Properties

Label 1881.2.a.n.1.4
Level 18811881
Weight 22
Character 1881.1
Self dual yes
Analytic conductor 15.02015.020
Analytic rank 11
Dimension 77
CM no
Inner twists 11

Related objects

Downloads

Learn more

Show commands: Magma / PariGP / SageMath

Newspace parameters

comment: Compute space of new eigenforms
 
[N,k,chi] = [1881,2,Mod(1,1881)]
 
mf = mfinit([N,k,chi],0)
 
lf = mfeigenbasis(mf)
 
from sage.modular.dirichlet import DirichletCharacter
 
H = DirichletGroup(1881, base_ring=CyclotomicField(2))
 
chi = DirichletCharacter(H, H._module([0, 0, 0]))
 
N = Newforms(chi, 2, names="a")
 
//Please install CHIMP (https://github.com/edgarcosta/CHIMP) if you want to run this code
 
chi := DirichletCharacter("1881.1");
 
S:= CuspForms(chi, 2);
 
N := Newforms(S);
 
Level: N N == 1881=321119 1881 = 3^{2} \cdot 11 \cdot 19
Weight: k k == 2 2
Character orbit: [χ][\chi] == 1881.a (trivial)

Newform invariants

comment: select newform
 
sage: f = N[0] # Warning: the index may be different
 
gp: f = lf[1] \\ Warning: the index may be different
 
Self dual: yes
Analytic conductor: 15.019860620215.0198606202
Analytic rank: 11
Dimension: 77
Coefficient field: Q[x]/(x7)\mathbb{Q}[x]/(x^{7} - \cdots)
comment: defining polynomial
 
gp: f.mod \\ as an extension of the character field
 
Defining polynomial: x7x69x5+7x4+22x312x29x1 x^{7} - x^{6} - 9x^{5} + 7x^{4} + 22x^{3} - 12x^{2} - 9x - 1 Copy content Toggle raw display
Coefficient ring: Z[a1,a2]\Z[a_1, a_2]
Coefficient ring index: 1 1
Twist minimal: yes
Fricke sign: +1+1
Sato-Tate group: SU(2)\mathrm{SU}(2)

Embedding invariants

Embedding label 1.4
Root 2.07449-2.07449 of defining polynomial
Character χ\chi == 1881.1

qq-expansion

comment: q-expansion
 
sage: f.q_expansion() # note that sage often uses an isomorphic number field
 
gp: mfcoefs(f, 20)
 
f(q)f(q) == q0.659361q21.56524q41.36783q54.12178q7+2.35078q8+0.901896q10+1.00000q11+5.19538q13+2.71774q14+1.58047q16+3.22290q17+1.00000q19+2.14099q200.659361q228.38994q233.12903q253.42563q26+6.45158q28+8.06737q29+2.96753q315.74367q322.12506q34+5.63791q35+4.26722q370.659361q383.21548q405.15535q41+10.2105q431.56524q44+5.53200q460.149795q47+9.98904q49+2.06316q508.13204q526.14245q531.36783q559.68940q565.31931q5811.8834q599.58057q611.95667q62+0.626199q647.10642q656.34315q675.04463q683.71741q7014.3895q71+3.01996q732.81364q741.56524q764.12178q77+3.15936q792.16183q80+3.39923q8213.1976q834.40840q856.73239q86+2.35078q88+10.4570q8921.4142q91+13.1323q92+0.0987692q941.36783q95+14.2761q976.58638q98+O(q100)q-0.659361 q^{2} -1.56524 q^{4} -1.36783 q^{5} -4.12178 q^{7} +2.35078 q^{8} +0.901896 q^{10} +1.00000 q^{11} +5.19538 q^{13} +2.71774 q^{14} +1.58047 q^{16} +3.22290 q^{17} +1.00000 q^{19} +2.14099 q^{20} -0.659361 q^{22} -8.38994 q^{23} -3.12903 q^{25} -3.42563 q^{26} +6.45158 q^{28} +8.06737 q^{29} +2.96753 q^{31} -5.74367 q^{32} -2.12506 q^{34} +5.63791 q^{35} +4.26722 q^{37} -0.659361 q^{38} -3.21548 q^{40} -5.15535 q^{41} +10.2105 q^{43} -1.56524 q^{44} +5.53200 q^{46} -0.149795 q^{47} +9.98904 q^{49} +2.06316 q^{50} -8.13204 q^{52} -6.14245 q^{53} -1.36783 q^{55} -9.68940 q^{56} -5.31931 q^{58} -11.8834 q^{59} -9.58057 q^{61} -1.95667 q^{62} +0.626199 q^{64} -7.10642 q^{65} -6.34315 q^{67} -5.04463 q^{68} -3.71741 q^{70} -14.3895 q^{71} +3.01996 q^{73} -2.81364 q^{74} -1.56524 q^{76} -4.12178 q^{77} +3.15936 q^{79} -2.16183 q^{80} +3.39923 q^{82} -13.1976 q^{83} -4.40840 q^{85} -6.73239 q^{86} +2.35078 q^{88} +10.4570 q^{89} -21.4142 q^{91} +13.1323 q^{92} +0.0987692 q^{94} -1.36783 q^{95} +14.2761 q^{97} -6.58638 q^{98} +O(q^{100})
Tr(f)(q)\operatorname{Tr}(f)(q) == 7q2q2+6q48q52q76q8+6q10+7q117q136q145q17+7q1920q202q2222q23+3q2510q26+2q2818q2914q32++62q98+O(q100) 7 q - 2 q^{2} + 6 q^{4} - 8 q^{5} - 2 q^{7} - 6 q^{8} + 6 q^{10} + 7 q^{11} - 7 q^{13} - 6 q^{14} - 5 q^{17} + 7 q^{19} - 20 q^{20} - 2 q^{22} - 22 q^{23} + 3 q^{25} - 10 q^{26} + 2 q^{28} - 18 q^{29} - 14 q^{32}+ \cdots + 62 q^{98}+O(q^{100}) Copy content Toggle raw display

Coefficient data

For each nn we display the coefficients of the qq-expansion ana_n, the Satake parameters αp\alpha_p, and the Satake angles θp=Arg(αp)\theta_p = \textrm{Arg}(\alpha_p).



