Properties

Label 1881.2.a.n.1.4
Level $1881$
Weight $2$
Character 1881.1
Self dual yes
Analytic conductor $15.020$
Analytic rank $1$
Dimension $7$
CM no
Inner twists $1$

Related objects

Downloads

Learn more

Show commands: Magma / PariGP / SageMath

Newspace parameters

comment: Compute space of new eigenforms
 
[N,k,chi] = [1881,2,Mod(1,1881)]
 
mf = mfinit([N,k,chi],0)
 
lf = mfeigenbasis(mf)
 
from sage.modular.dirichlet import DirichletCharacter
 
H = DirichletGroup(1881, base_ring=CyclotomicField(2))
 
chi = DirichletCharacter(H, H._module([0, 0, 0]))
 
N = Newforms(chi, 2, names="a")
 
//Please install CHIMP (https://github.com/edgarcosta/CHIMP) if you want to run this code
 
chi := DirichletCharacter("1881.1");
 
S:= CuspForms(chi, 2);
 
N := Newforms(S);
 
Level: \( N \) \(=\) \( 1881 = 3^{2} \cdot 11 \cdot 19 \)
Weight: \( k \) \(=\) \( 2 \)
Character orbit: \([\chi]\) \(=\) 1881.a (trivial)

Newform invariants

comment: select newform
 
sage: f = N[0] # Warning: the index may be different
 
gp: f = lf[1] \\ Warning: the index may be different
 
Self dual: yes
Analytic conductor: \(15.0198606202\)
Analytic rank: \(1\)
Dimension: \(7\)
Coefficient field: \(\mathbb{Q}[x]/(x^{7} - \cdots)\)
comment: defining polynomial
 
gp: f.mod \\ as an extension of the character field
 
Defining polynomial: \( x^{7} - x^{6} - 9x^{5} + 7x^{4} + 22x^{3} - 12x^{2} - 9x - 1 \) Copy content Toggle raw display
Coefficient ring: \(\Z[a_1, a_2]\)
Coefficient ring index: \( 1 \)
Twist minimal: yes
Fricke sign: \(+1\)
Sato-Tate group: $\mathrm{SU}(2)$

Embedding invariants

Embedding label 1.4
Root \(-2.07449\) of defining polynomial
Character \(\chi\) \(=\) 1881.1

$q$-expansion

comment: q-expansion
 
sage: f.q_expansion() # note that sage often uses an isomorphic number field
 
gp: mfcoefs(f, 20)
 
\(f(q)\) \(=\) \(q-0.659361 q^{2} -1.56524 q^{4} -1.36783 q^{5} -4.12178 q^{7} +2.35078 q^{8} +0.901896 q^{10} +1.00000 q^{11} +5.19538 q^{13} +2.71774 q^{14} +1.58047 q^{16} +3.22290 q^{17} +1.00000 q^{19} +2.14099 q^{20} -0.659361 q^{22} -8.38994 q^{23} -3.12903 q^{25} -3.42563 q^{26} +6.45158 q^{28} +8.06737 q^{29} +2.96753 q^{31} -5.74367 q^{32} -2.12506 q^{34} +5.63791 q^{35} +4.26722 q^{37} -0.659361 q^{38} -3.21548 q^{40} -5.15535 q^{41} +10.2105 q^{43} -1.56524 q^{44} +5.53200 q^{46} -0.149795 q^{47} +9.98904 q^{49} +2.06316 q^{50} -8.13204 q^{52} -6.14245 q^{53} -1.36783 q^{55} -9.68940 q^{56} -5.31931 q^{58} -11.8834 q^{59} -9.58057 q^{61} -1.95667 q^{62} +0.626199 q^{64} -7.10642 q^{65} -6.34315 q^{67} -5.04463 q^{68} -3.71741 q^{70} -14.3895 q^{71} +3.01996 q^{73} -2.81364 q^{74} -1.56524 q^{76} -4.12178 q^{77} +3.15936 q^{79} -2.16183 q^{80} +3.39923 q^{82} -13.1976 q^{83} -4.40840 q^{85} -6.73239 q^{86} +2.35078 q^{88} +10.4570 q^{89} -21.4142 q^{91} +13.1323 q^{92} +0.0987692 q^{94} -1.36783 q^{95} +14.2761 q^{97} -6.58638 q^{98} +O(q^{100})\)
\(\operatorname{Tr}(f)(q)\) \(=\) \( 7 q - 2 q^{2} + 6 q^{4} - 8 q^{5} - 2 q^{7} - 6 q^{8} + 6 q^{10} + 7 q^{11} - 7 q^{13} - 6 q^{14} - 5 q^{17} + 7 q^{19} - 20 q^{20} - 2 q^{22} - 22 q^{23} + 3 q^{25} - 10 q^{26} + 2 q^{28} - 18 q^{29} - 14 q^{32}+ \cdots + 62 q^{98}+O(q^{100}) \) Copy content Toggle raw display

Coefficient data

For each \(n\) we display the coefficients of the \(q\)-expansion \(a_n\), the Satake parameters \(\alpha_p\), and the Satake angles \(\theta_p = \textrm{Arg}(\alpha_p)\).



Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))
Significant digits:
\(n\) \(a_n\) \(a_n / n^{(k-1)/2}\) \( \alpha_n \) \( \theta_n \)
\(p\) \(a_p\) \(a_p / p^{(k-1)/2}\) \( \alpha_p\) \( \theta_p \)
\(2\) −0.659361 −0.466238 −0.233119 0.972448i \(-0.574893\pi\)
−0.233119 + 0.972448i \(0.574893\pi\)
\(3\) 0 0
\(4\) −1.56524 −0.782622
\(5\) −1.36783 −0.611714 −0.305857 0.952077i \(-0.598943\pi\)
−0.305857 + 0.952077i \(0.598943\pi\)
\(6\) 0 0
\(7\) −4.12178 −1.55789 −0.778943 0.627095i \(-0.784244\pi\)
−0.778943 + 0.627095i \(0.784244\pi\)
\(8\) 2.35078 0.831127
\(9\) 0 0
\(10\) 0.901896 0.285205
\(11\) 1.00000 0.301511
\(12\) 0 0
\(13\) 5.19538 1.44094 0.720470 0.693486i \(-0.243926\pi\)
0.720470 + 0.693486i \(0.243926\pi\)
\(14\) 2.71774 0.726346
\(15\) 0 0
\(16\) 1.58047 0.395119
\(17\) 3.22290 0.781669 0.390835 0.920461i \(-0.372186\pi\)
0.390835 + 0.920461i \(0.372186\pi\)
\(18\) 0 0
\(19\) 1.00000 0.229416
\(20\) 2.14099 0.478741
\(21\) 0 0
\(22\) −0.659361 −0.140576
\(23\) −8.38994 −1.74942 −0.874712 0.484643i \(-0.838949\pi\)
−0.874712 + 0.484643i \(0.838949\pi\)
\(24\) 0 0
\(25\) −3.12903 −0.625806
\(26\) −3.42563 −0.671822
\(27\) 0 0
\(28\) 6.45158 1.21923
\(29\) 8.06737 1.49807 0.749037 0.662529i \(-0.230517\pi\)
0.749037 + 0.662529i \(0.230517\pi\)
\(30\) 0 0
\(31\) 2.96753 0.532983 0.266492 0.963837i \(-0.414136\pi\)
0.266492 + 0.963837i \(0.414136\pi\)
\(32\) −5.74367 −1.01535
\(33\) 0 0
\(34\) −2.12506 −0.364444
\(35\) 5.63791 0.952980
\(36\) 0 0
\(37\) 4.26722 0.701527 0.350763 0.936464i \(-0.385922\pi\)
0.350763 + 0.936464i \(0.385922\pi\)
\(38\) −0.659361 −0.106962
\(39\) 0 0
\(40\) −3.21548 −0.508412
\(41\) −5.15535 −0.805130 −0.402565 0.915391i \(-0.631881\pi\)
−0.402565 + 0.915391i \(0.631881\pi\)
\(42\) 0 0
\(43\) 10.2105 1.55708 0.778542 0.627593i \(-0.215960\pi\)
0.778542 + 0.627593i \(0.215960\pi\)
\(44\) −1.56524 −0.235969
\(45\) 0 0
\(46\) 5.53200 0.815648
\(47\) −0.149795 −0.0218499 −0.0109250 0.999940i \(-0.503478\pi\)
−0.0109250 + 0.999940i \(0.503478\pi\)
\(48\) 0 0
\(49\) 9.98904 1.42701
\(50\) 2.06316 0.291775
\(51\) 0 0
\(52\) −8.13204 −1.12771
\(53\) −6.14245 −0.843731 −0.421865 0.906659i \(-0.638624\pi\)
−0.421865 + 0.906659i \(0.638624\pi\)
\(54\) 0 0
\(55\) −1.36783 −0.184439
\(56\) −9.68940 −1.29480
\(57\) 0 0
\(58\) −5.31931 −0.698459
\(59\) −11.8834 −1.54709 −0.773545 0.633742i \(-0.781518\pi\)
−0.773545 + 0.633742i \(0.781518\pi\)
\(60\) 0 0
\(61\) −9.58057 −1.22667 −0.613333 0.789824i \(-0.710172\pi\)
−0.613333 + 0.789824i \(0.710172\pi\)
\(62\) −1.95667 −0.248497
\(63\) 0 0
\(64\) 0.626199 0.0782748
\(65\) −7.10642 −0.881443
\(66\) 0 0
\(67\) −6.34315 −0.774940 −0.387470 0.921882i \(-0.626651\pi\)
−0.387470 + 0.921882i \(0.626651\pi\)
\(68\) −5.04463 −0.611751
\(69\) 0 0
\(70\) −3.71741 −0.444316
\(71\) −14.3895 −1.70773 −0.853863 0.520498i \(-0.825746\pi\)
−0.853863 + 0.520498i \(0.825746\pi\)
\(72\) 0 0
\(73\) 3.01996 0.353460 0.176730 0.984259i \(-0.443448\pi\)
0.176730 + 0.984259i \(0.443448\pi\)
\(74\) −2.81364 −0.327079
\(75\) 0 0
\(76\) −1.56524 −0.179546
\(77\) −4.12178 −0.469720
\(78\) 0 0
\(79\) 3.15936 0.355455 0.177728 0.984080i \(-0.443125\pi\)
0.177728 + 0.984080i \(0.443125\pi\)
\(80\) −2.16183 −0.241700
\(81\) 0 0
\(82\) 3.39923 0.375382
\(83\) −13.1976 −1.44863 −0.724315 0.689470i \(-0.757844\pi\)
−0.724315 + 0.689470i \(0.757844\pi\)
\(84\) 0 0
\(85\) −4.40840 −0.478158
\(86\) −6.73239 −0.725972
\(87\) 0 0
\(88\) 2.35078 0.250594
\(89\) 10.4570 1.10844 0.554221 0.832369i \(-0.313016\pi\)
0.554221 + 0.832369i \(0.313016\pi\)
\(90\) 0 0
\(91\) −21.4142 −2.24482
\(92\) 13.1323 1.36914
\(93\) 0 0
\(94\) 0.0987692 0.0101873
\(95\) −1.36783 −0.140337
\(96\) 0 0
\(97\) 14.2761 1.44952 0.724758 0.689004i \(-0.241952\pi\)
0.724758 + 0.689004i \(0.241952\pi\)
\(98\) −6.58638 −0.665325
\(99\) 0 0
\(100\) 4.89769 0.489769
\(101\) −5.19923 −0.517343 −0.258671 0.965965i \(-0.583285\pi\)
−0.258671 + 0.965965i \(0.583285\pi\)
\(102\) 0 0
\(103\) −5.99586 −0.590789 −0.295395 0.955375i \(-0.595451\pi\)
−0.295395 + 0.955375i \(0.595451\pi\)
\(104\) 12.2132 1.19760
\(105\) 0 0
\(106\) 4.05009 0.393380
\(107\) 0.0698571 0.00675334 0.00337667 0.999994i \(-0.498925\pi\)
0.00337667 + 0.999994i \(0.498925\pi\)
\(108\) 0 0
\(109\) −13.9994 −1.34090 −0.670450 0.741955i \(-0.733899\pi\)
−0.670450 + 0.741955i \(0.733899\pi\)
\(110\) 0.901896 0.0859924
\(111\) 0 0
\(112\) −6.51436 −0.615549
\(113\) −14.9533 −1.40669 −0.703346 0.710847i \(-0.748312\pi\)
−0.703346 + 0.710847i \(0.748312\pi\)
\(114\) 0 0
\(115\) 11.4760 1.07015
\(116\) −12.6274 −1.17242
\(117\) 0 0
\(118\) 7.83546 0.721312
\(119\) −13.2841 −1.21775
\(120\) 0 0
\(121\) 1.00000 0.0909091
\(122\) 6.31705 0.571919
\(123\) 0 0
\(124\) −4.64490 −0.417124
\(125\) 11.1192 0.994528
\(126\) 0 0
\(127\) 15.9404 1.41448 0.707240 0.706974i \(-0.249940\pi\)
