
−0.168630 + 0.985679i \(0.553934\pi\)
\(854\) 37.3171 1.27697
\(855\) 0 0
\(856\) −13.7863 −0.471207
\(857\) 19.7907 0.676038 0.338019 0.941139i \(-0.390243\pi\)
0.338019 + 0.941139i \(0.390243\pi\)
\(858\) 0 0
\(859\) −6.95898 −0.237437 −0.118719 0.992928i \(-0.537879\pi\)
−0.118719 + 0.992928i \(0.537879\pi\)
\(860\) −1.59836 −0.0545038
\(861\) 0 0
\(862\) −28.5070 −0.970951
\(863\) 5.74393 0.195526 0.0977629 0.995210i \(-0.468831\pi\)
0.0977629 + 0.995210i \(0.468831\pi\)
\(864\) 0 0
\(865\) −2.27609 −0.0773894
\(866\) 1.82133 0.0618912
\(867\) 0 0
\(868\) 49.0449 1.66469
\(869\) −7.03775 −0.238739
\(870\) 0 0
\(871\) 46.4900 1.57525
\(872\) −6.62682 −0.224412
\(873\) 0 0
\(874\) −3.80438 −0.128685
\(875\) −62.6752 −2.11881
\(876\) 0 0
\(877\) 42.5070 1.43536 0.717679 0.696374i \(-0.245204\pi\)
0.717679 + 0.696374i \(0.245204\pi\)
\(878\) 9.43612 0.318454
\(879\) 0 0
\(880\) 1.67386 0.0564259
\(881\) −31.7655 −1.07021 −0.535104 0.844786i \(-0.679728\pi\)
−0.535104 + 0.844786i \(0.679728\pi\)
\(882\) 0 0
\(883\) −30.5458 −1.02795 −0.513975 0.857805i \(-0.671827\pi\)
−0.513975 + 0.857805i \(0.671827\pi\)
\(884\) 13.7507 0.462487
\(885\) 0 0
\(886\) −1.32254 −0.0444315
\(887\) −45.0506 −1.51265 −0.756326 0.654195i \(-0.773008\pi\)
−0.756326 + 0.654195i \(0.773008\pi\)
\(888\) 0 0
\(889\) −62.7590 −2.10487
\(890\) −9.84540 −0.330019
\(891\) 0 0
\(892\) 10.9817 0.367694
\(893\) 3.12476 0.104566
\(894\) 0 0
\(895\) 7.63998 0.255376
\(896\) 49.9579 1.66898
\(897\) 0 0
\(898\) 0.140924 0.00470270
\(899\) 34.2230 1.14140
\(900\) 0 0
\(901\) 20.1521 0.671364
\(902\) −0.181943 −0.00605805
\(903\) 0 0
\(904\) 42.1488 1.40185
\(905\) −26.2905 −0.873927
\(906\) 0 0
\(907\) 12.9831 0.431095 0.215548 0.976493i \(-0.430846\pi\)
0.215548 + 0.976493i \(0.430846\pi\)
\(908\) 0.775661 0.0257412
\(909\) 0 0
\(910\) −32.4725 −1.07645
\(911\) 32.1398 1.06484 0.532420 0.846480i \(-0.321283\pi\)
0.532420 + 0.846480i \(0.321283\pi\)
\(912\) 0 0
\(913\) 13.3502 0.441828
\(914\) 13.9267 0.460653
\(915\) 0 0
\(916\) −10.1784 −0.336304
\(917\) 66.4055 2.19290
\(918\) 0 0
\(919\) 54.4476 1.79606 0.898031 0.439933i \(-0.144998\pi\)
0.898031 + 0.439933i \(0.144998\pi\)
\(920\) 25.2859 0.833651
\(921\) 0 0
\(922\) −22.9396 −0.755474
\(923\) −30.6875 −1.01009
\(924\) 0 0
\(925\) 11.9209 0.391957
\(926\) −3.40053 −0.111748
\(927\) 0 0
\(928\) 30.1193 0.988714
\(929\) 11.3502 0.372388 0.186194 0.982513i \(-0.440385\pi\)
0.186194 + 0.982513i \(0.440385\pi\)
\(930\) 0 0
\(931\) −19.8525 −0.650641
\(932\) 4.63062 0.151681