Display apa_p with pp up to: 50 250 1000 (See ana_n instead) (See ana_n instead) (See ana_n instead) Display ana_n with nn up to: 50 250 1000 (See only apa_p) (See only apa_p) (See only apa_p)
Significant digits:
nn ana_n an/n(k1)/2a_n / n^{(k-1)/2} αn \alpha_n θn \theta_n
pp apa_p ap/p(k1)/2a_p / p^{(k-1)/2} αp \alpha_p θp \theta_p
22 −0.659361 −0.466238 −0.233119 0.972448i 0.574893π-0.574893\pi
−0.233119 + 0.972448i 0.574893π0.574893\pi
33 0 0
44 −1.56524 −0.782622
55 −1.36783 −0.611714 −0.305857 0.952077i 0.598943π-0.598943\pi
−0.305857 + 0.952077i 0.598943π0.598943\pi
66 0 0
77 −4.12178 −1.55789 −0.778943 0.627095i 0.784244π-0.784244\pi
−0.778943 + 0.627095i 0.784244π0.784244\pi
88 2.35078 0.831127
99 0 0
1010 0.901896 0.285205
1111 1.00000 0.301511
1212 0 0
1313 5.19538 1.44094 0.720470 0.693486i 0.243926π-0.243926\pi
0.720470 + 0.693486i 0.243926π0.243926\pi
1414 2.71774 0.726346
1515 0 0
1616 1.58047 0.395119
1717 3.22290 0.781669 0.390835 0.920461i 0.372186π-0.372186\pi
0.390835 + 0.920461i 0.372186π0.372186\pi
1818 0 0
1919 1.00000 0.229416
2020 2.14099 0.478741
2121 0 0
2222 −0.659361 −0.140576
2323 −8.38994 −1.74942 −0.874712 0.484643i 0.838949π-0.838949\pi
−0.874712 + 0.484643i 0.838949π0.838949\pi
2424 0 0
2525 −3.12903 −0.625806
2626 −3.42563 −0.671822
2727 0 0
2828 6.45158 1.21923
2929 8.06737 1.49807 0.749037 0.662529i 0.230517π-0.230517\pi
0.749037 + 0.662529i 0.230517π0.230517\pi
3030 0 0
3131 2.96753 0.532983 0.266492 0.963837i 0.414136π-0.414136\pi
0.266492 + 0.963837i 0.414136π0.414136\pi
3232 −5.74367 −1.01535
3333 0 0
3434 −2.12506 −0.364444
3535 5.63791 0.952980
3636 0 0
3737 4.26722 0.701527 0.350763 0.936464i 0.385922π-0.385922\pi
0.350763 + 0.936464i 0.385922π0.385922\pi
3838 −0.659361 −0.106962
3939 0 0
4040 −3.21548 −0.508412
4141 −5.15535 −0.805130 −0.402565 0.915391i 0.631881π-0.631881\pi
−0.402565 + 0.915391i 0.631881π0.631881\pi
4242 0 0
4343 10.2105 1.55708 0.778542 0.627593i 0.215960π-0.215960\pi
0.778542 + 0.627593i 0.215960π0.215960\pi
4444 −1.56524 −0.235969
4545 0 0
4646 5.53200 0.815648
4747 −0.149795 −0.0218499 −0.0109250 0.999940i 0.503478π-0.503478\pi
−0.0109250 + 0.999940i 0.503478π0.503478\pi
4848 0 0
4949 9.98904 1.42701
5050 2.06316 0.291775
5151 0 0
5252 −8.13204 −1.12771
5353 −6.14245 −0.843731 −0.421865 0.906659i 0.638624π-0.638624\pi
−0.421865 + 0.906659i 0.638624π0.638624\pi
5454 0 0
5555 −1.36783 −0.184439
5656 −9.68940 −1.29480
5757 0 0
5858 −5.31931 −0.698459
5959 −11.8834 −1.54709 −0.773545 0.633742i 0.781518π-0.781518\pi
−0.773545 + 0.633742i 0.781518π0.781518\pi
6060 0 0
6161 −9.58057 −1.22667 −0.613333 0.789824i 0.710172π-0.710172\pi
−0.613333 + 0.789824i 0.710172π0.710172\pi
6262 −1.95667 −0.248497
6363 0 0
6464 0.626199 0.0782748
6565 −7.10642 −0.881443
6666 0 0
6767 −6.34315 −0.774940 −0.387470 0.921882i 0.626651π-0.626651\pi
−0.387470 + 0.921882i 0.626651π0.626651\pi
6868 −5.04463 −0.611751
6969 0 0
7070 −3.71741 −0.444316
7171 −14.3895 −1.70773 −0.853863 0.520498i 0.825746π-0.825746\pi
−0.853863 + 0.520498i 0.825746π0.825746\pi
7272 0 0
7373 3.01996 0.353460 0.176730 0.984259i 0.443448π-0.443448\pi
0.176730 + 0.984259i 0.443448π0.443448\pi
7474 −2.81364 −0.327079
7575 0 0
7676 −1.56524 −0.179546
7777 −4.12178 −0.469720
7878 0 0
7979 3.15936 0.355455 0.177728 0.984080i 0.443125π-0.443125\pi
0.177728 + 0.984080i 0.443125π0.443125\pi
8080 −2.16183 −0.241700
8181 0 0
8282 3.39923 0.375382
8383 −13.1976 −1.44863 −0.724315 0.689470i 0.757844π-0.757844\pi
−0.724315 + 0.689470i 0.757844π0.757844\pi
8484 0 0
8585 −4.40840 −0.478158
8686 −6.73239 −0.725972
8787 0 0
8888 2.35078 0.250594
8989 10.4570 1.10844 0.554221 0.832369i 0.313016π-0.313016\pi
0.554221 + 0.832369i 0.313016π0.313016\pi
9090 0 0
9191 −21.4142 −2.24482
9292 13.1323 1.36914
9393 0 0
9494 0.0987692 0.0101873
9595 −1.36783 −0.140337
9696 0 0
9797 14.2761 1.44952 0.724758 0.689004i 0.241952π-0.241952\pi
0.724758 + 0.689004i 0.241952π0.241952\pi
9898 −6.58638 −0.665325
9999 0 0
100100 4.89769 0.489769
101101 −5.19923 −0.517343 −0.258671 0.965965i 0.583285π-0.583285\pi
−0.258671 + 0.965965i 0.583285π0.583285\pi
102102 0 0
103103 −5.99586 −0.590789 −0.295395 0.955375i 0.595451π-0.595451\pi
−0.295395 + 0.955375i 0.595451π0.595451\pi
104104 12.2132 1.19760
105105 0 0
106106 4.05009 0.393380
107107 0.0698571 0.00675334 0.00337667 0.999994i 0.498925π-0.498925\pi
0.00337667 + 0.999994i 0.498925π0.498925\pi
108108 0 0
109109 −13.9994 −1.34090 −0.670450 0.741955i 0.733899π-0.733899\pi
−0.670450 + 0.741955i 0.733899π0.733899\pi
110110 0.901896 0.0859924
111111 0 0
112112 −6.51436 −0.615549
113113 −14.9533 −1.40669 −0.703346 0.710847i 0.748312π-0.748312\pi
−0.703346 + 0.710847i 0.748312π0.748312\pi
114114 0 0
115115 11.4760 1.07015
116116 −12.6274 −1.17242
117117 0 0
118118 7.83546 0.721312
119119 −13.2841 −1.21775
120120 0 0
121121 1.00000 0.0909091
122122 6.31705 0.571919
123123 0 0
124124 −4.64490 −0.417124
125125 11.1192 0.994528
126126 0 0