0.707240 + 0.706974i \(0.249940\pi\)
\(128\) 11.0744 0.978851
\(129\) 0 0
\(130\) 4.68570 0.410963
\(131\) 1.37498 0.120132 0.0600662 0.998194i \(-0.480869\pi\)
0.0600662 + 0.998194i \(0.480869\pi\)
\(132\) 0 0
\(133\) −4.12178 −0.357403
\(134\) 4.18243 0.361307
\(135\) 0 0
\(136\) 7.57634 0.649666
\(137\) 21.4695 1.83426 0.917131 0.398587i \(-0.130499\pi\)
0.917131 + 0.398587i \(0.130499\pi\)
\(138\) 0 0
\(139\) −11.1461 −0.945401 −0.472700 0.881223i \(-0.656721\pi\)
−0.472700 + 0.881223i \(0.656721\pi\)
\(140\) −8.82470 −0.745823
\(141\) 0 0
\(142\) 9.48790 0.796207
\(143\) 5.19538 0.434460
\(144\) 0 0
\(145\) −11.0348 −0.916393
\(146\) −1.99124 −0.164796
\(147\) 0 0
\(148\) −6.67924 −0.549030
\(149\) −4.58899 −0.375945 −0.187972 0.982174i \(-0.560192\pi\)
−0.187972 + 0.982174i \(0.560192\pi\)
\(150\) 0 0
\(151\) −18.9094 −1.53882 −0.769411 0.638754i \(-0.779450\pi\)
−0.769411 + 0.638754i \(0.779450\pi\)
\(152\) 2.35078 0.190674
\(153\) 0 0
\(154\) 2.71774 0.219002
\(155\) −4.05908 −0.326033
\(156\) 0 0
\(157\) −16.5112 −1.31774 −0.658868 0.752259i \(-0.728964\pi\)
−0.658868 + 0.752259i \(0.728964\pi\)
\(158\) −2.08316 −0.165727
\(159\) 0 0
\(160\) 7.85638 0.621102
\(161\) 34.5815 2.72540
\(162\) 0 0
\(163\) 3.35007 0.262398 0.131199 0.991356i \(-0.458117\pi\)
0.131199 + 0.991356i \(0.458117\pi\)
\(164\) 8.06937 0.630112
\(165\) 0 0
\(166\) 8.70201 0.675407
\(167\) −3.73604 −0.289103 −0.144552 0.989497i \(-0.546174\pi\)
−0.144552 + 0.989497i \(0.546174\pi\)
\(168\) 0 0
\(169\) 13.9920 1.07631
\(170\) 2.90672 0.222936
\(171\) 0 0
\(172\) −15.9819 −1.21861
\(173\) −17.6066 −1.33861 −0.669303 0.742989i \(-0.733407\pi\)
−0.669303 + 0.742989i \(0.733407\pi\)
\(174\) 0 0
\(175\) 12.8972 0.974934
\(176\) 1.58047 0.119133
\(177\) 0 0
\(178\) −6.89495 −0.516798
\(179\) −8.22822 −0.615006 −0.307503 0.951547i \(-0.599493\pi\)
−0.307503 + 0.951547i \(0.599493\pi\)
\(180\) 0 0
\(181\) 5.61440 0.417315 0.208657 0.977989i \(-0.433091\pi\)
0.208657 + 0.977989i \(0.433091\pi\)
\(182\) 14.1197 1.04662
\(183\) 0 0
\(184\) −19.7229 −1.45399
\(185\) −5.83685 −0.429134
\(186\) 0 0
\(187\) 3.22290 0.235682
\(188\) 0.234466 0.0171002
\(189\) 0 0
\(190\) 0.901896 0.0654304
\(191\) −22.2453 −1.60962 −0.804808 0.593536i \(-0.797732\pi\)
−0.804808 + 0.593536i \(0.797732\pi\)
\(192\) 0 0
\(193\) −15.5672 −1.12055 −0.560275 0.828306i \(-0.689305\pi\)
−0.560275 + 0.828306i \(0.689305\pi\)
\(194\) −9.41308 −0.675820
\(195\) 0 0
\(196\) −15.6353 −1.11681
\(197\) 6.72177 0.478906 0.239453 0.970908i \(-0.423032\pi\)
0.239453 + 0.970908i \(0.423032\pi\)
\(198\) 0 0
\(199\) 0.465250 0.0329807 0.0164904 0.999864i \(-0.494751\pi\)
0.0164904 + 0.999864i \(0.494751\pi\)
\(200\) −7.35566 −0.520124
\(201\) 0 0
\(202\) 3.42817 0.241205
\(203\) −33.2519 −2.33383
\(204\) 0 0
\(205\) 7.05166 0.492509
\(206\) 3.95343 0.275449
\(207\) 0 0
\(208\) 8.21117 0.569342
\(209\) 1.00000 0.0691714
\(210\) 0 0
\(211\) 9.51178 0.654818 0.327409 0.944883i \(-0.393825\pi\)
0.327409 + 0.944883i \(0.393825\pi\)
\(212\) 9.61443 0.660322
\(213\) 0 0
\(214\) −0.0460610 −0.00314867
\(215\) −13.9662 −0.952490
\(216\) 0 0
\(217\) −12.2315 −0.830327
\(218\) 9.23066 0.625179
\(219\) 0 0
\(220\) 2.14099 0.144346
\(221\) 16.7442 1.12634
\(222\) 0 0
\(223\) 0.879682 0.0589078 0.0294539 0.999566i \(-0.490623\pi\)
0.0294539 + 0.999566i \(0.490623\pi\)
\(224\) 23.6741 1.58179
\(225\) 0 0
\(226\) 9.85965 0.655854
\(227\) −19.8435 −1.31706 −0.658529 0.752556i \(-0.728821\pi\)
−0.658529 + 0.752556i \(0.728821\pi\)
\(228\) 0 0
\(229\) 27.5646 1.82152 0.910760 0.412936i \(-0.135497\pi\)
0.910760 + 0.412936i \(0.135497\pi\)
\(230\) −7.56686 −0.498944
\(231\) 0 0
\(232\) 18.9646 1.24509
\(233\) 9.60936 0.629530 0.314765 0.949170i \(-0.398074\pi\)
0.314765 + 0.949170i \(0.398074\pi\)
\(234\) 0 0
\(235\) 0.204895 0.0133659
\(236\) 18.6004 1.21079
\(237\) 0 0
\(238\) 8.75901 0.567762
\(239\) 23.2890 1.50644 0.753219 0.657770i \(-0.228500\pi\)
0.753219 + 0.657770i \(0.228500\pi\)
\(240\) 0 0
\(241\) −0.0990583 −0.00638091 −0.00319045 0.999995i \(-0.501016\pi\)
−0.00319045 + 0.999995i \(0.501016\pi\)
\(242\) −0.659361 −0.0423853
\(243\) 0 0
\(244\) 14.9959 0.960016
\(245\) −13.6634 −0.872920
\(246\) 0 0
\(247\) 5.19538 0.330574
\(248\) 6.97600 0.442977
\(249\) 0 0
\(250\) −7.33154 −0.463687
\(251\) −13.8105 −0.871708 −0.435854 0.900017i \(-0.643554\pi\)
−0.435854 + 0.900017i \(0.643554\pi\)
\(252\) 0 0
\(253\) −8.38994 −0.527471
\(254\) −10.5105 −0.659485
\(255\) 0 0
\(256\) −8.55445 −0.534653
\(257\) −2.16556 −0.135084 −0.0675419 0.997716i \(-0.521516\pi\)
−0.0675419 + 0.997716i \(0.521516\pi\)
\(258\) 0 0
\(259\) −17.5885 −1.09290
\(260\) 11.1233 0.689837
\(261\) 0 0
\(262\) −0.906607 −0.0560104
\(263\) 7.69195 0.474306 0.237153 0.971472i \(-0.423786\pi\)
0.237153 + 0.971472i \(0.423786\pi\)
\(264\) 0 0
\(265\) 8.40186 0.516122
\(266\) 2.71774 0.166635
\(267\) 0 0