\(933\) 0 0
\(934\) 5.04926 0.165217
\(935\) 4.43474 0.145031
\(936\) 0 0
\(937\) −5.70697 −0.186438 −0.0932192 0.995646i \(-0.529716\pi\)
−0.0932192 + 0.995646i \(0.529716\pi\)
\(938\) 43.2405 1.41185
\(939\) 0 0
\(940\) −8.62709 −0.281385
\(941\) 17.4646 0.569329 0.284664 0.958627i \(-0.408118\pi\)
0.284664 + 0.958627i \(0.408118\pi\)
\(942\) 0 0
\(943\) 1.19562 0.0389346
\(944\) −8.22434 −0.267679
\(945\) 0 0
\(946\) 0.440497 0.0143218
\(947\) 42.0449 1.36628 0.683138 0.730290i \(-0.260615\pi\)
0.683138 + 0.730290i \(0.260615\pi\)
\(948\) 0 0
\(949\) 21.7245 0.705207
\(950\) 0.932417 0.0302516
\(951\) 0 0
\(952\) 30.7896 0.997897
\(953\) 21.1704 0.685777 0.342889 0.939376i \(-0.388595\pi\)
0.342889 + 0.939376i \(0.388595\pi\)
\(954\) 0 0
\(955\) −29.5803 −0.957196
\(956\) −35.9773 −1.16359
\(957\) 0 0
\(958\) −18.6695 −0.603184
\(959\) −99.4537 −3.21153
\(960\) 0 0
\(961\) 13.3581 0.430907
\(962\) 31.3764 1.01162
\(963\) 0 0
\(964\) 15.0400 0.484405
\(965\) −35.5199 −1.14342
\(966\) 0 0
\(967\) 36.9787 1.18915 0.594577 0.804039i \(-0.297320\pi\)
0.594577 + 0.804039i \(0.297320\pi\)
\(968\) −2.60301 −0.0836639
\(969\) 0 0
\(970\) 12.9305 0.415174
\(971\) 34.0917 1.09405 0.547027 0.837115i \(-0.315760\pi\)
0.547027 + 0.837115i \(0.315760\pi\)
\(972\) 0 0
\(973\) −46.6914 −1.49686
\(974\) 12.6684 0.405923
\(975\) 0 0
\(976\) −8.15433 −0.261014
\(977\) 1.30422 0.0417257 0.0208628 0.999782i \(-0.493359\pi\)
0.0208628 + 0.999782i \(0.493359\pi\)
\(978\) 0 0
\(979\) −6.66019 −0.212861
\(980\) 54.8104 1.75085
\(981\) 0 0
\(982\) −5.91299 −0.188691
\(983\) 17.3387 0.553019 0.276509 0.961011i \(-0.410822\pi\)
0.276509 + 0.961011i \(0.410822\pi\)
\(984\) 0 0
\(985\) 27.5152 0.876708
\(986\) 8.92444 0.284212
\(987\) 0 0
\(988\) −6.02408 −0.191651
\(989\) −2.89467 −0.0920451
\(990\) 0 0
\(991\) −19.9475 −0.633652 −0.316826 0.948484i \(-0.602617\pi\)
−0.316826 + 0.948484i \(0.602617\pi\)
\(992\) 39.0391 1.23949
\(993\) 0 0
\(994\) −28.5426 −0.905315
\(995\) −34.5530 −1.09540
\(996\) 0 0
\(997\) −6.80438 −0.215497 −0.107748 0.994178i \(-0.534364\pi\)
−0.107748 + 0.994178i \(0.534364\pi\)
\(998\) 1.60439 0.0507860
\(999\) 0 0
Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))

Twists

       By twisting character
Char Parity Ord Type Twist Min Dim
1.1 even 1 trivial 1881.2.a.i.1.2 3
3.2 odd 2 627.2.a.e.1.2 3
33.32 even 2 6897.2.a.p.1.2 3
    
        By twisted newform
Twist Min Dim Char Parity Ord Type
627.2.a.e.1.2 3 3.2 odd 2
1881.2.a.i.1.2 3 1.1 even 1 trivial
6897.2.a.p.1.2 3 33.32 even 2