127127 15.9404 1.41448 0.707240 0.706974i 0.249940π-0.249940\pi
0.707240 + 0.706974i 0.249940π0.249940\pi
128128 11.0744 0.978851
129129 0 0
130130 4.68570 0.410963
131131 1.37498 0.120132 0.0600662 0.998194i 0.480869π-0.480869\pi
0.0600662 + 0.998194i 0.480869π0.480869\pi
132132 0 0
133133 −4.12178 −0.357403
134134 4.18243 0.361307
135135 0 0
136136 7.57634 0.649666
137137 21.4695 1.83426 0.917131 0.398587i 0.130499π-0.130499\pi
0.917131 + 0.398587i 0.130499π0.130499\pi
138138 0 0
139139 −11.1461 −0.945401 −0.472700 0.881223i 0.656721π-0.656721\pi
−0.472700 + 0.881223i 0.656721π0.656721\pi
140140 −8.82470 −0.745823
141141 0 0
142142 9.48790 0.796207
143143 5.19538 0.434460
144144 0 0
145145 −11.0348 −0.916393
146146 −1.99124 −0.164796
147147 0 0
148148 −6.67924 −0.549030
149149 −4.58899 −0.375945 −0.187972 0.982174i 0.560192π-0.560192\pi
−0.187972 + 0.982174i 0.560192π0.560192\pi
150150 0 0
151151 −18.9094 −1.53882 −0.769411 0.638754i 0.779450π-0.779450\pi
−0.769411 + 0.638754i 0.779450π0.779450\pi
152152 2.35078 0.190674
153153 0 0
154154 2.71774 0.219002
155155 −4.05908 −0.326033
156156 0 0
157157 −16.5112 −1.31774 −0.658868 0.752259i 0.728964π-0.728964\pi
−0.658868 + 0.752259i 0.728964π0.728964\pi
158158 −2.08316 −0.165727
159159 0 0
160160 7.85638 0.621102
161161 34.5815 2.72540
162162 0 0
163163 3.35007 0.262398 0.131199 0.991356i 0.458117π-0.458117\pi
0.131199 + 0.991356i 0.458117π0.458117\pi
164164 8.06937 0.630112
165165 0 0
166166 8.70201 0.675407
167167 −3.73604 −0.289103 −0.144552 0.989497i 0.546174π-0.546174\pi
−0.144552 + 0.989497i 0.546174π0.546174\pi
168168 0 0
169169 13.9920 1.07631
170170 2.90672 0.222936
171171 0 0
172172 −15.9819 −1.21861
173173 −17.6066 −1.33861 −0.669303 0.742989i 0.733407π-0.733407\pi
−0.669303 + 0.742989i 0.733407π0.733407\pi
174174 0 0
175175 12.8972 0.974934
176176 1.58047 0.119133
177177 0 0
178178 −6.89495 −0.516798
179179 −8.22822 −0.615006 −0.307503 0.951547i 0.599493π-0.599493\pi
−0.307503 + 0.951547i 0.599493π0.599493\pi
180180 0 0
181181 5.61440 0.417315 0.208657 0.977989i 0.433091π-0.433091\pi
0.208657 + 0.977989i 0.433091π0.433091\pi
182182 14.1197 1.04662
183183 0 0
184184 −19.7229 −1.45399
185185 −5.83685 −0.429134
186186 0 0
187187 3.22290 0.235682
188188 0.234466 0.0171002
189189 0 0
190190 0.901896 0.0654304
191191 −22.2453 −1.60962 −0.804808 0.593536i 0.797732π-0.797732\pi
−0.804808 + 0.593536i 0.797732π0.797732\pi
192192 0 0
193193 −15.5672 −1.12055 −0.560275 0.828306i 0.689305π-0.689305\pi
−0.560275 + 0.828306i 0.689305π0.689305\pi
194194 −9.41308 −0.675820
195195 0 0
196196 −15.6353 −1.11681
197197 6.72177 0.478906 0.239453 0.970908i 0.423032π-0.423032\pi
0.239453 + 0.970908i 0.423032π0.423032\pi
198198 0 0
199199 0.465250 0.0329807 0.0164904 0.999864i 0.494751π-0.494751\pi
0.0164904 + 0.999864i 0.494751π0.494751\pi
200200 −7.35566 −0.520124
201201 0 0
202202 3.42817 0.241205
203203 −33.2519 −2.33383
204204 0 0
205205 7.05166 0.492509
206206 3.95343 0.275449
207207 0 0
208208 8.21117 0.569342
209209 1.00000 0.0691714
210210 0 0
211211 9.51178 0.654818 0.327409 0.944883i 0.393825π-0.393825\pi
0.327409 + 0.944883i 0.393825π0.393825\pi
212212 9.61443 0.660322
213213 0 0
214214 −0.0460610 −0.00314867
215215 −13.9662 −0.952490
216216 0 0
217217 −12.2315 −0.830327
218218 9.23066 0.625179
219219 0 0
220220 2.14099 0.144346
221221 16.7442 1.12634
222222 0 0
223223 0.879682 0.0589078 0.0294539 0.999566i 0.490623π-0.490623\pi
0.0294539 + 0.999566i 0.490623π0.490623\pi
224224 23.6741 1.58179
225225 0 0
226226 9.85965 0.655854
227227 −19.8435 −1.31706 −0.658529 0.752556i 0.728821π-0.728821\pi
−0.658529 + 0.752556i 0.728821π0.728821\pi
228228 0 0
229229 27.5646 1.82152 0.910760 0.412936i 0.135497π-0.135497\pi
0.910760 + 0.412936i 0.135497π0.135497\pi
230230 −7.56686 −0.498944
231231 0 0
232232 18.9646 1.24509
233233 9.60936 0.629530 0.314765 0.949170i 0.398074π-0.398074\pi
0.314765 + 0.949170i 0.398074π0.398074\pi
234234 0 0
235235 0.204895 0.0133659
236236 18.6004 1.21079
237237 0 0
238238 8.75901 0.567762
239239 23.2890 1.50644 0.753219 0.657770i 0.228500π-0.228500\pi
0.753219 + 0.657770i 0.228500π0.228500\pi
240240 0 0
241241 −0.0990583 −0.00638091 −0.00319045 0.999995i 0.501016π-0.501016\pi
−0.00319045 + 0.999995i 0.501016π0.501016\pi
242242 −0.659361 −0.0423853
243243 0 0
244244 14.9959 0.960016
245245 −13.6634 −0.872920
246246 0 0
247247 5.19538 0.330574
248248 6.97600 0.442977
249249 0 0
250250 −7.33154 −0.463687
251251 −13.8105 −0.871708 −0.435854 0.900017i 0.643554π-0.643554\pi
−0.435854 + 0.900017i 0.643554π0.643554\pi
252252 0 0
253253 −8.38994 −0.527471
254254 −10.5105 −0.659485
255255 0 0
256256 −8.55445 −0.534653
257257 −2.16556 −0.135084 −0.0675419 0.997716i 0.521516π-0.521516\pi
−0.0675419 + 0.997716i 0.521516π0.521516\pi
258258 0 0
259259 −17.5885 −1.09290
260260 11.1233 0.689837
261261 0 0
262262 −0.906607 −0.0560104
263263 7.69195 0.474306 0.237153 0.971472i 0.423786π-0.423786\pi
0.237153 + 0.971472i 0.423786π0.423786\pi
264264 0 0
