Properties

Label 1881.2.a.r.1.7
Level $1881$
Weight $2$
Character 1881.1
Self dual yes
Analytic conductor $15.020$
Analytic rank $0$
Dimension $7$
CM no
Inner twists $1$

Related objects

Downloads

Learn more

Show commands: Magma / PariGP / SageMath

Newspace parameters

comment: Compute space of new eigenforms
 
[N,k,chi] = [1881,2,Mod(1,1881)]
 
mf = mfinit([N,k,chi],0)
 
lf = mfeigenbasis(mf)
 
from sage.modular.dirichlet import DirichletCharacter
 
H = DirichletGroup(1881, base_ring=CyclotomicField(2))
 
chi = DirichletCharacter(H, H._module([0, 0, 0]))
 
N = Newforms(chi, 2, names="a")
 
//Please install CHIMP (https://github.com/edgarcosta/CHIMP) if you want to run this code
 
chi := DirichletCharacter("1881.1");
 
S:= CuspForms(chi, 2);
 
N := Newforms(S);
 
Level: \( N \) \(=\) \( 1881 = 3^{2} \cdot 11 \cdot 19 \)
Weight: \( k \) \(=\) \( 2 \)
Character orbit: \([\chi]\) \(=\) 1881.a (trivial)

Newform invariants

comment: select newform
 
sage: f = N[0] # Warning: the index may be different
 
gp: f = lf[1] \\ Warning: the index may be different
 
Self dual: yes
Analytic conductor: \(15.0198606202\)
Analytic rank: \(0\)
Dimension: \(7\)
Coefficient field: \(\mathbb{Q}[x]/(x^{7} - \cdots)\)
comment: defining polynomial
 
gp: f.mod \\ as an extension of the character field
 
Defining polynomial: \( x^{7} - x^{6} - 9x^{5} + 7x^{4} + 22x^{3} - 12x^{2} - 9x - 1 \) Copy content Toggle raw display
Coefficient ring: \(\Z[a_1, a_2]\)
Coefficient ring index: \( 1 \)
Twist minimal: yes
Fricke sign: \(-1\)
Sato-Tate group: $\mathrm{SU}(2)$

Embedding invariants

Embedding label 1.7
Root \(-0.327599\) of defining polynomial
Character \(\chi\) \(=\) 1881.1

$q$-expansion

comment: q-expansion
 
sage: f.q_expansion() # note that sage often uses an isomorphic number field
 
gp: mfcoefs(f, 20)
 
\(f(q)\) \(=\) \(q+2.44300 q^{2} +3.96824 q^{4} +0.800323 q^{5} +0.588123 q^{7} +4.80840 q^{8} +1.95519 q^{10} -1.00000 q^{11} +2.31077 q^{13} +1.43678 q^{14} +3.81044 q^{16} +6.57145 q^{17} +1.00000 q^{19} +3.17587 q^{20} -2.44300 q^{22} -4.10043 q^{23} -4.35948 q^{25} +5.64521 q^{26} +2.33381 q^{28} +4.73715 q^{29} +4.02301 q^{31} -0.307914 q^{32} +16.0540 q^{34} +0.470688 q^{35} -5.91366 q^{37} +2.44300 q^{38} +3.84827 q^{40} +11.1741 q^{41} +7.80457 q^{43} -3.96824 q^{44} -10.0174 q^{46} -2.56595 q^{47} -6.65411 q^{49} -10.6502 q^{50} +9.16969 q^{52} -11.4718 q^{53} -0.800323 q^{55} +2.82793 q^{56} +11.5728 q^{58} +2.46799 q^{59} -8.36670 q^{61} +9.82821 q^{62} -8.37311 q^{64} +1.84936 q^{65} -2.82416 q^{67} +26.0771 q^{68} +1.14989 q^{70} +4.05247 q^{71} -8.44391 q^{73} -14.4470 q^{74} +3.96824 q^{76} -0.588123 q^{77} +12.6320 q^{79} +3.04958 q^{80} +27.2983 q^{82} -0.0137315 q^{83} +5.25928 q^{85} +19.0666 q^{86} -4.80840 q^{88} -10.7746 q^{89} +1.35902 q^{91} -16.2715 q^{92} -6.26860 q^{94} +0.800323 q^{95} -7.37915 q^{97} -16.2560 q^{98} +O(q^{100})\)
\(\operatorname{Tr}(f)(q)\) \(=\) \( 7 q + 2 q^{2} + 6 q^{4} + 8 q^{5} - 2 q^{7} + 6 q^{8} + 6 q^{10} - 7 q^{11} - 7 q^{13} + 6 q^{14} + 5 q^{17} + 7 q^{19} + 20 q^{20} - 2 q^{22} + 22 q^{23} + 3 q^{25} + 10 q^{26} + 2 q^{28} + 18 q^{29} + 14 q^{32}+ \cdots - 62 q^{98}+O(q^{100}) \) Copy content Toggle raw display

Coefficient data

For each \(n\) we display the coefficients of the \(q\)-expansion \(a_n\), the Satake parameters \(\alpha_p\), and the Satake angles \(\theta_p = \textrm{Arg}(\alpha_p)\).



Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))
Significant digits:
\(n\) \(a_n\) \(a_n / n^{(k-1)/2}\) \( \alpha_n \) \( \theta_n \)
\(p\) \(a_p\) \(a_p / p^{(k-1)/2}\) \( \alpha_p\) \( \theta_p \)
\(2\) 2.44300 1.72746 0.863730 0.503955i \(-0.168122\pi\)
0.863730 + 0.503955i \(0.168122\pi\)
\(3\) 0 0
\(4\) 3.96824 1.98412
\(5\) 0.800323 0.357915 0.178958 0.983857i \(-0.442728\pi\)
0.178958 + 0.983857i \(0.442728\pi\)
\(6\) 0 0
\(7\) 0.588123 0.222290 0.111145 0.993804i \(-0.464548\pi\)
0.111145 + 0.993804i \(0.464548\pi\)
\(8\) 4.80840 1.70003
\(9\) 0 0
\(10\) 1.95519 0.618284
\(11\) −1.00000 −0.301511
\(12\) 0 0
\(13\) 2.31077 0.640892 0.320446 0.947267i \(-0.396167\pi\)
0.320446 + 0.947267i \(0.396167\pi\)
\(14\) 1.43678 0.383997
\(15\) 0 0
\(16\) 3.81044 0.952609
\(17\) 6.57145 1.59381 0.796905 0.604104i \(-0.206469\pi\)
0.796905 + 0.604104i \(0.206469\pi\)
\(18\) 0 0
\(19\) 1.00000 0.229416
\(20\) 3.17587 0.710146
\(21\) 0 0
\(22\) −2.44300 −0.520849
\(23\) −4.10043 −0.855000 −0.427500 0.904015i \(-0.640606\pi\)
−0.427500 + 0.904015i \(0.640606\pi\)
\(24\) 0 0
\(25\) −4.35948 −0.871897
\(26\) 5.64521 1.10712
\(27\) 0 0
\(28\) 2.33381 0.441049
\(29\) 4.73715 0.879666 0.439833 0.898079i \(-0.355038\pi\)
0.439833 + 0.898079i \(0.355038\pi\)
\(30\) 0 0
\(31\) 4.02301 0.722554 0.361277 0.932458i \(-0.382341\pi\)
0.361277 + 0.932458i \(0.382341\pi\)
\(32\) −0.307914 −0.0544320
\(33\) 0 0
\(34\) 16.0540 2.75324
\(35\) 0.470688 0.0795608
\(36\) 0 0
\(37\) −5.91366 −0.972199 −0.486099 0.873903i \(-0.661581\pi\)
−0.486099 + 0.873903i \(0.661581\pi\)
\(38\) 2.44300 0.396307
\(39\) 0 0
\(40\) 3.84827 0.608465
\(41\) 11.1741 1.74510 0.872551 0.488524i \(-0.162464\pi\)
0.872551 + 0.488524i \(0.162464\pi\)
\(42\) 0 0
\(43\) 7.80457 1.19019 0.595093 0.803657i \(-0.297115\pi\)
0.595093 + 0.803657i \(0.297115\pi\)
\(44\) −3.96824 −0.598234
\(45\) 0 0
\(46\) −10.0174 −1.47698
\(47\) −2.56595 −0.374282 −0.187141 0.982333i \(-0.559922\pi\)
−0.187141 + 0.982333i \(0.559922\pi\)
\(48\) 0 0
\(49\) −6.65411 −0.950587
\(50\) −10.6502 −1.50617
\(51\) 0 0
\(52\) 9.16969 1.27161
\(53\) −11.4718 −1.57578 −0.787889 0.615818i \(-0.788826\pi\)
−0.787889 + 0.615818i \(0.788826\pi\)
\(54\) 0 0
\(55\) −0.800323 −0.107915
\(56\) 2.82793 0.377898
\(57\) 0 0
\(58\) 11.5728 1.51959
\(59\) 2.46799 0.321304 0.160652 0.987011i \(-0.448640\pi\)
0.160652 + 0.987011i \(0.448640\pi\)
\(60\) 0 0
\(61\) −8.36670 −1.07125 −0.535623 0.844457i \(-0.679923\pi\)
−0.535623 + 0.844457i \(0.679923\pi\)
\(62\) 9.82821 1.24818
\(63\) 0 0
\(64\) −8.37311 −1.04664
\(65\) 1.84936 0.229385
\(66\) 0 0
\(67\) −2.82416 −0.345025 −0.172513 0.985007i \(-0.555189\pi\)
−0.172513 + 0.985007i \(0.555189\pi\)
\(68\) 26.0771 3.16231
\(69\) 0 0
\(70\) 1.14989 0.137438
\(71\) 4.05247 0.480939 0.240470 0.970657i \(-0.422699\pi\)
0.240470 + 0.970657i \(0.422699\pi\)
\(72\) 0 0
\(73\) −8.44391 −0.988285 −0.494143 0.869381i \(-0.664518\pi\)
−0.494143 + 0.869381i \(0.664518\pi\)
\(74\) −14.4470 −1.67944
\(75\) 0 0
\(76\) 3.96824 0.455188
\(77\) −0.588123 −0.0670229
\(78\) 0 0
\(79\) 12.6320 1.42121 0.710603 0.703593i \(-0.248422\pi\)
0.710603 + 0.703593i \(0.248422\pi\)
\(80\) 3.04958 0.340953
\(81\) 0 0
\(82\) 27.2983 3.01459
\(83\) −0.0137315 −0.00150723 −0.000753615 1.00000i \(-0.500240\pi\)
−0.000753615 1.00000i \(0.500240\pi\)
\(84\) 0 0
\(85\) 5.25928 0.570449
\(86\) 19.0666 2.05600
\(87\) 0 0
\(88\) −4.80840 −0.512577
\(89\) −10.7746 −1.14211 −0.571054 0.820912i \(-0.693465\pi\)
−0.571054 + 0.820912i \(0.693465\pi\)
\(90\) 0 0
\(91\) 1.35902 0.142464
\(92\) −16.2715 −1.69642
\(93\) 0 0
\(94\) −6.26860 −0.646557
\(95\) 0.800323 0.0821114
\(96\) 0 0
\(97\) −7.37915 −0.749239 −0.374619 0.927179i \(-0.622227\pi\)
−0.374619 + 0.927179i \(0.622227\pi\)
\(98\) −16.2560 −1.64210
\(99\) 0 0
\(100\) −17.2995 −1.72995
\(101\) −0.938512 −0.0933854 −0.0466927 0.998909i \(-0.514868\pi\)
−0.0466927 + 0.998909i \(0.514868\pi\)
\(102\) 0 0
\(103\) 10.0710 0.992323 0.496161 0.868230i \(-0.334742\pi\)
0.496161 + 0.868230i \(0.334742\pi\)
\(104\) 11.1111 1.08953
\(105\) 0 0
\(106\) −28.0257 −2.72209
\(107\) 15.6571 1.51363 0.756817 0.653627i \(-0.226754\pi\)
0.756817 + 0.653627i \(0.226754\pi\)
\(108\) 0 0
\(109\) −7.55580 −0.723714 −0.361857 0.932234i \(-0.617857\pi\)
−0.361857 + 0.932234i \(0.617857\pi\)
\(110\) −1.95519 −0.186420
\(111\) 0 0
\(112\) 2.24101 0.211755
\(113\) −16.3998 −1.54276 −0.771379 0.636375i \(-0.780433\pi\)
−0.771379 + 0.636375i \(0.780433\pi\)
\(114\) 0 0
\(115\) −3.28167 −0.306017
\(116\) 18.7981 1.74536
\(117\) 0 0
\(118\) 6.02928 0.555040
\(119\) 3.86482 0.354288
\(120\) 0 0
\(121\) 1.00000 0.0909091
\(122\) −20.4398 −1.85054
\(123\) 0 0
\(124\) 15.9643 1.43363
\(125\) −7.49061 −0.669980
\(126\) 0 0
\(127\) −12.5780 −1.11611 −0.558057 0.829802i \(-0.688453\pi\)
−0.558057 + 0.829802i \(0.688453\pi\)