\(268\) 9.92858 0.606485
\(269\) 0.550251 0.0335494 0.0167747 0.999859i \(-0.494660\pi\)
0.0167747 + 0.999859i \(0.494660\pi\)
\(270\) 0 0
\(271\) 6.38378 0.387787 0.193894 0.981023i \(-0.437888\pi\)
0.193894 + 0.981023i \(0.437888\pi\)
\(272\) 5.09372 0.308852
\(273\) 0 0
\(274\) −14.1561 −0.855203
\(275\) −3.12903 −0.188688
\(276\) 0 0
\(277\) −29.2996 −1.76044 −0.880221 0.474563i \(-0.842606\pi\)
−0.880221 + 0.474563i \(0.842606\pi\)
\(278\) 7.34931 0.440782
\(279\) 0 0
\(280\) 13.2535 0.792047
\(281\) −14.4530 −0.862196 −0.431098 0.902305i \(-0.641874\pi\)
−0.431098 + 0.902305i \(0.641874\pi\)
\(282\) 0 0
\(283\) 0.779649 0.0463453 0.0231727 0.999731i \(-0.492623\pi\)
0.0231727 + 0.999731i \(0.492623\pi\)
\(284\) 22.5231 1.33650
\(285\) 0 0
\(286\) −3.42563 −0.202562
\(287\) 21.2492 1.25430
\(288\) 0 0
\(289\) −6.61289 −0.388994
\(290\) 7.27593 0.427257
\(291\) 0 0
\(292\) −4.72697 −0.276625
\(293\) −10.7836 −0.629983 −0.314992 0.949094i \(-0.602002\pi\)
−0.314992 + 0.949094i \(0.602002\pi\)
\(294\) 0 0
\(295\) 16.2545 0.946376
\(296\) 10.0313 0.583058
\(297\) 0 0
\(298\) 3.02580 0.175280
\(299\) −43.5890 −2.52081
\(300\) 0 0
\(301\) −42.0853 −2.42576
\(302\) 12.4681 0.717458
\(303\) 0 0
\(304\) 1.58047 0.0906464
\(305\) 13.1046 0.750369
\(306\) 0 0
\(307\) 9.09308 0.518969 0.259485 0.965747i \(-0.416447\pi\)
0.259485 + 0.965747i \(0.416447\pi\)
\(308\) 6.45158 0.367613
\(309\) 0 0
\(310\) 2.67640 0.152009
\(311\) −8.54476 −0.484529 −0.242264 0.970210i \(-0.577890\pi\)
−0.242264 + 0.970210i \(0.577890\pi\)
\(312\) 0 0
\(313\) −28.0173 −1.58363 −0.791815 0.610761i \(-0.790864\pi\)
−0.791815 + 0.610761i \(0.790864\pi\)
\(314\) 10.8868 0.614379
\(315\) 0 0
\(316\) −4.94516 −0.278187
\(317\) −13.8377 −0.777201 −0.388600 0.921406i \(-0.627041\pi\)
−0.388600 + 0.921406i \(0.627041\pi\)
\(318\) 0 0
\(319\) 8.06737 0.451686
\(320\) −0.856536 −0.0478818
\(321\) 0 0
\(322\) −22.8017 −1.27069
\(323\) 3.22290 0.179327
\(324\) 0 0
\(325\) −16.2565 −0.901749
\(326\) −2.20890 −0.122340
\(327\) 0 0
\(328\) −12.1191 −0.669165
\(329\) 0.617423 0.0340396
\(330\) 0 0
\(331\) 4.27770 0.235124 0.117562 0.993066i \(-0.462492\pi\)
0.117562 + 0.993066i \(0.462492\pi\)
\(332\) 20.6575 1.13373
\(333\) 0 0
\(334\) 2.46340 0.134791
\(335\) 8.67638 0.474041
\(336\) 0 0
\(337\) 26.0324 1.41807 0.709037 0.705171i \(-0.249130\pi\)
0.709037 + 0.705171i \(0.249130\pi\)
\(338\) −9.22578 −0.501816
\(339\) 0 0
\(340\) 6.90022 0.374217
\(341\) 2.96753 0.160701
\(342\) 0 0
\(343\) −12.3202 −0.665226
\(344\) 24.0026 1.29413
\(345\) 0 0
\(346\) 11.6091 0.624110
\(347\) 2.04257 0.109651 0.0548256 0.998496i \(-0.482540\pi\)
0.0548256 + 0.998496i \(0.482540\pi\)
\(348\) 0 0
\(349\) −10.6796 −0.571665 −0.285833 0.958280i \(-0.592270\pi\)
−0.285833 + 0.958280i \(0.592270\pi\)
\(350\) −8.50388 −0.454551
\(351\) 0 0
\(352\) −5.74367 −0.306138
\(353\) 29.2609 1.55740 0.778701 0.627396i \(-0.215879\pi\)
0.778701 + 0.627396i \(0.215879\pi\)
\(354\) 0 0
\(355\) 19.6825 1.04464
\(356\) −16.3678 −0.867491
\(357\) 0 0
\(358\) 5.42537 0.286740
\(359\) 20.5749 1.08590 0.542952 0.839764i \(-0.317307\pi\)
0.542952 + 0.839764i \(0.317307\pi\)
\(360\) 0 0
\(361\) 1.00000 0.0526316
\(362\) −3.70191 −0.194568
\(363\) 0 0
\(364\) 33.5185 1.75684
\(365\) −4.13081 −0.216216
\(366\) 0 0
\(367\) −21.4180 −1.11801 −0.559005 0.829164i \(-0.688817\pi\)
−0.559005 + 0.829164i \(0.688817\pi\)
\(368\) −13.2601 −0.691230
\(369\) 0 0
\(370\) 3.84859 0.200079
\(371\) 25.3178 1.31444
\(372\) 0 0
\(373\) −30.6079 −1.58482 −0.792410 0.609989i \(-0.791174\pi\)
−0.792410 + 0.609989i \(0.791174\pi\)
\(374\) −2.12506 −0.109884
\(375\) 0 0
\(376\) −0.352136 −0.0181600
\(377\) 41.9131 2.15863
\(378\) 0 0
\(379\) 5.38689 0.276706 0.138353 0.990383i \(-0.455819\pi\)
0.138353 + 0.990383i \(0.455819\pi\)
\(380\) 2.14099 0.109831
\(381\) 0 0
\(382\) 14.6677 0.750464
\(383\) 31.5772 1.61352 0.806761 0.590878i \(-0.201219\pi\)
0.806761 + 0.590878i \(0.201219\pi\)
\(384\) 0 0
\(385\) 5.63791 0.287334
\(386\) 10.2644 0.522444
\(387\) 0 0
\(388\) −22.3455 −1.13442
\(389\) −9.30869 −0.471969 −0.235985 0.971757i \(-0.575832\pi\)
−0.235985 + 0.971757i \(0.575832\pi\)
\(390\) 0 0
\(391\) −27.0400 −1.36747
\(392\) 23.4820 1.18602
\(393\) 0 0
\(394\) −4.43207 −0.223284
\(395\) −4.32148 −0.217437
\(396\) 0 0
\(397\) 10.2531 0.514588 0.257294 0.966333i \(-0.417169\pi\)
0.257294 + 0.966333i \(0.417169\pi\)
\(398\) −0.306768 −0.0153769
\(399\) 0 0
\(400\) −4.94535 −0.247268
\(401\) −17.5959 −0.878696 −0.439348 0.898317i \(-0.644790\pi\)
−0.439348 + 0.898317i \(0.644790\pi\)
\(402\) 0 0
\(403\) 15.4174 0.767997
\(404\) 8.13806 0.404884
\(405\) 0 0
\(406\) 21.9250 1.08812
\(407\) 4.26722 0.211518
\(408\) 0 0
\(409\) −23.6042 −1.16715 −0.583576 0.812058i \(-0.698347\pi\)
−0.583576 + 0.812058i \(0.698347\pi\)
\(410\) −4.64959 −0.229627
\(411\) 0 0
\(412\) 9.38497 0.462365