265265 8.40186 0.516122
266266 2.71774 0.166635
267267 0 0
268268 9.92858 0.606485
269269 0.550251 0.0335494 0.0167747 0.999859i 0.494660π-0.494660\pi
0.0167747 + 0.999859i 0.494660π0.494660\pi
270270 0 0
271271 6.38378 0.387787 0.193894 0.981023i 0.437888π-0.437888\pi
0.193894 + 0.981023i 0.437888π0.437888\pi
272272 5.09372 0.308852
273273 0 0
274274 −14.1561 −0.855203
275275 −3.12903 −0.188688
276276 0 0
277277 −29.2996 −1.76044 −0.880221 0.474563i 0.842606π-0.842606\pi
−0.880221 + 0.474563i 0.842606π0.842606\pi
278278 7.34931 0.440782
279279 0 0
280280 13.2535 0.792047
281281 −14.4530 −0.862196 −0.431098 0.902305i 0.641874π-0.641874\pi
−0.431098 + 0.902305i 0.641874π0.641874\pi
282282 0 0
283283 0.779649 0.0463453 0.0231727 0.999731i 0.492623π-0.492623\pi
0.0231727 + 0.999731i 0.492623π0.492623\pi
284284 22.5231 1.33650
285285 0 0
286286 −3.42563 −0.202562
287287 21.2492 1.25430
288288 0 0
289289 −6.61289 −0.388994
290290 7.27593 0.427257
291291 0 0
292292 −4.72697 −0.276625
293293 −10.7836 −0.629983 −0.314992 0.949094i 0.602002π-0.602002\pi
−0.314992 + 0.949094i 0.602002π0.602002\pi
294294 0 0
295295 16.2545 0.946376
296296 10.0313 0.583058
297297 0 0
298298 3.02580 0.175280
299299 −43.5890 −2.52081
300300 0 0
301301 −42.0853 −2.42576
302302 12.4681 0.717458
303303 0 0
304304 1.58047 0.0906464
305305 13.1046 0.750369
306306 0 0
307307 9.09308 0.518969 0.259485 0.965747i 0.416447π-0.416447\pi
0.259485 + 0.965747i 0.416447π0.416447\pi
308308 6.45158 0.367613
309309 0 0
310310 2.67640 0.152009
311311 −8.54476 −0.484529 −0.242264 0.970210i 0.577890π-0.577890\pi
−0.242264 + 0.970210i 0.577890π0.577890\pi
312312 0 0
313313 −28.0173 −1.58363 −0.791815 0.610761i 0.790864π-0.790864\pi
−0.791815 + 0.610761i 0.790864π0.790864\pi
314314 10.8868 0.614379
315315 0 0
316316 −4.94516 −0.278187
317317 −13.8377 −0.777201 −0.388600 0.921406i 0.627041π-0.627041\pi
−0.388600 + 0.921406i 0.627041π0.627041\pi
318318 0 0
319319 8.06737 0.451686
320320 −0.856536 −0.0478818
321321 0 0
322322 −22.8017 −1.27069
323323 3.22290 0.179327
324324 0 0
325325 −16.2565 −0.901749
326326 −2.20890 −0.122340
327327 0 0
328328 −12.1191 −0.669165
329329 0.617423 0.0340396
330330 0 0
331331 4.27770 0.235124 0.117562 0.993066i 0.462492π-0.462492\pi
0.117562 + 0.993066i 0.462492π0.462492\pi
332332 20.6575 1.13373
333333 0 0
334334 2.46340 0.134791
335335 8.67638 0.474041
336336 0 0
337337 26.0324 1.41807 0.709037 0.705171i 0.249130π-0.249130\pi
0.709037 + 0.705171i 0.249130π0.249130\pi
338338 −9.22578 −0.501816
339339 0 0
340340 6.90022 0.374217
341341 2.96753 0.160701
342342 0 0
343343 −12.3202 −0.665226
344344 24.0026 1.29413
345345 0 0
346346 11.6091 0.624110
347347 2.04257 0.109651 0.0548256 0.998496i 0.482540π-0.482540\pi
0.0548256 + 0.998496i 0.482540π0.482540\pi
348348 0 0
349349 −10.6796 −0.571665 −0.285833 0.958280i 0.592270π-0.592270\pi
−0.285833 + 0.958280i 0.592270π0.592270\pi
350350 −8.50388 −0.454551
351351 0 0
352352 −5.74367 −0.306138
353353 29.2609 1.55740 0.778701 0.627396i 0.215879π-0.215879\pi
0.778701 + 0.627396i 0.215879π0.215879\pi
354354 0 0
355355 19.6825 1.04464
356356 −16.3678 −0.867491
357357 0 0
358358 5.42537 0.286740
359359 20.5749 1.08590 0.542952 0.839764i 0.317307π-0.317307\pi
0.542952 + 0.839764i 0.317307π0.317307\pi
360360 0 0
361361 1.00000 0.0526316
362362 −3.70191 −0.194568
363363 0 0
364364 33.5185 1.75684
365365 −4.13081 −0.216216
366366 0 0
367367 −21.4180 −1.11801 −0.559005 0.829164i 0.688817π-0.688817\pi
−0.559005 + 0.829164i 0.688817π0.688817\pi
368368 −13.2601 −0.691230
369369 0 0
370370 3.84859 0.200079
371371 25.3178 1.31444
372372 0 0
373373 −30.6079 −1.58482 −0.792410 0.609989i 0.791174π-0.791174\pi
−0.792410 + 0.609989i 0.791174π0.791174\pi
374374 −2.12506 −0.109884
375375 0 0
376376 −0.352136 −0.0181600
377377 41.9131 2.15863
378378 0 0
379379 5.38689 0.276706 0.138353 0.990383i 0.455819π-0.455819\pi
0.138353 + 0.990383i 0.455819π0.455819\pi
380380 2.14099 0.109831
381381 0 0
382382 14.6677 0.750464
383383 31.5772 1.61352 0.806761 0.590878i 0.201219π-0.201219\pi
0.806761 + 0.590878i 0.201219π0.201219\pi
384384 0 0
385385 5.63791 0.287334
386386 10.2644 0.522444
387387 0 0
388388 −22.3455 −1.13442
389389 −9.30869 −0.471969 −0.235985 0.971757i 0.575832π-0.575832\pi
−0.235985 + 0.971757i 0.575832π0.575832\pi
390390 0 0
391391 −27.0400 −1.36747
392392 23.4820 1.18602
393393 0 0
394394 −4.43207 −0.223284
395395 −4.32148 −0.217437
396396 0 0
397397 10.2531 0.514588 0.257294 0.966333i 0.417169π-0.417169\pi
0.257294 + 0.966333i 0.417169π0.417169\pi
398398 −0.306768 −0.0153769
399399 0 0
400400 −4.94535 −0.247268
401401 −17.5959 −0.878696 −0.439348 0.898317i 0.644790π-0.644790\pi
−0.439348 + 0.898317i 0.644790π0.644790\pi
402402 0 0
403403 15.4174 0.767997
404404 8.13806 0.404884
405405 0 0
406406 21.9250 1.08812
407407 4.26722 0.211518
408408 0 0
409409 −23.6042 −1.16715 −0.583576 0.812058i 0.698347π-0.698347\pi
−0.583576 + 0.812058i 0.698347π0.698347\pi
410410 −4.64959 −0.229627