\(128\) −19.8397 −1.75359
\(129\) 0 0
\(130\) 4.51799 0.396254
\(131\) −4.21358 −0.368142 −0.184071 0.982913i \(-0.558928\pi\)
−0.184071 + 0.982913i \(0.558928\pi\)
\(132\) 0 0
\(133\) 0.588123 0.0509967
\(134\) −6.89940 −0.596018
\(135\) 0 0
\(136\) 31.5982 2.70952
\(137\) −6.74711 −0.576444 −0.288222 0.957564i \(-0.593064\pi\)
−0.288222 + 0.957564i \(0.593064\pi\)
\(138\) 0 0
\(139\) −18.3905 −1.55986 −0.779930 0.625867i \(-0.784745\pi\)
−0.779930 + 0.625867i \(0.784745\pi\)
\(140\) 1.86780 0.157858
\(141\) 0 0
\(142\) 9.90016 0.830803
\(143\) −2.31077 −0.193236
\(144\) 0 0
\(145\) 3.79125 0.314846
\(146\) −20.6285 −1.70722
\(147\) 0 0
\(148\) −23.4668 −1.92896
\(149\) 22.6306 1.85397 0.926984 0.375101i \(-0.122392\pi\)
0.926984 + 0.375101i \(0.122392\pi\)
\(150\) 0 0
\(151\) 11.3444 0.923197 0.461599 0.887089i \(-0.347276\pi\)
0.461599 + 0.887089i \(0.347276\pi\)
\(152\) 4.80840 0.390013
\(153\) 0 0
\(154\) −1.43678 −0.115779
\(155\) 3.21971 0.258613
\(156\) 0 0
\(157\) 3.14378 0.250901 0.125451 0.992100i \(-0.459962\pi\)
0.125451 + 0.992100i \(0.459962\pi\)
\(158\) 30.8599 2.45508
\(159\) 0 0
\(160\) −0.246430 −0.0194820
\(161\) −2.41156 −0.190058
\(162\) 0 0
\(163\) −17.9653 −1.40715 −0.703576 0.710620i \(-0.748415\pi\)
−0.703576 + 0.710620i \(0.748415\pi\)
\(164\) 44.3415 3.46249
\(165\) 0 0
\(166\) −0.0335461 −0.00260368
\(167\) −7.19830 −0.557021 −0.278511 0.960433i \(-0.589841\pi\)
−0.278511 + 0.960433i \(0.589841\pi\)
\(168\) 0 0
\(169\) −7.66034 −0.589257
\(170\) 12.8484 0.985428
\(171\) 0 0
\(172\) 30.9704 2.36147
\(173\) −4.80689 −0.365461 −0.182731 0.983163i \(-0.558494\pi\)
−0.182731 + 0.983163i \(0.558494\pi\)
\(174\) 0 0
\(175\) −2.56391 −0.193814
\(176\) −3.81044 −0.287222
\(177\) 0 0
\(178\) −26.3224 −1.97295
\(179\) 15.4138 1.15208 0.576040 0.817422i \(-0.304597\pi\)
0.576040 + 0.817422i \(0.304597\pi\)
\(180\) 0 0
\(181\) 1.03075 0.0766149 0.0383074 0.999266i \(-0.487803\pi\)
0.0383074 + 0.999266i \(0.487803\pi\)
\(182\) 3.32008 0.246100
\(183\) 0 0
\(184\) −19.7165 −1.45352
\(185\) −4.73283 −0.347965
\(186\) 0 0
\(187\) −6.57145 −0.480552
\(188\) −10.1823 −0.742619
\(189\) 0 0
\(190\) 1.95519 0.141844
\(191\) 21.9471 1.58803 0.794017 0.607895i \(-0.207986\pi\)
0.794017 + 0.607895i \(0.207986\pi\)
\(192\) 0 0
\(193\) −14.3468 −1.03271 −0.516354 0.856375i \(-0.672711\pi\)
−0.516354 + 0.856375i \(0.672711\pi\)
\(194\) −18.0272 −1.29428
\(195\) 0 0
\(196\) −26.4051 −1.88608
\(197\) 7.47661 0.532687 0.266343 0.963878i \(-0.414185\pi\)
0.266343 + 0.963878i \(0.414185\pi\)
\(198\) 0 0
\(199\) −12.9940 −0.921119 −0.460559 0.887629i \(-0.652351\pi\)
−0.460559 + 0.887629i \(0.652351\pi\)
\(200\) −20.9621 −1.48225
\(201\) 0 0
\(202\) −2.29278 −0.161320
\(203\) 2.78603 0.195541
\(204\) 0 0
\(205\) 8.94288 0.624598
\(206\) 24.6034 1.71420
\(207\) 0 0
\(208\) 8.80504 0.610520
\(209\) −1.00000 −0.0691714
\(210\) 0 0
\(211\) −27.9511 −1.92423 −0.962117 0.272636i \(-0.912105\pi\)
−0.962117 + 0.272636i \(0.912105\pi\)
\(212\) −45.5230 −3.12653
\(213\) 0 0
\(214\) 38.2504 2.61474
\(215\) 6.24618 0.425986
\(216\) 0 0
\(217\) 2.36603 0.160616
\(218\) −18.4588 −1.25019
\(219\) 0 0
\(220\) −3.17587 −0.214117
\(221\) 15.1851 1.02146
\(222\) 0 0
\(223\) 11.3216 0.758150 0.379075 0.925366i \(-0.376242\pi\)
0.379075 + 0.925366i \(0.376242\pi\)
\(224\) −0.181091 −0.0120997
\(225\) 0 0
\(226\) −40.0646 −2.66505
\(227\) −1.50898 −0.100154 −0.0500772 0.998745i \(-0.515947\pi\)
−0.0500772 + 0.998745i \(0.515947\pi\)
\(228\) 0 0
\(229\) −21.2793 −1.40618 −0.703089 0.711102i \(-0.748196\pi\)
−0.703089 + 0.711102i \(0.748196\pi\)
\(230\) −8.01711 −0.528633
\(231\) 0 0
\(232\) 22.7781 1.49546
\(233\) 25.8325 1.69234 0.846172 0.532910i \(-0.178902\pi\)
0.846172 + 0.532910i \(0.178902\pi\)
\(234\) 0 0
\(235\) −2.05358 −0.133961
\(236\) 9.79355 0.637506
\(237\) 0 0
\(238\) 9.44175 0.612018
\(239\) 22.5612 1.45936 0.729682 0.683787i \(-0.239668\pi\)
0.729682 + 0.683787i \(0.239668\pi\)
\(240\) 0 0
\(241\) 1.23059 0.0792691 0.0396346 0.999214i \(-0.487381\pi\)
0.0396346 + 0.999214i \(0.487381\pi\)
\(242\) 2.44300 0.157042
\(243\) 0 0
\(244\) −33.2011 −2.12548
\(245\) −5.32544 −0.340230
\(246\) 0 0
\(247\) 2.31077 0.147031
\(248\) 19.3443 1.22836
\(249\) 0 0
\(250\) −18.2995 −1.15736
\(251\) 3.67960 0.232254 0.116127 0.993234i \(-0.462952\pi\)
0.116127 + 0.993234i \(0.462952\pi\)
\(252\) 0 0
\(253\) 4.10043 0.257792
\(254\) −30.7280 −1.92804
\(255\) 0 0
\(256\) −31.7220 −1.98263
\(257\) 9.00012 0.561412 0.280706 0.959794i \(-0.409431\pi\)
0.280706 + 0.959794i \(0.409431\pi\)
\(258\) 0 0
\(259\) −3.47796 −0.216110
\(260\) 7.33871 0.455127
\(261\) 0 0
\(262\) −10.2938 −0.635950
\(263\) −0.317206 −0.0195598 −0.00977989 0.999952i \(-0.503113\pi\)
−0.00977989 + 0.999952i \(0.503113\pi\)
\(264\) 0 0
\(265\) −9.18117 −0.563994
\(266\) 1.43678 0.0880949
\(267\) 0 0
\(268\) −11.2069 −0.684572