\(413\) 48.9808 2.41019
\(414\) 0 0
\(415\) 18.0522 0.886147
\(416\) −29.8405 −1.46305
\(417\) 0 0
\(418\) −0.659361 −0.0322504
\(419\) −36.8265 −1.79909 −0.899546 0.436825i \(-0.856103\pi\)
−0.899546 + 0.436825i \(0.856103\pi\)
\(420\) 0 0
\(421\) 8.77615 0.427723 0.213862 0.976864i \(-0.431396\pi\)
0.213862 + 0.976864i \(0.431396\pi\)
\(422\) −6.27169 −0.305301
\(423\) 0 0
\(424\) −14.4396 −0.701247
\(425\) −10.0846 −0.489173
\(426\) 0 0
\(427\) 39.4890 1.91100
\(428\) −0.109343 −0.00528531
\(429\) 0 0
\(430\) 9.20879 0.444087
\(431\) −13.7236 −0.661044 −0.330522 0.943798i \(-0.607225\pi\)
−0.330522 + 0.943798i \(0.607225\pi\)
\(432\) 0 0
\(433\) −14.1199 −0.678557 −0.339279 0.940686i \(-0.610183\pi\)
−0.339279 + 0.940686i \(0.610183\pi\)
\(434\) 8.06496 0.387130
\(435\) 0 0
\(436\) 21.9125 1.04942
\(437\) −8.38994 −0.401345
\(438\) 0 0
\(439\) 20.1196 0.960257 0.480128 0.877198i \(-0.340590\pi\)
0.480128 + 0.877198i \(0.340590\pi\)
\(440\) −3.21548 −0.153292
\(441\) 0 0
\(442\) −11.0405 −0.525142
\(443\) 1.19847 0.0569411 0.0284706 0.999595i \(-0.490936\pi\)
0.0284706 + 0.999595i \(0.490936\pi\)
\(444\) 0 0
\(445\) −14.3035 −0.678050
\(446\) −0.580027 −0.0274651
\(447\) 0 0
\(448\) −2.58105 −0.121943
\(449\) 13.6222 0.642872 0.321436 0.946931i \(-0.395834\pi\)
0.321436 + 0.946931i \(0.395834\pi\)
\(450\) 0 0
\(451\) −5.15535 −0.242756
\(452\) 23.4056 1.10091
\(453\) 0 0
\(454\) 13.0840 0.614063
\(455\) 29.2911 1.37319
\(456\) 0 0
\(457\) 33.2894 1.55721 0.778606 0.627513i \(-0.215927\pi\)
0.778606 + 0.627513i \(0.215927\pi\)
\(458\) −18.1750 −0.849262
\(459\) 0 0
\(460\) −17.9628 −0.837520
\(461\) −26.2316 −1.22173 −0.610864 0.791735i \(-0.709178\pi\)
−0.610864 + 0.791735i \(0.709178\pi\)
\(462\) 0 0
\(463\) −24.7451 −1.15000 −0.575001 0.818152i \(-0.694998\pi\)
−0.575001 + 0.818152i \(0.694998\pi\)
\(464\) 12.7503 0.591917
\(465\) 0 0
\(466\) −6.33603 −0.293511
\(467\) 8.19382 0.379165 0.189582 0.981865i \(-0.439287\pi\)
0.189582 + 0.981865i \(0.439287\pi\)
\(468\) 0 0
\(469\) 26.1451 1.20727
\(470\) −0.135100 −0.00623169
\(471\) 0 0
\(472\) −27.9353 −1.28583
\(473\) 10.2105 0.469478
\(474\) 0 0
\(475\) −3.12903 −0.143570
\(476\) 20.7928 0.953038
\(477\) 0 0
\(478\) −15.3558 −0.702359
\(479\) −27.8192 −1.27109 −0.635547 0.772062i \(-0.719225\pi\)
−0.635547 + 0.772062i \(0.719225\pi\)
\(480\) 0 0
\(481\) 22.1698 1.01086
\(482\) 0.0653152 0.00297502
\(483\) 0 0
\(484\) −1.56524 −0.0711474
\(485\) −19.5273 −0.886689
\(486\) 0 0
\(487\) −6.32344 −0.286542 −0.143271 0.989683i \(-0.545762\pi\)
−0.143271 + 0.989683i \(0.545762\pi\)
\(488\) −22.5218 −1.01952
\(489\) 0 0
\(490\) 9.00908 0.406989
\(491\) 35.9788 1.62370 0.811850 0.583866i \(-0.198461\pi\)
0.811850 + 0.583866i \(0.198461\pi\)
\(492\) 0 0
\(493\) 26.0004 1.17100
\(494\) −3.42563 −0.154126
\(495\) 0 0
\(496\) 4.69010 0.210592
\(497\) 59.3105 2.66044
\(498\) 0 0
\(499\) 20.5152 0.918384 0.459192 0.888337i \(-0.348139\pi\)
0.459192 + 0.888337i \(0.348139\pi\)
\(500\) −17.4042 −0.778340
\(501\) 0 0
\(502\) 9.10607 0.406424
\(503\) −32.9161 −1.46766 −0.733829 0.679335i \(-0.762268\pi\)
−0.733829 + 0.679335i \(0.762268\pi\)
\(504\) 0 0
\(505\) 7.11169 0.316466
\(506\) 5.53200 0.245927
\(507\) 0 0
\(508\) −24.9506 −1.10700
\(509\) −8.08795 −0.358492 −0.179246 0.983804i \(-0.557366\pi\)
−0.179246 + 0.983804i \(0.557366\pi\)
\(510\) 0 0
\(511\) −12.4476 −0.550650
\(512\) −16.5084 −0.729576
\(513\) 0 0
\(514\) 1.42788 0.0629813
\(515\) 8.20134 0.361394
\(516\) 0 0
\(517\) −0.149795 −0.00658800
\(518\) 11.5972 0.509551
\(519\) 0 0
\(520\) −16.7056 −0.732591
\(521\) −31.2247 −1.36798 −0.683990 0.729491i \(-0.739757\pi\)
−0.683990 + 0.729491i \(0.739757\pi\)
\(522\) 0 0
\(523\) −15.6373 −0.683771 −0.341886 0.939742i \(-0.611066\pi\)
−0.341886 + 0.939742i \(0.611066\pi\)
\(524\) −2.15218 −0.0940183
\(525\) 0 0
\(526\) −5.07177 −0.221140
\(527\) 9.56405 0.416617
\(528\) 0 0
\(529\) 47.3911 2.06048
\(530\) −5.53985 −0.240636
\(531\) 0 0
\(532\) 6.45158 0.279712
\(533\) −26.7840 −1.16014
\(534\) 0 0
\(535\) −0.0955530 −0.00413111
\(536\) −14.9114 −0.644073
\(537\) 0 0
\(538\) −0.362814 −0.0156420
\(539\) 9.98904 0.430258
\(540\) 0 0
\(541\) −31.7133 −1.36346 −0.681730 0.731604i \(-0.738772\pi\)
−0.681730 + 0.731604i \(0.738772\pi\)
\(542\) −4.20922 −0.180801
\(543\) 0 0
\(544\) −18.5113 −0.793665
\(545\) 19.1489 0.820247
\(546\) 0 0
\(547\) 17.2492 0.737524 0.368762 0.929524i \(-0.379782\pi\)
0.368762 + 0.929524i \(0.379782\pi\)
\(548\) −33.6050 −1.43553
\(549\) 0 0
\(550\) 2.06316 0.0879734
\(551\) 8.06737 0.343682
\(552\) 0 0
\(553\) −13.0222 −0.553759
\(554\) 19.3190 0.820786
\(555\) 0 0
\(556\) 17.4464 0.739891
\(557\) 20.5077 0.868938 0.434469 0.900687i \(-0.356936\pi\)
0.434469 + 0.900687i \(0.356936\pi\)
\(558\) 0 0
\(559\) 53.0474 2.24366
\(560\) 8.91057 0.376540
\(561\) 0 0
\(562\) 9.52977 0.401989