411411 0 0
412412 9.38497 0.462365
413413 48.9808 2.41019
414414 0 0
415415 18.0522 0.886147
416416 −29.8405 −1.46305
417417 0 0
418418 −0.659361 −0.0322504
419419 −36.8265 −1.79909 −0.899546 0.436825i 0.856103π-0.856103\pi
−0.899546 + 0.436825i 0.856103π0.856103\pi
420420 0 0
421421 8.77615 0.427723 0.213862 0.976864i 0.431396π-0.431396\pi
0.213862 + 0.976864i 0.431396π0.431396\pi
422422 −6.27169 −0.305301
423423 0 0
424424 −14.4396 −0.701247
425425 −10.0846 −0.489173
426426 0 0
427427 39.4890 1.91100
428428 −0.109343 −0.00528531
429429 0 0
430430 9.20879 0.444087
431431 −13.7236 −0.661044 −0.330522 0.943798i 0.607225π-0.607225\pi
−0.330522 + 0.943798i 0.607225π0.607225\pi
432432 0 0
433433 −14.1199 −0.678557 −0.339279 0.940686i 0.610183π-0.610183\pi
−0.339279 + 0.940686i 0.610183π0.610183\pi
434434 8.06496 0.387130
435435 0 0
436436 21.9125 1.04942
437437 −8.38994 −0.401345
438438 0 0
439439 20.1196 0.960257 0.480128 0.877198i 0.340590π-0.340590\pi
0.480128 + 0.877198i 0.340590π0.340590\pi
440440 −3.21548 −0.153292
441441 0 0
442442 −11.0405 −0.525142
443443 1.19847 0.0569411 0.0284706 0.999595i 0.490936π-0.490936\pi
0.0284706 + 0.999595i 0.490936π0.490936\pi
444444 0 0
445445 −14.3035 −0.678050
446446 −0.580027 −0.0274651
447447 0 0
448448 −2.58105 −0.121943
449449 13.6222 0.642872 0.321436 0.946931i 0.395834π-0.395834\pi
0.321436 + 0.946931i 0.395834π0.395834\pi
450450 0 0
451451 −5.15535 −0.242756
452452 23.4056 1.10091
453453 0 0
454454 13.0840 0.614063
455455 29.2911 1.37319
456456 0 0
457457 33.2894 1.55721 0.778606 0.627513i 0.215927π-0.215927\pi
0.778606 + 0.627513i 0.215927π0.215927\pi
458458 −18.1750 −0.849262
459459 0 0
460460 −17.9628 −0.837520
461461 −26.2316 −1.22173 −0.610864 0.791735i 0.709178π-0.709178\pi
−0.610864 + 0.791735i 0.709178π0.709178\pi
462462 0 0
463463 −24.7451 −1.15000 −0.575001 0.818152i 0.694998π-0.694998\pi
−0.575001 + 0.818152i 0.694998π0.694998\pi
464464 12.7503 0.591917
465465 0 0
466466 −6.33603 −0.293511
467467 8.19382 0.379165 0.189582 0.981865i 0.439287π-0.439287\pi
0.189582 + 0.981865i 0.439287π0.439287\pi
468468 0 0
469469 26.1451 1.20727
470470 −0.135100 −0.00623169
471471 0 0
472472 −27.9353 −1.28583
473473 10.2105 0.469478
474474 0 0
475475 −3.12903 −0.143570
476476 20.7928 0.953038
477477 0 0
478478 −15.3558 −0.702359
479479 −27.8192 −1.27109 −0.635547 0.772062i 0.719225π-0.719225\pi
−0.635547 + 0.772062i 0.719225π0.719225\pi
480480 0 0
481481 22.1698 1.01086
482482 0.0653152 0.00297502
483483 0 0
484484 −1.56524 −0.0711474
485485 −19.5273 −0.886689
486486 0 0
487487 −6.32344 −0.286542 −0.143271 0.989683i 0.545762π-0.545762\pi
−0.143271 + 0.989683i 0.545762π0.545762\pi
488488 −22.5218 −1.01952
489489 0 0
490490 9.00908 0.406989
491491 35.9788 1.62370 0.811850 0.583866i 0.198461π-0.198461\pi
0.811850 + 0.583866i 0.198461π0.198461\pi
492492 0 0
493493 26.0004 1.17100
494494 −3.42563 −0.154126
495495 0 0
496496 4.69010 0.210592
497497 59.3105 2.66044
498498 0 0
499499 20.5152 0.918384 0.459192 0.888337i 0.348139π-0.348139\pi
0.459192 + 0.888337i 0.348139π0.348139\pi
500500 −17.4042 −0.778340
501501 0 0
502502 9.10607 0.406424
503503 −32.9161 −1.46766 −0.733829 0.679335i 0.762268π-0.762268\pi
−0.733829 + 0.679335i 0.762268π0.762268\pi
504504 0 0
505505 7.11169 0.316466
506506 5.53200 0.245927
507507 0 0
508508 −24.9506 −1.10700
509509 −8.08795 −0.358492 −0.179246 0.983804i 0.557366π-0.557366\pi
−0.179246 + 0.983804i 0.557366π0.557366\pi
510510 0 0
511511 −12.4476 −0.550650
512512 −16.5084 −0.729576
513513 0 0
514514 1.42788 0.0629813
515515 8.20134 0.361394
516516 0 0
517517 −0.149795 −0.00658800
518518 11.5972 0.509551
519519 0 0
520520 −16.7056 −0.732591
521521 −31.2247 −1.36798 −0.683990 0.729491i 0.739757π-0.739757\pi
−0.683990 + 0.729491i 0.739757π0.739757\pi
522522 0 0
523523 −15.6373 −0.683771 −0.341886 0.939742i 0.611066π-0.611066\pi
−0.341886 + 0.939742i 0.611066π0.611066\pi
524524 −2.15218 −0.0940183
525525 0 0
526526 −5.07177 −0.221140
527527 9.56405 0.416617
528528 0 0
529529 47.3911 2.06048
530530 −5.53985 −0.240636
531531 0 0
532532 6.45158 0.279712
533533 −26.7840 −1.16014
534534 0 0
535535 −0.0955530 −0.00413111
536536 −14.9114 −0.644073
537537 0 0
538538 −0.362814 −0.0156420
539539 9.98904 0.430258
540540 0 0
541541 −31.7133 −1.36346 −0.681730 0.731604i 0.738772π-0.738772\pi
−0.681730 + 0.731604i 0.738772π0.738772\pi
542542 −4.20922 −0.180801
543543 0 0
544544 −18.5113 −0.793665
545545 19.1489 0.820247
546546 0 0
547547 17.2492 0.737524 0.368762 0.929524i 0.379782π-0.379782\pi
0.368762 + 0.929524i 0.379782π0.379782\pi
548548 −33.6050 −1.43553
549549 0 0
550550 2.06316 0.0879734
551551 8.06737 0.343682
552552 0 0
553553 −13.0222 −0.553759
554554 19.3190 0.820786
555555 0 0
556556 17.4464 0.739891
557557 20.5077 0.868938 0.434469 0.900687i 0.356936π-0.356936\pi
0.434469 + 0.900687i 0.356936π0.356936\pi
558558 0 0
559559 53.0474 2.24366
560560 8.91057 0.376540
561561 0 0
562562 9.52977 0.401989