\(269\) −17.9973 −1.09731 −0.548656 0.836048i \(-0.684860\pi\)
−0.548656 + 0.836048i \(0.684860\pi\)
\(270\) 0 0
\(271\) −0.262808 −0.0159644 −0.00798222 0.999968i \(-0.502541\pi\)
−0.00798222 + 0.999968i \(0.502541\pi\)
\(272\) 25.0401 1.51828
\(273\) 0 0
\(274\) −16.4832 −0.995785
\(275\) 4.35948 0.262887
\(276\) 0 0
\(277\) −6.20953 −0.373094 −0.186547 0.982446i \(-0.559730\pi\)
−0.186547 + 0.982446i \(0.559730\pi\)
\(278\) −44.9279 −2.69460
\(279\) 0 0
\(280\) 2.26326 0.135256
\(281\) −7.29039 −0.434908 −0.217454 0.976071i \(-0.569775\pi\)
−0.217454 + 0.976071i \(0.569775\pi\)
\(282\) 0 0
\(283\) −15.9557 −0.948468 −0.474234 0.880399i \(-0.657275\pi\)
−0.474234 + 0.880399i \(0.657275\pi\)
\(284\) 16.0811 0.954241
\(285\) 0 0
\(286\) −5.64521 −0.333808
\(287\) 6.57175 0.387918
\(288\) 0 0
\(289\) 26.1839 1.54023
\(290\) 9.26201 0.543884
\(291\) 0 0
\(292\) −33.5075 −1.96088
\(293\) 2.82613 0.165105 0.0825523 0.996587i \(-0.473693\pi\)
0.0825523 + 0.996587i \(0.473693\pi\)
\(294\) 0 0
\(295\) 1.97518 0.115000
\(296\) −28.4352 −1.65276
\(297\) 0 0
\(298\) 55.2864 3.20266
\(299\) −9.47516 −0.547963
\(300\) 0 0
\(301\) 4.59005 0.264566
\(302\) 27.7144 1.59479
\(303\) 0 0
\(304\) 3.81044 0.218544
\(305\) −6.69606 −0.383415
\(306\) 0 0
\(307\) 16.7858 0.958016 0.479008 0.877811i \(-0.340997\pi\)
0.479008 + 0.877811i \(0.340997\pi\)
\(308\) −2.33381 −0.132981
\(309\) 0 0
\(310\) 7.86574 0.446744
\(311\) 14.6719 0.831970 0.415985 0.909372i \(-0.363437\pi\)
0.415985 + 0.909372i \(0.363437\pi\)
\(312\) 0 0
\(313\) 27.4425 1.55114 0.775572 0.631259i \(-0.217462\pi\)
0.775572 + 0.631259i \(0.217462\pi\)
\(314\) 7.68026 0.433422
\(315\) 0 0
\(316\) 50.1266 2.81984
\(317\) 3.15940 0.177450 0.0887249 0.996056i \(-0.471721\pi\)
0.0887249 + 0.996056i \(0.471721\pi\)
\(318\) 0 0
\(319\) −4.73715 −0.265229
\(320\) −6.70119 −0.374608
\(321\) 0 0
\(322\) −5.89144 −0.328317
\(323\) 6.57145 0.365645
\(324\) 0 0
\(325\) −10.0738 −0.558792
\(326\) −43.8892 −2.43080
\(327\) 0 0
\(328\) 53.7295 2.96672
\(329\) −1.50909 −0.0831989
\(330\) 0 0
\(331\) 9.26332 0.509158 0.254579 0.967052i \(-0.418063\pi\)
0.254579 + 0.967052i \(0.418063\pi\)
\(332\) −0.0544899 −0.00299052
\(333\) 0 0
\(334\) −17.5854 −0.962232
\(335\) −2.26024 −0.123490
\(336\) 0 0
\(337\) −13.9986 −0.762555 −0.381277 0.924461i \(-0.624516\pi\)
−0.381277 + 0.924461i \(0.624516\pi\)
\(338\) −18.7142 −1.01792
\(339\) 0 0
\(340\) 20.8701 1.13184
\(341\) −4.02301 −0.217858
\(342\) 0 0
\(343\) −8.03030 −0.433595
\(344\) 37.5275 2.02335
\(345\) 0 0
\(346\) −11.7432 −0.631320
\(347\) 30.9325 1.66054 0.830272 0.557358i \(-0.188185\pi\)
0.830272 + 0.557358i \(0.188185\pi\)
\(348\) 0 0
\(349\) −17.3337 −0.927852 −0.463926 0.885874i \(-0.653560\pi\)
−0.463926 + 0.885874i \(0.653560\pi\)
\(350\) −6.26363 −0.334805
\(351\) 0 0
\(352\) 0.307914 0.0164119
\(353\) −7.09753 −0.377763 −0.188882 0.982000i \(-0.560486\pi\)
−0.188882 + 0.982000i \(0.560486\pi\)
\(354\) 0 0
\(355\) 3.24328 0.172135
\(356\) −42.7563 −2.26608
\(357\) 0 0
\(358\) 37.6558 1.99017
\(359\) −25.6409 −1.35328 −0.676638 0.736316i \(-0.736564\pi\)
−0.676638 + 0.736316i \(0.736564\pi\)
\(360\) 0 0
\(361\) 1.00000 0.0526316
\(362\) 2.51811 0.132349
\(363\) 0 0
\(364\) 5.39290 0.282665
\(365\) −6.75785 −0.353722
\(366\) 0 0
\(367\) 8.81606 0.460195 0.230097 0.973168i \(-0.426096\pi\)
0.230097 + 0.973168i \(0.426096\pi\)
\(368\) −15.6244 −0.814481
\(369\) 0 0
\(370\) −11.5623 −0.601095
\(371\) −6.74685 −0.350279
\(372\) 0 0
\(373\) 14.5020 0.750887 0.375443 0.926845i \(-0.377490\pi\)
0.375443 + 0.926845i \(0.377490\pi\)
\(374\) −16.0540 −0.830134
\(375\) 0 0
\(376\) −12.3381 −0.636289
\(377\) 10.9465 0.563771
\(378\) 0 0
\(379\) 10.5223 0.540495 0.270248 0.962791i \(-0.412894\pi\)
0.270248 + 0.962791i \(0.412894\pi\)
\(380\) 3.17587 0.162919
\(381\) 0 0
\(382\) 53.6166 2.74327
\(383\) −27.5133 −1.40586 −0.702932 0.711257i \(-0.748126\pi\)
−0.702932 + 0.711257i \(0.748126\pi\)
\(384\) 0 0
\(385\) −0.470688 −0.0239885
\(386\) −35.0493 −1.78396
\(387\) 0 0
\(388\) −29.2822 −1.48658
\(389\) −6.36132 −0.322532 −0.161266 0.986911i \(-0.551558\pi\)
−0.161266 + 0.986911i \(0.551558\pi\)
\(390\) 0 0
\(391\) −26.9458 −1.36271
\(392\) −31.9956 −1.61602
\(393\) 0 0
\(394\) 18.2653 0.920195
\(395\) 10.1096 0.508671
\(396\) 0 0
\(397\) 18.5939 0.933203 0.466601 0.884468i \(-0.345478\pi\)
0.466601 + 0.884468i \(0.345478\pi\)
\(398\) −31.7443 −1.59120
\(399\) 0 0
\(400\) −16.6115 −0.830577
\(401\) 17.7160 0.884695 0.442348 0.896844i \(-0.354146\pi\)
0.442348 + 0.896844i \(0.354146\pi\)
\(402\) 0 0
\(403\) 9.29626 0.463079
\(404\) −3.72424 −0.185288
\(405\) 0 0
\(406\) 6.80626 0.337789
\(407\) 5.91366 0.293129
\(408\) 0 0
\(409\) −22.6211 −1.11854 −0.559271 0.828985i \(-0.688919\pi\)
−0.559271 + 0.828985i \(0.688919\pi\)
\(410\) 21.8474 1.07897
\(411\) 0 0
\(412\) 39.9640 1.96889