\(563\) 29.9098 1.26055 0.630275 0.776372i \(-0.282942\pi\)
0.630275 + 0.776372i \(0.282942\pi\)
\(564\) 0 0
\(565\) 20.4537 0.860494
\(566\) −0.514070 −0.0216080
\(567\) 0 0
\(568\) −33.8267 −1.41934
\(569\) −25.5933 −1.07293 −0.536464 0.843923i \(-0.680240\pi\)
−0.536464 + 0.843923i \(0.680240\pi\)
\(570\) 0 0
\(571\) −16.8243 −0.704076 −0.352038 0.935986i \(-0.614511\pi\)
−0.352038 + 0.935986i \(0.614511\pi\)
\(572\) −8.13204 −0.340018
\(573\) 0 0
\(574\) −14.0109 −0.584803
\(575\) 26.2524 1.09480
\(576\) 0 0
\(577\) 16.9276 0.704706 0.352353 0.935867i \(-0.385382\pi\)
0.352353 + 0.935867i \(0.385382\pi\)
\(578\) 4.36028 0.181364
\(579\) 0 0
\(580\) 17.2722 0.717189
\(581\) 54.3977 2.25680
\(582\) 0 0
\(583\) −6.14245 −0.254394
\(584\) 7.09927 0.293770
\(585\) 0 0
\(586\) 7.11027 0.293722
\(587\) −17.9979 −0.742852 −0.371426 0.928463i \(-0.621131\pi\)
−0.371426 + 0.928463i \(0.621131\pi\)
\(588\) 0 0
\(589\) 2.96753 0.122275
\(590\) −10.7176 −0.441237
\(591\) 0 0
\(592\) 6.74423 0.277186
\(593\) −24.6139 −1.01077 −0.505387 0.862893i \(-0.668650\pi\)
−0.505387 + 0.862893i \(0.668650\pi\)
\(594\) 0 0
\(595\) 18.1704 0.744915
\(596\) 7.18289 0.294223
\(597\) 0 0
\(598\) 28.7408 1.17530
\(599\) −37.6230 −1.53723 −0.768616 0.639710i \(-0.779054\pi\)
−0.768616 + 0.639710i \(0.779054\pi\)
\(600\) 0 0
\(601\) 3.54574 0.144634 0.0723169 0.997382i \(-0.476961\pi\)
0.0723169 + 0.997382i \(0.476961\pi\)
\(602\) 27.7494 1.13098
\(603\) 0 0
\(604\) 29.5977 1.20432
\(605\) −1.36783 −0.0556104
\(606\) 0 0
\(607\) −28.2160 −1.14525 −0.572626 0.819817i \(-0.694075\pi\)
−0.572626 + 0.819817i \(0.694075\pi\)
\(608\) −5.74367 −0.232936
\(609\) 0 0
\(610\) −8.64068 −0.349851
\(611\) −0.778245 −0.0314844
\(612\) 0 0
\(613\) 40.5857 1.63924 0.819620 0.572907i \(-0.194184\pi\)
0.819620 + 0.572907i \(0.194184\pi\)
\(614\) −5.99562 −0.241963
\(615\) 0 0
\(616\) −9.68940 −0.390397
\(617\) −17.6747 −0.711557 −0.355778 0.934570i \(-0.615784\pi\)
−0.355778 + 0.934570i \(0.615784\pi\)
\(618\) 0 0
\(619\) 5.87606 0.236179 0.118089 0.993003i \(-0.462323\pi\)
0.118089 + 0.993003i \(0.462323\pi\)
\(620\) 6.35345 0.255161
\(621\) 0 0
\(622\) 5.63408 0.225906
\(623\) −43.1015 −1.72683
\(624\) 0 0
\(625\) 0.435972 0.0174389
\(626\) 18.4735 0.738349
\(627\) 0 0
\(628\) 25.8440 1.03129
\(629\) 13.7528 0.548362
\(630\) 0 0
\(631\) −37.5236 −1.49379 −0.746895 0.664942i \(-0.768456\pi\)
−0.746895 + 0.664942i \(0.768456\pi\)
\(632\) 7.42696 0.295428
\(633\) 0 0
\(634\) 9.12401 0.362361
\(635\) −21.8038 −0.865257
\(636\) 0 0
\(637\) 51.8969 2.05623
\(638\) −5.31931 −0.210593
\(639\) 0 0
\(640\) −15.1480 −0.598777
\(641\) 29.3913 1.16089 0.580444 0.814300i \(-0.302879\pi\)
0.580444 + 0.814300i \(0.302879\pi\)
\(642\) 0 0
\(643\) 29.5287 1.16450 0.582249 0.813010i \(-0.302173\pi\)
0.582249 + 0.813010i \(0.302173\pi\)
\(644\) −54.1284 −2.13296
\(645\) 0 0
\(646\) −2.12506 −0.0836092
\(647\) 25.1754 0.989746 0.494873 0.868965i \(-0.335215\pi\)
0.494873 + 0.868965i \(0.335215\pi\)
\(648\) 0 0
\(649\) −11.8834 −0.466465
\(650\) 10.7189 0.420430
\(651\) 0 0
\(652\) −5.24368 −0.205358
\(653\) 34.5485 1.35199 0.675993 0.736908i \(-0.263715\pi\)
0.675993 + 0.736908i \(0.263715\pi\)
\(654\) 0 0
\(655\) −1.88074 −0.0734867
\(656\) −8.14789 −0.318122
\(657\) 0 0
\(658\) −0.407105 −0.0158706
\(659\) 11.1326 0.433666 0.216833 0.976209i \(-0.430427\pi\)
0.216833 + 0.976209i \(0.430427\pi\)
\(660\) 0 0
\(661\) 3.98975 0.155183 0.0775916 0.996985i \(-0.475277\pi\)
0.0775916 + 0.996985i \(0.475277\pi\)
\(662\) −2.82055 −0.109624
\(663\) 0 0
\(664\) −31.0248 −1.20399
\(665\) 5.63791 0.218629
\(666\) 0 0
\(667\) −67.6848 −2.62076
\(668\) 5.84781 0.226259
\(669\) 0 0
\(670\) −5.72087 −0.221016
\(671\) −9.58057 −0.369854
\(672\) 0 0
\(673\) −17.1495 −0.661064 −0.330532 0.943795i \(-0.607228\pi\)
−0.330532 + 0.943795i \(0.607228\pi\)
\(674\) −17.1647 −0.661160
\(675\) 0 0
\(676\) −21.9009 −0.842342
\(677\) −29.9605 −1.15148 −0.575739 0.817634i \(-0.695285\pi\)
−0.575739 + 0.817634i \(0.695285\pi\)
\(678\) 0 0
\(679\) −58.8428 −2.25818
\(680\) −10.3632 −0.397410
\(681\) 0 0
\(682\) −1.95667 −0.0749248
\(683\) 23.1120 0.884358 0.442179 0.896927i \(-0.354206\pi\)
0.442179 + 0.896927i \(0.354206\pi\)
\(684\) 0 0
\(685\) −29.3667 −1.12204
\(686\) 8.12343 0.310154
\(687\) 0 0
\(688\) 16.1374 0.615233
\(689\) −31.9124 −1.21577
\(690\) 0 0
\(691\) −44.4094 −1.68941 −0.844707 0.535230i \(-0.820225\pi\)
−0.844707 + 0.535230i \(0.820225\pi\)
\(692\) 27.5586 1.04762
\(693\) 0 0
\(694\) −1.34679 −0.0511236
\(695\) 15.2460 0.578315
\(696\) 0 0
\(697\) −16.6152 −0.629345
\(698\) 7.04170 0.266532
\(699\) 0 0
\(700\) −20.1872 −0.763004
\(701\) −46.5664 −1.75879 −0.879394 0.476094i \(-0.842052\pi\)
−0.879394 + 0.476094i \(0.842052\pi\)
\(702\) 0 0
\(703\) 4.26722 0.160941
\(704\) 0.626199 0.0236008
\(705\) 0 0
\(706\) −19.2935 −0.726120