563563 29.9098 1.26055 0.630275 0.776372i 0.282942π-0.282942\pi
0.630275 + 0.776372i 0.282942π0.282942\pi
564564 0 0
565565 20.4537 0.860494
566566 −0.514070 −0.0216080
567567 0 0
568568 −33.8267 −1.41934
569569 −25.5933 −1.07293 −0.536464 0.843923i 0.680240π-0.680240\pi
−0.536464 + 0.843923i 0.680240π0.680240\pi
570570 0 0
571571 −16.8243 −0.704076 −0.352038 0.935986i 0.614511π-0.614511\pi
−0.352038 + 0.935986i 0.614511π0.614511\pi
572572 −8.13204 −0.340018
573573 0 0
574574 −14.0109 −0.584803
575575 26.2524 1.09480
576576 0 0
577577 16.9276 0.704706 0.352353 0.935867i 0.385382π-0.385382\pi
0.352353 + 0.935867i 0.385382π0.385382\pi
578578 4.36028 0.181364
579579 0 0
580580 17.2722 0.717189
581581 54.3977 2.25680
582582 0 0
583583 −6.14245 −0.254394
584584 7.09927 0.293770
585585 0 0
586586 7.11027 0.293722
587587 −17.9979 −0.742852 −0.371426 0.928463i 0.621131π-0.621131\pi
−0.371426 + 0.928463i 0.621131π0.621131\pi
588588 0 0
589589 2.96753 0.122275
590590 −10.7176 −0.441237
591591 0 0
592592 6.74423 0.277186
593593 −24.6139 −1.01077 −0.505387 0.862893i 0.668650π-0.668650\pi
−0.505387 + 0.862893i 0.668650π0.668650\pi
594594 0 0
595595 18.1704 0.744915
596596 7.18289 0.294223
597597 0 0
598598 28.7408 1.17530
599599 −37.6230 −1.53723 −0.768616 0.639710i 0.779054π-0.779054\pi
−0.768616 + 0.639710i 0.779054π0.779054\pi
600600 0 0
601601 3.54574 0.144634 0.0723169 0.997382i 0.476961π-0.476961\pi
0.0723169 + 0.997382i 0.476961π0.476961\pi
602602 27.7494 1.13098
603603 0 0
604604 29.5977 1.20432
605605 −1.36783 −0.0556104
606606 0 0
607607 −28.2160 −1.14525 −0.572626 0.819817i 0.694075π-0.694075\pi
−0.572626 + 0.819817i 0.694075π0.694075\pi
608608 −5.74367 −0.232936
609609 0 0
610610 −8.64068 −0.349851
611611 −0.778245 −0.0314844
612612 0 0
613613 40.5857 1.63924 0.819620 0.572907i 0.194184π-0.194184\pi
0.819620 + 0.572907i 0.194184π0.194184\pi
614614 −5.99562 −0.241963
615615 0 0
616616 −9.68940 −0.390397
617617 −17.6747 −0.711557 −0.355778 0.934570i 0.615784π-0.615784\pi
−0.355778 + 0.934570i 0.615784π0.615784\pi
618618 0 0
619619 5.87606 0.236179 0.118089 0.993003i 0.462323π-0.462323\pi
0.118089 + 0.993003i 0.462323π0.462323\pi
620620 6.35345 0.255161
621621 0 0
622622 5.63408 0.225906
623623 −43.1015 −1.72683
624624 0 0
625625 0.435972 0.0174389
626626 18.4735 0.738349
627627 0 0
628628 25.8440 1.03129
629629 13.7528 0.548362
630630 0 0
631631 −37.5236 −1.49379 −0.746895 0.664942i 0.768456π-0.768456\pi
−0.746895 + 0.664942i 0.768456π0.768456\pi
632632 7.42696 0.295428
633633 0 0
634634 9.12401 0.362361
635635 −21.8038 −0.865257
636636 0 0
637637 51.8969 2.05623
638638 −5.31931 −0.210593
639639 0 0
640640 −15.1480 −0.598777
641641 29.3913 1.16089 0.580444 0.814300i 0.302879π-0.302879\pi
0.580444 + 0.814300i 0.302879π0.302879\pi
642642 0 0
643643 29.5287 1.16450 0.582249 0.813010i 0.302173π-0.302173\pi
0.582249 + 0.813010i 0.302173π0.302173\pi
644644 −54.1284 −2.13296
645645 0 0
646646 −2.12506 −0.0836092
647647 25.1754 0.989746 0.494873 0.868965i 0.335215π-0.335215\pi
0.494873 + 0.868965i 0.335215π0.335215\pi
648648 0 0
649649 −11.8834 −0.466465
650650 10.7189 0.420430
651651 0 0
652652 −5.24368 −0.205358
653653 34.5485 1.35199 0.675993 0.736908i 0.263715π-0.263715\pi
0.675993 + 0.736908i 0.263715π0.263715\pi
654654 0 0
655655 −1.88074 −0.0734867
656656 −8.14789 −0.318122
657657 0 0
658658 −0.407105 −0.0158706
659659 11.1326 0.433666 0.216833 0.976209i 0.430427π-0.430427\pi
0.216833 + 0.976209i 0.430427π0.430427\pi
660660 0 0
661661 3.98975 0.155183 0.0775916 0.996985i 0.475277π-0.475277\pi
0.0775916 + 0.996985i 0.475277π0.475277\pi
662662 −2.82055 −0.109624
663663 0 0
664664 −31.0248 −1.20399
665665 5.63791 0.218629
666666 0 0
667667 −67.6848 −2.62076
668668 5.84781 0.226259
669669 0 0
670670 −5.72087 −0.221016
671671 −9.58057 −0.369854
672672 0 0
673673 −17.1495 −0.661064 −0.330532 0.943795i 0.607228π-0.607228\pi
−0.330532 + 0.943795i 0.607228π0.607228\pi
674674 −17.1647 −0.661160
675675 0 0
676676 −21.9009 −0.842342
677677 −29.9605 −1.15148 −0.575739 0.817634i 0.695285π-0.695285\pi
−0.575739 + 0.817634i 0.695285π0.695285\pi
678678 0 0
679679 −58.8428 −2.25818
680680 −10.3632 −0.397410
681681 0 0
682682 −1.95667 −0.0749248
683683 23.1120 0.884358 0.442179 0.896927i 0.354206π-0.354206\pi
0.442179 + 0.896927i 0.354206π0.354206\pi
684684 0 0
685685 −29.3667 −1.12204
686686 8.12343 0.310154
687687 0 0
688688 16.1374 0.615233
689689 −31.9124 −1.21577
690690 0 0
691691 −44.4094 −1.68941 −0.844707 0.535230i 0.820225π-0.820225\pi
−0.844707 + 0.535230i 0.820225π0.820225\pi
692692 27.5586 1.04762
693693 0 0
694694 −1.34679 −0.0511236
695695 15.2460 0.578315
696696 0 0
697697 −16.6152 −0.629345
698698 7.04170 0.266532
699699 0 0
700700 −20.1872 −0.763004
701701 −46.5664 −1.75879 −0.879394 0.476094i 0.842052π-0.842052\pi
−0.879394 + 0.476094i 0.842052π0.842052\pi
702702 0 0
703703 4.26722 0.160941
704704 0.626199 0.0236008
705705 0 0
706706 −19.2935 −0.726120
707707 21.4301 0.805961
708708 0 0