\(413\) 1.45148 0.0714226
\(414\) 0 0
\(415\) −0.0109896 −0.000539460 0
\(416\) −0.711518 −0.0348850
\(417\) 0 0
\(418\) −2.44300 −0.119491
\(419\) −19.1301 −0.934569 −0.467284 0.884107i \(-0.654768\pi\)
−0.467284 + 0.884107i \(0.654768\pi\)
\(420\) 0 0
\(421\) 16.6696 0.812428 0.406214 0.913778i \(-0.366849\pi\)
0.406214 + 0.913778i \(0.366849\pi\)
\(422\) −68.2845 −3.32404
\(423\) 0 0
\(424\) −55.1612 −2.67886
\(425\) −28.6481 −1.38964
\(426\) 0 0
\(427\) −4.92065 −0.238127
\(428\) 62.1313 3.00323
\(429\) 0 0
\(430\) 15.2594 0.735873
\(431\) −19.6828 −0.948087 −0.474044 0.880501i \(-0.657206\pi\)
−0.474044 + 0.880501i \(0.657206\pi\)
\(432\) 0 0
\(433\) −19.6530 −0.944462 −0.472231 0.881475i \(-0.656551\pi\)
−0.472231 + 0.881475i \(0.656551\pi\)
\(434\) 5.78020 0.277458
\(435\) 0 0
\(436\) −29.9832 −1.43593
\(437\) −4.10043 −0.196150
\(438\) 0 0
\(439\) −6.05821 −0.289143 −0.144571 0.989494i \(-0.546180\pi\)
−0.144571 + 0.989494i \(0.546180\pi\)
\(440\) −3.84827 −0.183459
\(441\) 0 0
\(442\) 37.0972 1.76453
\(443\) −7.01333 −0.333214 −0.166607 0.986023i \(-0.553281\pi\)
−0.166607 + 0.986023i \(0.553281\pi\)
\(444\) 0 0
\(445\) −8.62318 −0.408778
\(446\) 27.6586 1.30967
\(447\) 0 0
\(448\) −4.92442 −0.232657
\(449\) 16.7703 0.791439 0.395719 0.918372i \(-0.370495\pi\)
0.395719 + 0.918372i \(0.370495\pi\)
\(450\) 0 0
\(451\) −11.1741 −0.526168
\(452\) −65.0781 −3.06102
\(453\) 0 0
\(454\) −3.68643 −0.173013
\(455\) 1.08765 0.0509899
\(456\) 0 0
\(457\) 31.9584 1.49495 0.747476 0.664289i \(-0.231265\pi\)
0.747476 + 0.664289i \(0.231265\pi\)
\(458\) −51.9854 −2.42912
\(459\) 0 0
\(460\) −13.0225 −0.607175
\(461\) 13.3466 0.621612 0.310806 0.950473i \(-0.399401\pi\)
0.310806 + 0.950473i \(0.399401\pi\)
\(462\) 0 0
\(463\) −27.6018 −1.28277 −0.641383 0.767221i \(-0.721639\pi\)
−0.641383 + 0.767221i \(0.721639\pi\)
\(464\) 18.0506 0.837978
\(465\) 0 0
\(466\) 63.1087 2.92346
\(467\) 23.2142 1.07422 0.537112 0.843511i \(-0.319515\pi\)
0.537112 + 0.843511i \(0.319515\pi\)
\(468\) 0 0
\(469\) −1.66095 −0.0766956
\(470\) −5.01690 −0.231412
\(471\) 0 0
\(472\) 11.8671 0.546226
\(473\) −7.80457 −0.358855
\(474\) 0 0
\(475\) −4.35948 −0.200027
\(476\) 15.3365 0.702949
\(477\) 0 0
\(478\) 55.1170 2.52099
\(479\) −4.07012 −0.185969 −0.0929843 0.995668i \(-0.529641\pi\)
−0.0929843 + 0.995668i \(0.529641\pi\)
\(480\) 0 0
\(481\) −13.6651 −0.623075
\(482\) 3.00632 0.136934
\(483\) 0 0
\(484\) 3.96824 0.180374
\(485\) −5.90570 −0.268164
\(486\) 0 0
\(487\) −7.50704 −0.340177 −0.170088 0.985429i \(-0.554405\pi\)
−0.170088 + 0.985429i \(0.554405\pi\)
\(488\) −40.2305 −1.82115
\(489\) 0 0
\(490\) −13.0100 −0.587733
\(491\) −16.2778 −0.734606 −0.367303 0.930101i \(-0.619719\pi\)
−0.367303 + 0.930101i \(0.619719\pi\)
\(492\) 0 0
\(493\) 31.1299 1.40202
\(494\) 5.64521 0.253990
\(495\) 0 0
\(496\) 15.3294 0.688312
\(497\) 2.38335 0.106908
\(498\) 0 0
\(499\) 41.0613 1.83816 0.919079 0.394073i \(-0.128934\pi\)
0.919079 + 0.394073i \(0.128934\pi\)
\(500\) −29.7245 −1.32932
\(501\) 0 0
\(502\) 8.98926 0.401210
\(503\) 29.1287 1.29878 0.649392 0.760454i \(-0.275024\pi\)
0.649392 + 0.760454i \(0.275024\pi\)
\(504\) 0 0
\(505\) −0.751112 −0.0334241
\(506\) 10.0174 0.445326
\(507\) 0 0
\(508\) −49.9124 −2.21450
\(509\) −14.3959 −0.638087 −0.319044 0.947740i \(-0.603362\pi\)
−0.319044 + 0.947740i \(0.603362\pi\)
\(510\) 0 0
\(511\) −4.96606 −0.219686
\(512\) −37.8175 −1.67131
\(513\) 0 0
\(514\) 21.9873 0.969817
\(515\) 8.06003 0.355167
\(516\) 0 0
\(517\) 2.56595 0.112850
\(518\) −8.49664 −0.373321
\(519\) 0 0
\(520\) 8.89247 0.389961
\(521\) 20.3390 0.891067 0.445534 0.895265i \(-0.353014\pi\)
0.445534 + 0.895265i \(0.353014\pi\)
\(522\) 0 0
\(523\) 45.0421 1.96955 0.984776 0.173829i \(-0.0556140\pi\)
0.984776 + 0.173829i \(0.0556140\pi\)
\(524\) −16.7205 −0.730437
\(525\) 0 0
\(526\) −0.774934 −0.0337887
\(527\) 26.4370 1.15161
\(528\) 0 0
\(529\) −6.18643 −0.268975
\(530\) −22.4296 −0.974278
\(531\) 0 0
\(532\) 2.33381 0.101184
\(533\) 25.8208 1.11842
\(534\) 0 0
\(535\) 12.5308 0.541752
\(536\) −13.5797 −0.586552
\(537\) 0 0
\(538\) −43.9673 −1.89556
\(539\) 6.65411 0.286613
\(540\) 0 0
\(541\) 10.4800 0.450569 0.225284 0.974293i \(-0.427669\pi\)
0.225284 + 0.974293i \(0.427669\pi\)
\(542\) −0.642039 −0.0275779
\(543\) 0 0
\(544\) −2.02344 −0.0867542
\(545\) −6.04708 −0.259028
\(546\) 0 0
\(547\) −9.59366 −0.410195 −0.205098 0.978742i \(-0.565751\pi\)
−0.205098 + 0.978742i \(0.565751\pi\)
\(548\) −26.7741 −1.14373
\(549\) 0 0
\(550\) 10.6502 0.454126
\(551\) 4.73715 0.201809
\(552\) 0 0
\(553\) 7.42915 0.315920
\(554\) −15.1699 −0.644506
\(555\) 0 0
\(556\) −72.9778 −3.09495
\(557\) 10.5593 0.447413 0.223706 0.974657i \(-0.428184\pi\)
0.223706 + 0.974657i \(0.428184\pi\)
\(558\) 0 0
\(559\) 18.0346 0.762781
\(560\) 1.79353 0.0757904
\(561\) 0 0
\(562\) −17.8104 −0.751287