\(707\) 21.4301 0.805961
\(708\) 0 0
\(709\) 22.9753 0.862855 0.431427 0.902148i \(-0.358010\pi\)
0.431427 + 0.902148i \(0.358010\pi\)
\(710\) −12.9779 −0.487051
\(711\) 0 0
\(712\) 24.5822 0.921256
\(713\) −24.8974 −0.932414
\(714\) 0 0
\(715\) −7.10642 −0.265765
\(716\) 12.8792 0.481317
\(717\) 0 0
\(718\) −13.5663 −0.506290
\(719\) 7.31949 0.272971 0.136485 0.990642i \(-0.456419\pi\)
0.136485 + 0.990642i \(0.456419\pi\)
\(720\) 0 0
\(721\) 24.7136 0.920382
\(722\) −0.659361 −0.0245389
\(723\) 0 0
\(724\) −8.78790 −0.326600
\(725\) −25.2430 −0.937503
\(726\) 0 0
\(727\) 0.412821 0.0153107 0.00765535 0.999971i \(-0.497563\pi\)
0.00765535 + 0.999971i \(0.497563\pi\)
\(728\) −50.3401 −1.86573
\(729\) 0 0
\(730\) 2.72369 0.100808
\(731\) 32.9074 1.21712
\(732\) 0 0
\(733\) 39.4330 1.45649 0.728245 0.685316i \(-0.240336\pi\)
0.728245 + 0.685316i \(0.240336\pi\)
\(734\) 14.1222 0.521259
\(735\) 0 0
\(736\) 48.1890 1.77627
\(737\) −6.34315 −0.233653
\(738\) 0 0
\(739\) −23.5277 −0.865479 −0.432740 0.901519i \(-0.642453\pi\)
−0.432740 + 0.901519i \(0.642453\pi\)
\(740\) 9.13609 0.335849
\(741\) 0 0
\(742\) −16.6936 −0.612840
\(743\) 0.119519 0.00438473 0.00219237 0.999998i \(-0.499302\pi\)
0.00219237 + 0.999998i \(0.499302\pi\)
\(744\) 0 0
\(745\) 6.27698 0.229971
\(746\) 20.1817 0.738904
\(747\) 0 0
\(748\) −5.04463 −0.184450
\(749\) −0.287935 −0.0105209
\(750\) 0 0
\(751\) −8.19273 −0.298957 −0.149478 0.988765i \(-0.547759\pi\)
−0.149478 + 0.988765i \(0.547759\pi\)
\(752\) −0.236748 −0.00863330
\(753\) 0 0
\(754\) −27.6358 −1.00644
\(755\) 25.8649 0.941319
\(756\) 0 0
\(757\) −2.40721 −0.0874917 −0.0437459 0.999043i \(-0.513929\pi\)
−0.0437459 + 0.999043i \(0.513929\pi\)
\(758\) −3.55190 −0.129011
\(759\) 0 0
\(760\) −3.21548 −0.116638
\(761\) −39.4490 −1.43002 −0.715012 0.699112i \(-0.753579\pi\)
−0.715012 + 0.699112i \(0.753579\pi\)
\(762\) 0 0
\(763\) 57.7024 2.08897
\(764\) 34.8193 1.25972
\(765\) 0 0
\(766\) −20.8208 −0.752286
\(767\) −61.7389 −2.22926
\(768\) 0 0
\(769\) −14.6494 −0.528271 −0.264136 0.964486i \(-0.585087\pi\)
−0.264136 + 0.964486i \(0.585087\pi\)
\(770\) −3.71741 −0.133966
\(771\) 0 0
\(772\) 24.3664 0.876967
\(773\) −15.8646 −0.570610 −0.285305 0.958437i \(-0.592095\pi\)
−0.285305 + 0.958437i \(0.592095\pi\)
\(774\) 0 0
\(775\) −9.28548 −0.333544
\(776\) 33.5599 1.20473
\(777\) 0 0
\(778\) 6.13779 0.220050
\(779\) −5.15535 −0.184709
\(780\) 0 0
\(781\) −14.3895 −0.514899
\(782\) 17.8291 0.637567
\(783\) 0 0
\(784\) 15.7874 0.563836
\(785\) 22.5846 0.806077
\(786\) 0 0
\(787\) −20.8282 −0.742446 −0.371223 0.928544i \(-0.621062\pi\)
−0.371223 + 0.928544i \(0.621062\pi\)
\(788\) −10.5212 −0.374802
\(789\) 0 0
\(790\) 2.84941 0.101377
\(791\) 61.6344 2.19147
\(792\) 0 0
\(793\) −49.7747 −1.76755
\(794\) −6.76049 −0.239921
\(795\) 0 0
\(796\) −0.728230 −0.0258114
\(797\) 26.4454 0.936743 0.468372 0.883532i \(-0.344841\pi\)
0.468372 + 0.883532i \(0.344841\pi\)
\(798\) 0 0
\(799\) −0.482776 −0.0170794
\(800\) 17.9721 0.635410
\(801\) 0 0
\(802\) 11.6020 0.409682
\(803\) 3.01996 0.106572
\(804\) 0 0
\(805\) −47.3017 −1.66717
\(806\) −10.1657 −0.358070
\(807\) 0 0
\(808\) −12.2223 −0.429977
\(809\) −14.1256 −0.496629 −0.248315 0.968679i \(-0.579877\pi\)
−0.248315 + 0.968679i \(0.579877\pi\)
\(810\) 0 0
\(811\) 15.2386 0.535101 0.267550 0.963544i \(-0.413786\pi\)
0.267550 + 0.963544i \(0.413786\pi\)
\(812\) 52.0473 1.82650
\(813\) 0 0
\(814\) −2.81364 −0.0986179
\(815\) −4.58234 −0.160512
\(816\) 0 0
\(817\) 10.2105 0.357219
\(818\) 15.5637 0.544171
\(819\) 0 0
\(820\) −11.0376 −0.385448
\(821\) 19.8272 0.691973 0.345986 0.938240i \(-0.387544\pi\)
0.345986 + 0.938240i \(0.387544\pi\)
\(822\) 0 0
\(823\) 28.2161 0.983553 0.491776 0.870721i \(-0.336348\pi\)
0.491776 + 0.870721i \(0.336348\pi\)
\(824\) −14.0949 −0.491021
\(825\) 0 0
\(826\) −32.2960 −1.12372
\(827\) −32.0866 −1.11576 −0.557879 0.829922i \(-0.688385\pi\)
−0.557879 + 0.829922i \(0.688385\pi\)
\(828\) 0 0
\(829\) 34.2156 1.18836 0.594178 0.804334i \(-0.297477\pi\)
0.594178 + 0.804334i \(0.297477\pi\)
\(830\) −11.9029 −0.413156
\(831\) 0 0
\(832\) 3.25334 0.112789
\(833\) 32.1937 1.11545
\(834\) 0 0
\(835\) 5.11028 0.176849
\(836\) −1.56524 −0.0541351
\(837\) 0 0
\(838\) 24.2820 0.838806
\(839\) 11.9448 0.412380 0.206190 0.978512i \(-0.433893\pi\)
0.206190 + 0.978512i \(0.433893\pi\)
\(840\) 0 0
\(841\) 36.0825 1.24422
\(842\) −5.78665 −0.199421
\(843\) 0 0
\(844\) −14.8882 −0.512475
\(845\) −19.1388 −0.658393
\(846\) 0 0
\(847\) −4.12178 −0.141626
\(848\) −9.70799 −0.333374
\(849\) 0 0
\(850\) 6.64936 0.228071
\(851\) −35.8017 −1.22727
\(852\) 0 0
\(853\) 12.3830 0.423985 0.211992 0.977271i \(-0.432005\pi\)
0.211992 + 0.977271i \(0.432005\pi\)
\(854\) −26.0375 −0.890984
\(855\) 0 0
\(856\) 0.164219 0.00561288
\(857\) 45.8270 1.56542 0.782710 0.622387i \(-0.213837\pi\)
0.782710 + 0.622387i \(0.213837\pi\)