709709 22.9753 0.862855 0.431427 0.902148i 0.358010π-0.358010\pi
0.431427 + 0.902148i 0.358010π0.358010\pi
710710 −12.9779 −0.487051
711711 0 0
712712 24.5822 0.921256
713713 −24.8974 −0.932414
714714 0 0
715715 −7.10642 −0.265765
716716 12.8792 0.481317
717717 0 0
718718 −13.5663 −0.506290
719719 7.31949 0.272971 0.136485 0.990642i 0.456419π-0.456419\pi
0.136485 + 0.990642i 0.456419π0.456419\pi
720720 0 0
721721 24.7136 0.920382
722722 −0.659361 −0.0245389
723723 0 0
724724 −8.78790 −0.326600
725725 −25.2430 −0.937503
726726 0 0
727727 0.412821 0.0153107 0.00765535 0.999971i 0.497563π-0.497563\pi
0.00765535 + 0.999971i 0.497563π0.497563\pi
728728 −50.3401 −1.86573
729729 0 0
730730 2.72369 0.100808
731731 32.9074 1.21712
732732 0 0
733733 39.4330 1.45649 0.728245 0.685316i 0.240336π-0.240336\pi
0.728245 + 0.685316i 0.240336π0.240336\pi
734734 14.1222 0.521259
735735 0 0
736736 48.1890 1.77627
737737 −6.34315 −0.233653
738738 0 0
739739 −23.5277 −0.865479 −0.432740 0.901519i 0.642453π-0.642453\pi
−0.432740 + 0.901519i 0.642453π0.642453\pi
740740 9.13609 0.335849
741741 0 0
742742 −16.6936 −0.612840
743743 0.119519 0.00438473 0.00219237 0.999998i 0.499302π-0.499302\pi
0.00219237 + 0.999998i 0.499302π0.499302\pi
744744 0 0
745745 6.27698 0.229971
746746 20.1817 0.738904
747747 0 0
748748 −5.04463 −0.184450
749749 −0.287935 −0.0105209
750750 0 0
751751 −8.19273 −0.298957 −0.149478 0.988765i 0.547759π-0.547759\pi
−0.149478 + 0.988765i 0.547759π0.547759\pi
752752 −0.236748 −0.00863330
753753 0 0
754754 −27.6358 −1.00644
755755 25.8649 0.941319
756756 0 0
757757 −2.40721 −0.0874917 −0.0437459 0.999043i 0.513929π-0.513929\pi
−0.0437459 + 0.999043i 0.513929π0.513929\pi
758758 −3.55190 −0.129011
759759 0 0
760760 −3.21548 −0.116638
761761 −39.4490 −1.43002 −0.715012 0.699112i 0.753579π-0.753579\pi
−0.715012 + 0.699112i 0.753579π0.753579\pi
762762 0 0
763763 57.7024 2.08897
764764 34.8193 1.25972
765765 0 0
766766 −20.8208 −0.752286
767767 −61.7389 −2.22926
768768 0 0
769769 −14.6494 −0.528271 −0.264136 0.964486i 0.585087π-0.585087\pi
−0.264136 + 0.964486i 0.585087π0.585087\pi
770770 −3.71741 −0.133966
771771 0 0
772772 24.3664 0.876967
773773 −15.8646 −0.570610 −0.285305 0.958437i 0.592095π-0.592095\pi
−0.285305 + 0.958437i 0.592095π0.592095\pi
774774 0 0
775775 −9.28548 −0.333544
776776 33.5599 1.20473
777777 0 0
778778 6.13779 0.220050
779779 −5.15535 −0.184709
780780 0 0
781781 −14.3895 −0.514899
782782 17.8291 0.637567
783783 0 0
784784 15.7874 0.563836
785785 22.5846 0.806077
786786 0 0
787787 −20.8282 −0.742446 −0.371223 0.928544i 0.621062π-0.621062\pi
−0.371223 + 0.928544i 0.621062π0.621062\pi
788788 −10.5212 −0.374802
789789 0 0
790790 2.84941 0.101377
791791 61.6344 2.19147
792792 0 0
793793 −49.7747 −1.76755
794794 −6.76049 −0.239921
795795 0 0
796796 −0.728230 −0.0258114
797797 26.4454 0.936743 0.468372 0.883532i 0.344841π-0.344841\pi
0.468372 + 0.883532i 0.344841π0.344841\pi
798798 0 0
799799 −0.482776 −0.0170794
800800 17.9721 0.635410
801801 0 0
802802 11.6020 0.409682
803803 3.01996 0.106572
804804 0 0
805805 −47.3017 −1.66717
806806 −10.1657 −0.358070
807807 0 0
808808 −12.2223 −0.429977
809809 −14.1256 −0.496629 −0.248315 0.968679i 0.579877π-0.579877\pi
−0.248315 + 0.968679i 0.579877π0.579877\pi
810810 0 0
811811 15.2386 0.535101 0.267550 0.963544i 0.413786π-0.413786\pi
0.267550 + 0.963544i 0.413786π0.413786\pi
812812 52.0473 1.82650
813813 0 0
814814 −2.81364 −0.0986179
815815 −4.58234 −0.160512
816816 0 0
817817 10.2105 0.357219
818818 15.5637 0.544171
819819 0 0
820820 −11.0376 −0.385448
821821 19.8272 0.691973 0.345986 0.938240i 0.387544π-0.387544\pi
0.345986 + 0.938240i 0.387544π0.387544\pi
822822 0 0
823823 28.2161 0.983553 0.491776 0.870721i 0.336348π-0.336348\pi
0.491776 + 0.870721i 0.336348π0.336348\pi
824824 −14.0949 −0.491021
825825 0 0
826826 −32.2960 −1.12372
827827 −32.0866 −1.11576 −0.557879 0.829922i 0.688385π-0.688385\pi
−0.557879 + 0.829922i 0.688385π0.688385\pi
828828 0 0
829829 34.2156 1.18836 0.594178 0.804334i 0.297477π-0.297477\pi
0.594178 + 0.804334i 0.297477π0.297477\pi
830830 −11.9029 −0.413156
831831 0 0
832832 3.25334 0.112789
833833 32.1937 1.11545
834834 0 0
835835 5.11028 0.176849
836836 −1.56524 −0.0541351
837837 0 0
838838 24.2820 0.838806
839839 11.9448 0.412380 0.206190 0.978512i 0.433893π-0.433893\pi
0.206190 + 0.978512i 0.433893π0.433893\pi
840840 0 0
841841 36.0825 1.24422
842842 −5.78665 −0.199421
843843 0 0
844844 −14.8882 −0.512475
845845 −19.1388 −0.658393
846846 0 0
847847 −4.12178 −0.141626
848848 −9.70799 −0.333374
849849 0 0
850850 6.64936 0.228071
851851 −35.8017 −1.22727
852852 0 0
853853 12.3830 0.423985 0.211992 0.977271i 0.432005π-0.432005\pi
0.211992 + 0.977271i 0.432005π0.432005\pi
854854 −26.0375 −0.890984
855855 0 0
856856 0.164219 0.00561288
857857 45.8270 1.56542 0.782710 0.622387i 0.213837π-0.213837\pi
0.782710 + 0.622387i 0.213837π0.213837\pi
858858 0 0
859859 43.4253 1.48165 0.740826 0.671697i 0.234434π-0.234434\pi