\(563\) −36.1211 −1.52232 −0.761162 0.648562i \(-0.775371\pi\)
−0.761162 + 0.648562i \(0.775371\pi\)
\(564\) 0 0
\(565\) −13.1251 −0.552177
\(566\) −38.9797 −1.63844
\(567\) 0 0
\(568\) 19.4859 0.817609
\(569\) 2.74039 0.114883 0.0574416 0.998349i \(-0.481706\pi\)
0.0574416 + 0.998349i \(0.481706\pi\)
\(570\) 0 0
\(571\) 4.82157 0.201776 0.100888 0.994898i \(-0.467832\pi\)
0.100888 + 0.994898i \(0.467832\pi\)
\(572\) −9.16969 −0.383404
\(573\) 0 0
\(574\) 16.0548 0.670113
\(575\) 17.8758 0.745472
\(576\) 0 0
\(577\) −27.2712 −1.13531 −0.567657 0.823265i \(-0.692150\pi\)
−0.567657 + 0.823265i \(0.692150\pi\)
\(578\) 63.9673 2.66069
\(579\) 0 0
\(580\) 15.0446 0.624692
\(581\) −0.00807582 −0.000335041 0
\(582\) 0 0
\(583\) 11.4718 0.475115
\(584\) −40.6017 −1.68011
\(585\) 0 0
\(586\) 6.90424 0.285212
\(587\) 21.7232 0.896613 0.448307 0.893880i \(-0.352027\pi\)
0.448307 + 0.893880i \(0.352027\pi\)
\(588\) 0 0
\(589\) 4.02301 0.165765
\(590\) 4.82537 0.198657
\(591\) 0 0
\(592\) −22.5336 −0.926126
\(593\) −19.5478 −0.802730 −0.401365 0.915918i \(-0.631464\pi\)
−0.401365 + 0.915918i \(0.631464\pi\)
\(594\) 0 0
\(595\) 3.09310 0.126805
\(596\) 89.8034 3.67849
\(597\) 0 0
\(598\) −23.1478 −0.946584
\(599\) 5.21220 0.212965 0.106482 0.994315i \(-0.466041\pi\)
0.106482 + 0.994315i \(0.466041\pi\)
\(600\) 0 0
\(601\) 41.4095 1.68913 0.844564 0.535454i \(-0.179860\pi\)
0.844564 + 0.535454i \(0.179860\pi\)
\(602\) 11.2135 0.457027
\(603\) 0 0
\(604\) 45.0174 1.83173
\(605\) 0.800323 0.0325377
\(606\) 0 0
\(607\) 26.5388 1.07718 0.538589 0.842568i \(-0.318957\pi\)
0.538589 + 0.842568i \(0.318957\pi\)
\(608\) −0.307914 −0.0124875
\(609\) 0 0
\(610\) −16.3585 −0.662335
\(611\) −5.92931 −0.239874
\(612\) 0 0
\(613\) −17.4161 −0.703428 −0.351714 0.936107i \(-0.614401\pi\)
−0.351714 + 0.936107i \(0.614401\pi\)
\(614\) 41.0076 1.65493
\(615\) 0 0
\(616\) −2.82793 −0.113941
\(617\) 20.2862 0.816694 0.408347 0.912827i \(-0.366105\pi\)
0.408347 + 0.912827i \(0.366105\pi\)
\(618\) 0 0
\(619\) 14.6703 0.589648 0.294824 0.955551i \(-0.404739\pi\)
0.294824 + 0.955551i \(0.404739\pi\)
\(620\) 12.7766 0.513119
\(621\) 0 0
\(622\) 35.8435 1.43719
\(623\) −6.33681 −0.253879
\(624\) 0 0
\(625\) 15.8025 0.632101
\(626\) 67.0420 2.67954
\(627\) 0 0
\(628\) 12.4753 0.497818
\(629\) −38.8613 −1.54950
\(630\) 0 0
\(631\) −6.86206 −0.273174 −0.136587 0.990628i \(-0.543613\pi\)
−0.136587 + 0.990628i \(0.543613\pi\)
\(632\) 60.7395 2.41609
\(633\) 0 0
\(634\) 7.71842 0.306538
\(635\) −10.0664 −0.399474
\(636\) 0 0
\(637\) −15.3761 −0.609224
\(638\) −11.5728 −0.458173
\(639\) 0 0
\(640\) −15.8781 −0.627638
\(641\) 14.2086 0.561206 0.280603 0.959824i \(-0.409466\pi\)
0.280603 + 0.959824i \(0.409466\pi\)
\(642\) 0 0
\(643\) 28.5456 1.12573 0.562864 0.826549i \(-0.309699\pi\)
0.562864 + 0.826549i \(0.309699\pi\)
\(644\) −9.56965 −0.377097
\(645\) 0 0
\(646\) 16.0540 0.631638
\(647\) 16.0786 0.632116 0.316058 0.948740i \(-0.397641\pi\)
0.316058 + 0.948740i \(0.397641\pi\)
\(648\) 0 0
\(649\) −2.46799 −0.0968769
\(650\) −24.6102 −0.965291
\(651\) 0 0
\(652\) −71.2907 −2.79196
\(653\) −31.3855 −1.22821 −0.614106 0.789224i \(-0.710483\pi\)
−0.614106 + 0.789224i \(0.710483\pi\)
\(654\) 0 0
\(655\) −3.37222 −0.131764
\(656\) 42.5782 1.66240
\(657\) 0 0
\(658\) −3.68671 −0.143723
\(659\) 1.37686 0.0536349 0.0268174 0.999640i \(-0.491463\pi\)
0.0268174 + 0.999640i \(0.491463\pi\)
\(660\) 0 0
\(661\) −20.2558 −0.787860 −0.393930 0.919141i \(-0.628885\pi\)
−0.393930 + 0.919141i \(0.628885\pi\)
\(662\) 22.6303 0.879551
\(663\) 0 0
\(664\) −0.0660266 −0.00256233
\(665\) 0.470688 0.0182525
\(666\) 0 0
\(667\) −19.4244 −0.752115
\(668\) −28.5646 −1.10520
\(669\) 0 0
\(670\) −5.52175 −0.213324
\(671\) 8.36670 0.322993
\(672\) 0 0
\(673\) −10.4733 −0.403715 −0.201858 0.979415i \(-0.564698\pi\)
−0.201858 + 0.979415i \(0.564698\pi\)
\(674\) −34.1987 −1.31728
\(675\) 0 0
\(676\) −30.3981 −1.16916
\(677\) 10.1457 0.389933 0.194966 0.980810i \(-0.437540\pi\)
0.194966 + 0.980810i \(0.437540\pi\)
\(678\) 0 0
\(679\) −4.33985 −0.166548
\(680\) 25.2887 0.969778
\(681\) 0 0
\(682\) −9.82821 −0.376342
\(683\) 12.9495 0.495499 0.247750 0.968824i \(-0.420309\pi\)
0.247750 + 0.968824i \(0.420309\pi\)
\(684\) 0 0
\(685\) −5.39986 −0.206318
\(686\) −19.6180 −0.749019
\(687\) 0 0
\(688\) 29.7388 1.13378
\(689\) −26.5088 −1.00990
\(690\) 0 0
\(691\) 32.7663 1.24649 0.623245 0.782027i \(-0.285814\pi\)
0.623245 + 0.782027i \(0.285814\pi\)
\(692\) −19.0749 −0.725119
\(693\) 0 0
\(694\) 75.5681 2.86852
\(695\) −14.7183 −0.558298
\(696\) 0 0
\(697\) 73.4300 2.78136
\(698\) −42.3462 −1.60283
\(699\) 0 0
\(700\) −10.1742 −0.384549
\(701\) −0.0542369 −0.00204850 −0.00102425 0.999999i \(-0.500326\pi\)
−0.00102425 + 0.999999i \(0.500326\pi\)
\(702\) 0 0
\(703\) −5.91366 −0.223038
\(704\) 8.37311 0.315573
\(705\) 0 0
\(706\) −17.3392 −0.652571