\(858\) 0 0
\(859\) 43.4253 1.48165 0.740826 0.671697i \(-0.234434\pi\)
0.740826 + 0.671697i \(0.234434\pi\)
\(860\) 21.8606 0.745439
\(861\) 0 0
\(862\) 9.04882 0.308204
\(863\) −31.9263 −1.08678 −0.543391 0.839480i \(-0.682860\pi\)
−0.543391 + 0.839480i \(0.682860\pi\)
\(864\) 0 0
\(865\) 24.0829 0.818845
\(866\) 9.31008 0.316369
\(867\) 0 0
\(868\) 19.1452 0.649832
\(869\) 3.15936 0.107174
\(870\) 0 0
\(871\) −32.9551 −1.11664
\(872\) −32.9095 −1.11446
\(873\) 0 0
\(874\) 5.53200 0.187123
\(875\) −45.8307 −1.54936
\(876\) 0 0
\(877\) 14.9354 0.504334 0.252167 0.967684i \(-0.418857\pi\)
0.252167 + 0.967684i \(0.418857\pi\)
\(878\) −13.2661 −0.447709
\(879\) 0 0
\(880\) −2.16183 −0.0728752
\(881\) 5.66513 0.190863 0.0954316 0.995436i \(-0.469577\pi\)
0.0954316 + 0.995436i \(0.469577\pi\)
\(882\) 0 0
\(883\) −8.34093 −0.280695 −0.140347 0.990102i \(-0.544822\pi\)
−0.140347 + 0.990102i \(0.544822\pi\)
\(884\) −26.2088 −0.881497
\(885\) 0 0
\(886\) −0.790225 −0.0265481
\(887\) −35.2777 −1.18451 −0.592255 0.805750i \(-0.701762\pi\)
−0.592255 + 0.805750i \(0.701762\pi\)
\(888\) 0 0
\(889\) −65.7026 −2.20360
\(890\) 9.43115 0.316133
\(891\) 0 0
\(892\) −1.37692 −0.0461026
\(893\) −0.149795 −0.00501271
\(894\) 0 0
\(895\) 11.2548 0.376208
\(896\) −45.6464 −1.52494
\(897\) 0 0
\(898\) −8.98196 −0.299732
\(899\) 23.9401 0.798448
\(900\) 0 0
\(901\) −19.7965 −0.659518
\(902\) 3.39923 0.113182
\(903\) 0 0
\(904\) −35.1521 −1.16914
\(905\) −7.67957 −0.255277
\(906\) 0 0
\(907\) 18.8103 0.624586 0.312293 0.949986i \(-0.398903\pi\)
0.312293 + 0.949986i \(0.398903\pi\)
\(908\) 31.0599 1.03076
\(909\) 0 0
\(910\) −19.3134 −0.640233
\(911\) 36.8573 1.22114 0.610569 0.791963i \(-0.290941\pi\)
0.610569 + 0.791963i \(0.290941\pi\)
\(912\) 0 0
\(913\) −13.1976 −0.436778
\(914\) −21.9497 −0.726032
\(915\) 0 0
\(916\) −43.1453 −1.42556
\(917\) −5.66736 −0.187153
\(918\) 0 0
\(919\) 6.64450 0.219182 0.109591 0.993977i \(-0.465046\pi\)
0.109591 + 0.993977i \(0.465046\pi\)
\(920\) 26.9777 0.889428
\(921\) 0 0
\(922\) 17.2961 0.569617
\(923\) −74.7592 −2.46073
\(924\) 0 0
\(925\) −13.3523 −0.439020
\(926\) 16.3159 0.536175
\(927\) 0 0
\(928\) −46.3363 −1.52106
\(929\) 20.2409 0.664081 0.332041 0.943265i \(-0.392263\pi\)
0.332041 + 0.943265i \(0.392263\pi\)
\(930\) 0 0
\(931\) 9.98904 0.327378
\(932\) −15.0410 −0.492684
\(933\) 0 0
\(934\) −5.40269 −0.176781
\(935\) −4.40840 −0.144170
\(936\) 0 0
\(937\) −17.5676 −0.573909 −0.286955 0.957944i \(-0.592643\pi\)
−0.286955 + 0.957944i \(0.592643\pi\)
\(938\) −17.2390 −0.562874
\(939\) 0 0
\(940\) −0.320711 −0.0104604
\(941\) −10.3234 −0.336534 −0.168267 0.985741i \(-0.553817\pi\)
−0.168267 + 0.985741i \(0.553817\pi\)
\(942\) 0 0
\(943\) 43.2530 1.40851
\(944\) −18.7814 −0.611284
\(945\) 0 0
\(946\) −6.73239 −0.218889
\(947\) −13.5385 −0.439943 −0.219972 0.975506i \(-0.570597\pi\)
−0.219972 + 0.975506i \(0.570597\pi\)
\(948\) 0 0
\(949\) 15.6899 0.509314
\(950\) 2.06316 0.0669377
\(951\) 0 0
\(952\) −31.2280 −1.01210
\(953\) 16.4833 0.533947 0.266973 0.963704i \(-0.413976\pi\)
0.266973 + 0.963704i \(0.413976\pi\)
\(954\) 0 0
\(955\) 30.4279 0.984624
\(956\) −36.4529 −1.17897
\(957\) 0 0
\(958\) 18.3429 0.592633
\(959\) −88.4924 −2.85757
\(960\) 0 0
\(961\) −22.1938 −0.715929
\(962\) −14.6179 −0.471301
\(963\) 0 0
\(964\) 0.155050 0.00499384
\(965\) 21.2933 0.685457
\(966\) 0 0
\(967\) −42.8282 −1.37726 −0.688631 0.725112i \(-0.741788\pi\)
−0.688631 + 0.725112i \(0.741788\pi\)
\(968\) 2.35078 0.0755570
\(969\) 0 0
\(970\) 12.8755 0.413408
\(971\) −17.9785 −0.576958 −0.288479 0.957486i \(-0.593150\pi\)
−0.288479 + 0.957486i \(0.593150\pi\)
\(972\) 0 0
\(973\) 45.9418 1.47283
\(974\) 4.16943 0.133597
\(975\) 0 0
\(976\) −15.1418 −0.484679
\(977\) 3.12664 0.100030 0.0500150 0.998748i \(-0.484073\pi\)
0.0500150 + 0.998748i \(0.484073\pi\)
\(978\) 0 0
\(979\) 10.4570 0.334208
\(980\) 21.3865 0.683166
\(981\) 0 0
\(982\) −23.7230 −0.757031
\(983\) −8.36079 −0.266668 −0.133334 0.991071i \(-0.542568\pi\)
−0.133334 + 0.991071i \(0.542568\pi\)
\(984\) 0 0
\(985\) −9.19426 −0.292954
\(986\) −17.1436 −0.545964
\(987\) 0 0
\(988\) −8.13204 −0.258715
\(989\) −85.6653 −2.72400
\(990\) 0 0
\(991\) −30.9086 −0.981845 −0.490923 0.871203i \(-0.663340\pi\)
−0.490923 + 0.871203i \(0.663340\pi\)
\(992\) −17.0445 −0.541163
\(993\) 0 0
\(994\) −39.1070 −1.24040
\(995\) −0.636385 −0.0201748
\(996\) 0 0
\(997\) 32.5554 1.03104 0.515520 0.856878i \(-0.327599\pi\)
0.515520 + 0.856878i \(0.327599\pi\)
\(998\) −13.5269 −0.428186
\(999\) 0 0
Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))

Twists

       By twisting character
Char Parity Ord Type Twist Min Dim
1.1 even 1 trivial 1881.2.a.n.1.4 7
3.2 odd 2 1881.2.a.r.1.4 yes 7
    
        By twisted newform
Twist Min Dim Char Parity Ord Type
1881.2.a.n.1.4 7 1.1 even 1 trivial
1881.2.a.r.1.4 yes 7 3.2 odd 2