0.740826 + 0.671697i 0.234434π0.234434\pi
860860 21.8606 0.745439
861861 0 0
862862 9.04882 0.308204
863863 −31.9263 −1.08678 −0.543391 0.839480i 0.682860π-0.682860\pi
−0.543391 + 0.839480i 0.682860π0.682860\pi
864864 0 0
865865 24.0829 0.818845
866866 9.31008 0.316369
867867 0 0
868868 19.1452 0.649832
869869 3.15936 0.107174
870870 0 0
871871 −32.9551 −1.11664
872872 −32.9095 −1.11446
873873 0 0
874874 5.53200 0.187123
875875 −45.8307 −1.54936
876876 0 0
877877 14.9354 0.504334 0.252167 0.967684i 0.418857π-0.418857\pi
0.252167 + 0.967684i 0.418857π0.418857\pi
878878 −13.2661 −0.447709
879879 0 0
880880 −2.16183 −0.0728752
881881 5.66513 0.190863 0.0954316 0.995436i 0.469577π-0.469577\pi
0.0954316 + 0.995436i 0.469577π0.469577\pi
882882 0 0
883883 −8.34093 −0.280695 −0.140347 0.990102i 0.544822π-0.544822\pi
−0.140347 + 0.990102i 0.544822π0.544822\pi
884884 −26.2088 −0.881497
885885 0 0
886886 −0.790225 −0.0265481
887887 −35.2777 −1.18451 −0.592255 0.805750i 0.701762π-0.701762\pi
−0.592255 + 0.805750i 0.701762π0.701762\pi
888888 0 0
889889 −65.7026 −2.20360
890890 9.43115 0.316133
891891 0 0
892892 −1.37692 −0.0461026
893893 −0.149795 −0.00501271
894894 0 0
895895 11.2548 0.376208
896896 −45.6464 −1.52494
897897 0 0
898898 −8.98196 −0.299732
899899 23.9401 0.798448
900900 0 0
901901 −19.7965 −0.659518
902902 3.39923 0.113182
903903 0 0
904904 −35.1521 −1.16914
905905 −7.67957 −0.255277
906906 0 0
907907 18.8103 0.624586 0.312293 0.949986i 0.398903π-0.398903\pi
0.312293 + 0.949986i 0.398903π0.398903\pi
908908 31.0599 1.03076
909909 0 0
910910 −19.3134 −0.640233
911911 36.8573 1.22114 0.610569 0.791963i 0.290941π-0.290941\pi
0.610569 + 0.791963i 0.290941π0.290941\pi
912912 0 0
913913 −13.1976 −0.436778
914914 −21.9497 −0.726032
915915 0 0
916916 −43.1453 −1.42556
917917 −5.66736 −0.187153
918918 0 0
919919 6.64450 0.219182 0.109591 0.993977i 0.465046π-0.465046\pi
0.109591 + 0.993977i 0.465046π0.465046\pi
920920 26.9777 0.889428
921921 0 0
922922 17.2961 0.569617
923923 −74.7592 −2.46073
924924 0 0
925925 −13.3523 −0.439020
926926 16.3159 0.536175
927927 0 0
928928 −46.3363 −1.52106
929929 20.2409 0.664081 0.332041 0.943265i 0.392263π-0.392263\pi
0.332041 + 0.943265i 0.392263π0.392263\pi
930930 0 0
931931 9.98904 0.327378
932932 −15.0410 −0.492684
933933 0 0
934934 −5.40269 −0.176781
935935 −4.40840 −0.144170
936936 0 0
937937 −17.5676 −0.573909 −0.286955 0.957944i 0.592643π-0.592643\pi
−0.286955 + 0.957944i 0.592643π0.592643\pi
938938 −17.2390 −0.562874
939939 0 0
940940 −0.320711 −0.0104604
941941 −10.3234 −0.336534 −0.168267 0.985741i 0.553817π-0.553817\pi
−0.168267 + 0.985741i 0.553817π0.553817\pi
942942 0 0
943943 43.2530 1.40851
944944 −18.7814 −0.611284
945945 0 0
946946 −6.73239 −0.218889
947947 −13.5385 −0.439943 −0.219972 0.975506i 0.570597π-0.570597\pi
−0.219972 + 0.975506i 0.570597π0.570597\pi
948948 0 0
949949 15.6899 0.509314
950950 2.06316 0.0669377
951951 0 0
952952 −31.2280 −1.01210
953953 16.4833 0.533947 0.266973 0.963704i 0.413976π-0.413976\pi
0.266973 + 0.963704i 0.413976π0.413976\pi
954954 0 0
955955 30.4279 0.984624
956956 −36.4529 −1.17897
957957 0 0
958958 18.3429 0.592633
959959 −88.4924 −2.85757
960960 0 0
961961 −22.1938 −0.715929
962962 −14.6179 −0.471301
963963 0 0
964964 0.155050 0.00499384
965965 21.2933 0.685457
966966 0 0
967967 −42.8282 −1.37726 −0.688631 0.725112i 0.741788π-0.741788\pi
−0.688631 + 0.725112i 0.741788π0.741788\pi
968968 2.35078 0.0755570
969969 0 0
970970 12.8755 0.413408
971971 −17.9785 −0.576958 −0.288479 0.957486i 0.593150π-0.593150\pi
−0.288479 + 0.957486i 0.593150π0.593150\pi
972972 0 0
973973 45.9418 1.47283
974974 4.16943 0.133597
975975 0 0
976976 −15.1418 −0.484679
977977 3.12664 0.100030 0.0500150 0.998748i 0.484073π-0.484073\pi
0.0500150 + 0.998748i 0.484073π0.484073\pi
978978 0 0
979979 10.4570 0.334208
980980 21.3865 0.683166
981981 0 0
982982 −23.7230 −0.757031
983983 −8.36079 −0.266668 −0.133334 0.991071i 0.542568π-0.542568\pi
−0.133334 + 0.991071i 0.542568π0.542568\pi
984984 0 0
985985 −9.19426 −0.292954
986986 −17.1436 −0.545964
987987 0 0
988988 −8.13204 −0.258715
989989 −85.6653 −2.72400
990990 0 0
991991 −30.9086 −0.981845 −0.490923 0.871203i 0.663340π-0.663340\pi
−0.490923 + 0.871203i 0.663340π0.663340\pi
992992 −17.0445 −0.541163
993993 0 0
994994 −39.1070 −1.24040
995995 −0.636385 −0.0201748
996996 0 0
997997 32.5554 1.03104 0.515520 0.856878i 0.327599π-0.327599\pi
0.515520 + 0.856878i 0.327599π0.327599\pi
998998 −13.5269 −0.428186
999999 0 0
Display apa_p with pp up to: 50 250 1000 (See ana_n instead) (See ana_n instead) (See ana_n instead) Display ana_n with nn up to: 50 250 1000 (See only apa_p) (See only apa_p) (See only apa_p)

Twists

       By twisting character
Char Parity Ord Type Twist Min Dim
1.1 even 1 trivial 1881.2.a.n.1.4 7
3.2 odd 2 1881.2.a.r.1.4 yes 7
    
        By twisted newform
Twist Min Dim Char Parity Ord Type
1881.2.a.n.1.4 7 1.1 even 1 trivial
1881.2.a.r.1.4 yes 7 3.2 odd 2