\(707\) −0.551960 −0.0207586
\(708\) 0 0
\(709\) 9.61093 0.360946 0.180473 0.983580i \(-0.442237\pi\)
0.180473 + 0.983580i \(0.442237\pi\)
\(710\) 7.92333 0.297357
\(711\) 0 0
\(712\) −51.8087 −1.94161
\(713\) −16.4961 −0.617784
\(714\) 0 0
\(715\) −1.84936 −0.0691622
\(716\) 61.1655 2.28586
\(717\) 0 0
\(718\) −62.6407 −2.33773
\(719\) 22.3065 0.831892 0.415946 0.909389i \(-0.363450\pi\)
0.415946 + 0.909389i \(0.363450\pi\)
\(720\) 0 0
\(721\) 5.92298 0.220583
\(722\) 2.44300 0.0909190
\(723\) 0 0
\(724\) 4.09025 0.152013
\(725\) −20.6515 −0.766978
\(726\) 0 0
\(727\) 36.6445 1.35907 0.679534 0.733644i \(-0.262182\pi\)
0.679534 + 0.733644i \(0.262182\pi\)
\(728\) 6.53470 0.242192
\(729\) 0 0
\(730\) −16.5094 −0.611041
\(731\) 51.2874 1.89693
\(732\) 0 0
\(733\) 31.2843 1.15551 0.577755 0.816210i \(-0.303929\pi\)
0.577755 + 0.816210i \(0.303929\pi\)
\(734\) 21.5376 0.794968
\(735\) 0 0
\(736\) 1.26258 0.0465393
\(737\) 2.82416 0.104029
\(738\) 0 0
\(739\) 41.0054 1.50841 0.754205 0.656639i \(-0.228023\pi\)
0.754205 + 0.656639i \(0.228023\pi\)
\(740\) −18.7810 −0.690403
\(741\) 0 0
\(742\) −16.4825 −0.605093
\(743\) 39.7923 1.45984 0.729918 0.683535i \(-0.239558\pi\)
0.729918 + 0.683535i \(0.239558\pi\)
\(744\) 0 0
\(745\) 18.1117 0.663563
\(746\) 35.4284 1.29713
\(747\) 0 0
\(748\) −26.0771 −0.953472
\(749\) 9.20833 0.336465
\(750\) 0 0
\(751\) 3.25214 0.118672 0.0593361 0.998238i \(-0.481102\pi\)
0.0593361 + 0.998238i \(0.481102\pi\)
\(752\) −9.77737 −0.356544
\(753\) 0 0
\(754\) 26.7422 0.973893
\(755\) 9.07921 0.330426
\(756\) 0 0
\(757\) 26.5536 0.965108 0.482554 0.875866i \(-0.339709\pi\)
0.482554 + 0.875866i \(0.339709\pi\)
\(758\) 25.7060 0.933684
\(759\) 0 0
\(760\) 3.84827 0.139591
\(761\) 3.21425 0.116516 0.0582582 0.998302i \(-0.481445\pi\)
0.0582582 + 0.998302i \(0.481445\pi\)
\(762\) 0 0
\(763\) −4.44374 −0.160874
\(764\) 87.0912 3.15085
\(765\) 0 0
\(766\) −67.2149 −2.42857
\(767\) 5.70295 0.205921
\(768\) 0 0
\(769\) 31.9235 1.15119 0.575596 0.817734i \(-0.304770\pi\)
0.575596 + 0.817734i \(0.304770\pi\)
\(770\) −1.14989 −0.0414392
\(771\) 0 0
\(772\) −56.9317 −2.04902
\(773\) 2.02574 0.0728609 0.0364305 0.999336i \(-0.488401\pi\)
0.0364305 + 0.999336i \(0.488401\pi\)
\(774\) 0 0
\(775\) −17.5383 −0.629993
\(776\) −35.4819 −1.27373
\(777\) 0 0
\(778\) −15.5407 −0.557161
\(779\) 11.1741 0.400354
\(780\) 0 0
\(781\) −4.05247 −0.145009
\(782\) −65.8285 −2.35402
\(783\) 0 0
\(784\) −25.3551 −0.905538
\(785\) 2.51604 0.0898013
\(786\) 0 0
\(787\) −48.7384 −1.73734 −0.868668 0.495395i \(-0.835023\pi\)
−0.868668 + 0.495395i \(0.835023\pi\)
\(788\) 29.6690 1.05691
\(789\) 0 0
\(790\) 24.6978 0.878710
\(791\) −9.64507 −0.342939
\(792\) 0 0
\(793\) −19.3335 −0.686554
\(794\) 45.4249 1.61207
\(795\) 0 0
\(796\) −51.5632 −1.82761
\(797\) −8.62944 −0.305670 −0.152835 0.988252i \(-0.548840\pi\)
−0.152835 + 0.988252i \(0.548840\pi\)
\(798\) 0 0
\(799\) −16.8620 −0.596534
\(800\) 1.34234 0.0474590
\(801\) 0 0
\(802\) 43.2802 1.52828
\(803\) 8.44391 0.297979
\(804\) 0 0
\(805\) −1.93003 −0.0680245
\(806\) 22.7107 0.799951
\(807\) 0 0
\(808\) −4.51274 −0.158758
\(809\) 46.5536 1.63674 0.818369 0.574693i \(-0.194879\pi\)
0.818369 + 0.574693i \(0.194879\pi\)
\(810\) 0 0
\(811\) −16.4402 −0.577292 −0.288646 0.957436i \(-0.593205\pi\)
−0.288646 + 0.957436i \(0.593205\pi\)
\(812\) 11.0556 0.387976
\(813\) 0 0
\(814\) 14.4470 0.506369
\(815\) −14.3781 −0.503641
\(816\) 0 0
\(817\) 7.80457 0.273047
\(818\) −55.2633 −1.93224
\(819\) 0 0
\(820\) 35.4875 1.23928
\(821\) 7.61708 0.265838 0.132919 0.991127i \(-0.457565\pi\)
0.132919 + 0.991127i \(0.457565\pi\)
\(822\) 0 0
\(823\) 6.33183 0.220714 0.110357 0.993892i \(-0.464801\pi\)
0.110357 + 0.993892i \(0.464801\pi\)
\(824\) 48.4253 1.68698
\(825\) 0 0
\(826\) 3.54596 0.123380
\(827\) −1.70709 −0.0593615 −0.0296807 0.999559i \(-0.509449\pi\)
−0.0296807 + 0.999559i \(0.509449\pi\)
\(828\) 0 0
\(829\) −53.8836 −1.87145 −0.935727 0.352724i \(-0.885255\pi\)
−0.935727 + 0.352724i \(0.885255\pi\)
\(830\) −0.0268477 −0.000931896 0
\(831\) 0 0
\(832\) −19.3483 −0.670782
\(833\) −43.7271 −1.51506
\(834\) 0 0
\(835\) −5.76096 −0.199366
\(836\) −3.96824 −0.137244
\(837\) 0 0
\(838\) −46.7349 −1.61443
\(839\) 40.6382 1.40299 0.701494 0.712676i \(-0.252517\pi\)
0.701494 + 0.712676i \(0.252517\pi\)
\(840\) 0 0
\(841\) −6.55942 −0.226187
\(842\) 40.7238 1.40344
\(843\) 0 0
\(844\) −110.917 −3.81791
\(845\) −6.13074 −0.210904
\(846\) 0 0
\(847\) 0.588123 0.0202082
\(848\) −43.7127 −1.50110
\(849\) 0 0
\(850\) −69.9873 −2.40054
\(851\) 24.2486 0.831230
\(852\) 0 0
\(853\) 44.3438 1.51830 0.759151 0.650915i \(-0.225614\pi\)
0.759151 + 0.650915i \(0.225614\pi\)
\(854\) −12.0211 −0.411355
\(855\) 0 0
\(856\) 75.2858 2.57322
\(857\) 32.4832 1.10961 0.554803 0.831982i \(-0.312794\pi\)
0.554803 + 0.831982i \(0.312794\pi\)
\(858\) 0 0
\(859\) −4.04454 −0.137998 −0.0689990 0.997617i \(-0.521981\pi\)
−0.0689990 + 0.997617i \(0.521981\pi\)
\(860\) 24.7863 0.845206
\(861\) 0 0
\(862\) −48.0850 −1.63778
\(863\) −29.4268 −1.00170 −0.500850 0.865534i \(-0.666979\pi\)
−0.500850 + 0.865534i \(0.666979\pi\)
\(864\) 0 0
\(865\) −3.84707 −0.130804
\(866\) −48.0122 −1.63152
\(867\) 0 0
\(868\) 9.38896 0.318682
\(869\) −12.6320 −0.428510
\(870\) 0 0
\(871\) −6.52597 −0.221124
\(872\) −36.3313 −1.23033
\(873\) 0 0
\(874\) −10.0174 −0.338842
\(875\) −4.40540 −0.148930
\(876\) 0 0
\(877\) 31.1047 1.05033 0.525166 0.851000i \(-0.324003\pi\)
0.525166 + 0.851000i \(0.324003\pi\)
\(878\) −14.8002 −0.499483
\(879\) 0 0
\(880\) −3.04958 −0.102801
\(881\) −25.1336 −0.846774 −0.423387 0.905949i \(-0.639159\pi\)
−0.423387 + 0.905949i \(0.639159\pi\)
\(882\) 0 0
\(883\) −38.8941 −1.30889 −0.654446 0.756109i \(-0.727098\pi\)
−0.654446 + 0.756109i \(0.727098\pi\)
\(884\) 60.2581 2.02670
\(885\) 0 0
\(886\) −17.1336 −0.575613
\(887\) −38.1500 −1.28095 −0.640476 0.767978i \(-0.721263\pi\)
−0.640476 + 0.767978i \(0.721263\pi\)
\(888\) 0 0
\(889\) −7.39740 −0.248101
\(890\) −21.0664 −0.706147
\(891\) 0 0
\(892\) 44.9268 1.50426
\(893\) −2.56595 −0.0858661
\(894\) 0 0
\(895\) 12.3360 0.412347
\(896\) −11.6682 −0.389806
\(897\) 0 0
\(898\) 40.9698 1.36718
\(899\) 19.0576 0.635607
\(900\) 0 0
\(901\) −75.3865 −2.51149
\(902\) −27.2983 −0.908934
\(903\) 0 0
\(904\) −78.8566 −2.62273
\(905\) 0.824931 0.0274216
\(906\) 0 0
\(907\) −2.68659 −0.0892067 −0.0446034 0.999005i \(-0.514202\pi\)
−0.0446034 + 0.999005i \(0.514202\pi\)
\(908\) −5.98798 −0.198718
\(909\) 0 0
\(910\) 2.65713 0.0880831
\(911\) 38.5099 1.27589 0.637945 0.770082i \(-0.279785\pi\)
0.637945 + 0.770082i \(0.279785\pi\)
\(912\) 0 0
\(913\) 0.0137315 0.000454447 0
\(914\) 78.0744 2.58247
\(915\) 0 0
\(916\) −84.4414 −2.79002
\(917\) −2.47810 −0.0818341
\(918\) 0 0
\(919\) 3.56656 0.117650 0.0588250 0.998268i \(-0.481265\pi\)
0.0588250 + 0.998268i \(0.481265\pi\)
\(920\) −15.7796 −0.520238
\(921\) 0 0
\(922\) 32.6056 1.07381
\(923\) 9.36432 0.308230
\(924\) 0 0
\(925\) 25.7805 0.847657
\(926\) −67.4312 −2.21593
\(927\) 0 0
\(928\) −1.45863 −0.0478820
\(929\) 27.3654 0.897829 0.448914 0.893575i \(-0.351811\pi\)
0.448914 + 0.893575i \(0.351811\pi\)
\(930\) 0 0
\(931\) −6.65411 −0.218080
\(932\) 102.510 3.35781
\(933\) 0 0
\(934\) 56.7122 1.85568
\(935\) −5.25928 −0.171997
\(936\) 0 0
\(937\) −47.8748 −1.56400 −0.782001 0.623277i \(-0.785801\pi\)
−0.782001 + 0.623277i \(0.785801\pi\)
\(938\) −4.05770 −0.132489
\(939\) 0 0
\(940\) −8.14911 −0.265795
\(941\) 7.37140 0.240301 0.120150 0.992756i \(-0.461662\pi\)
0.120150 + 0.992756i \(0.461662\pi\)
\(942\) 0 0
\(943\) −45.8187 −1.49206
\(944\) 9.40410 0.306077
\(945\) 0 0
\(946\) −19.0666 −0.619907
\(947\) −56.4061 −1.83295 −0.916475 0.400091i \(-0.868978\pi\)
−0.916475 + 0.400091i \(0.868978\pi\)
\(948\) 0 0
\(949\) −19.5119 −0.633384
\(950\) −10.6502 −0.345538
\(951\) 0 0
\(952\) 18.5836 0.602298
\(953\) −37.0454 −1.20002 −0.600009 0.799993i \(-0.704836\pi\)
−0.600009 + 0.799993i \(0.704836\pi\)
\(954\) 0 0
\(955\) 17.5647 0.568382
\(956\) 89.5283 2.89555
\(957\) 0 0
\(958\) −9.94330 −0.321253
\(959\) −3.96813 −0.128138
\(960\) 0 0
\(961\) −14.8154 −0.477915
\(962\) −33.3838 −1.07634
\(963\) 0 0
\(964\) 4.88327 0.157279
\(965\) −11.4821 −0.369622
\(966\) 0 0
\(967\) 54.7029 1.75913 0.879563 0.475783i \(-0.157835\pi\)
0.879563 + 0.475783i \(0.157835\pi\)
\(968\) 4.80840 0.154548
\(969\) 0 0
\(970\) −14.4276 −0.463243
\(971\) −50.3142 −1.61466 −0.807330 0.590101i \(-0.799088\pi\)
−0.807330 + 0.590101i \(0.799088\pi\)
\(972\) 0 0
\(973\) −10.8159 −0.346741
\(974\) −18.3397 −0.587641
\(975\) 0 0
\(976\) −31.8808 −1.02048
\(977\) −51.7607 −1.65597 −0.827985 0.560750i \(-0.810513\pi\)
−0.827985 + 0.560750i \(0.810513\pi\)
\(978\) 0 0
\(979\) 10.7746 0.344359
\(980\) −21.1326 −0.675056
\(981\) 0 0
\(982\) −39.7666 −1.26900
\(983\) 25.8291 0.823821 0.411910 0.911224i \(-0.364862\pi\)
0.411910 + 0.911224i \(0.364862\pi\)
\(984\) 0 0
\(985\) 5.98370 0.190657
\(986\) 76.0503 2.42194
\(987\) 0 0
\(988\) 9.16969 0.291727
\(989\) −32.0021 −1.01761
\(990\) 0 0
\(991\) −54.6641 −1.73646 −0.868232 0.496159i \(-0.834743\pi\)
−0.868232 + 0.496159i \(0.834743\pi\)
\(992\) −1.23874 −0.0393300
\(993\) 0 0
\(994\) 5.82252 0.184679
\(995\) −10.3994 −0.329682
\(996\) 0 0
\(997\) −4.18723 −0.132611 −0.0663055 0.997799i \(-0.521121\pi\)
−0.0663055 + 0.997799i \(0.521121\pi\)
\(998\) 100.313 3.17534
\(999\) 0 0
Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))

Twists

       By twisting character
Char Parity Ord Type Twist Min Dim
1.1 even 1 trivial 1881.2.a.r.1.7 yes 7
3.2 odd 2 1881.2.a.n.1.1 7
    
        By twisted newform
Twist Min Dim Char Parity Ord Type
1881.2.a.n.1.1 7 3.2 odd 2
1881.2.a.r.1.7 yes 7 1.1 even 1 trivial