Newspace parameters
comment: Compute space of new eigenforms
[N,k,chi] = [189,2,Mod(109,189)]
mf = mfinit([N,k,chi],0)
lf = mfeigenbasis(mf)
from sage.modular.dirichlet import DirichletCharacter
H = DirichletGroup(189, base_ring=CyclotomicField(6))
chi = DirichletCharacter(H, H._module([0, 4]))
N = Newforms(chi, 2, names="a")
//Please install CHIMP (https://github.com/edgarcosta/CHIMP) if you want to run this code
chi := DirichletCharacter("189.109");
S:= CuspForms(chi, 2);
N := Newforms(S);
Level: | \( N \) | \(=\) | \( 189 = 3^{3} \cdot 7 \) |
Weight: | \( k \) | \(=\) | \( 2 \) |
Character orbit: | \([\chi]\) | \(=\) | 189.e (of order \(3\), degree \(2\), minimal) |
Newform invariants
comment: select newform
sage: f = N[0] # Warning: the index may be different
gp: f = lf[1] \\ Warning: the index may be different
Self dual: | no |
Analytic conductor: | \(1.50917259820\) |
Analytic rank: | \(0\) |
Dimension: | \(2\) |
Coefficient field: | \(\Q(\zeta_{6})\) |
comment: defining polynomial
gp: f.mod \\ as an extension of the character field
|
|
Defining polynomial: | \( x^{2} - x + 1 \) |
Coefficient ring: | \(\Z[a_1, \ldots, a_{7}]\) |
Coefficient ring index: | \( 1 \) |
Twist minimal: | yes |
Sato-Tate group: | $\mathrm{U}(1)[D_{3}]$ |
Embedding invariants
Embedding label | 163.1 | ||
Root | \(0.500000 - 0.866025i\) of defining polynomial | ||
Character | \(\chi\) | \(=\) | 189.163 |
Dual form | 189.2.e.b.109.1 |
$q$-expansion
comment: q-expansion
sage: f.q_expansion() # note that sage often uses an isomorphic number field
gp: mfcoefs(f, 20)
Character values
We give the values of \(\chi\) on generators for \(\left(\mathbb{Z}/189\mathbb{Z}\right)^\times\).
\(n\) | \(29\) | \(136\) |
\(\chi(n)\) | \(1\) | \(e\left(\frac{1}{3}\right)\) |
Coefficient data
For each \(n\) we display the coefficients of the \(q\)-expansion \(a_n\), the Satake parameters \(\alpha_p\), and the Satake angles \(\theta_p = \textrm{Arg}(\alpha_p)\).
(See \(a_n\) instead)
(See \(a_n\) instead)
(See \(a_n\) instead)
(See only \(a_p\))
(See only \(a_p\))
(See only \(a_p\))
\(n\) | \(a_n\) | \(a_n / n^{(k-1)/2}\) | \( \alpha_n \) | \( \theta_n \) | ||||||
---|---|---|---|---|---|---|---|---|---|---|
\(p\) | \(a_p\) | \(a_p / p^{(k-1)/2}\) | \( \alpha_p\) | \( \theta_p \) | ||||||
\(2\) | 0 | 0 | −0.866025 | − | 0.500000i | \(-0.833333\pi\) | ||||
0.866025 | + | 0.500000i | \(0.166667\pi\) | |||||||
\(3\) | 0 | 0 | ||||||||
\(4\) | 1.00000 | + | 1.73205i | 0.500000 | + | 0.866025i | ||||
\(5\) | 0 | 0 | −0.866025 | − | 0.500000i | \(-0.833333\pi\) | ||||
0.866025 | + | 0.500000i | \(0.166667\pi\) | |||||||
\(6\) | 0 | 0 | ||||||||
\(7\) | −0.500000 | + | 2.59808i | −0.188982 | + | 0.981981i | ||||
\(8\) | 0 | 0 | ||||||||
\(9\) | 0 | 0 | ||||||||
\(10\) | 0 | 0 | ||||||||
\(11\) | 0 | 0 | 0.866025 | − | 0.500000i | \(-0.166667\pi\) | ||||
−0.866025 | + | 0.500000i | \(0.833333\pi\) | |||||||
\(12\) | 0 | 0 | ||||||||
\(13\) | 2.00000 | 0.554700 | 0.277350 | − | 0.960769i | \(-0.410544\pi\) | ||||
0.277350 | + | 0.960769i | \(0.410544\pi\) | |||||||
\(14\) | 0 | 0 | ||||||||
\(15\) | 0 | 0 | ||||||||
\(16\) | −2.00000 | + | 3.46410i | −0.500000 | + | 0.866025i | ||||
\(17\) | 0 | 0 | 0.866025 | − | 0.500000i | \(-0.166667\pi\) | ||||
−0.866025 | + | 0.500000i | \(0.833333\pi\) | |||||||
\(18\) | 0 | 0 | ||||||||
\(19\) | 3.50000 | − | 6.06218i | 0.802955 | − | 1.39076i | −0.114708 | − | 0.993399i | \(-0.536593\pi\) |
0.917663 | − | 0.397360i | \(-0.130073\pi\) | |||||||
\(20\) | 0 | 0 | ||||||||
\(21\) | 0 | 0 | ||||||||
\(22\) | 0 | 0 | ||||||||
\(23\) | 0 | 0 | −0.866025 | − | 0.500000i | \(-0.833333\pi\) | ||||
0.866025 | + | 0.500000i | \(0.166667\pi\) | |||||||
\(24\) | 0 | 0 | ||||||||
\(25\) | 2.50000 | + | 4.33013i | 0.500000 | + | 0.866025i | ||||
\(26\) | 0 | 0 | ||||||||
\(27\) | 0 | 0 | ||||||||
\(28\) | −5.00000 | + | 1.73205i | −0.944911 | + | 0.327327i | ||||
\(29\) | 0 | 0 | − | 1.00000i | \(-0.5\pi\) | |||||
1.00000i | \(0.5\pi\) | |||||||||
\(30\) | 0 | 0 | ||||||||
\(31\) | −5.50000 | − | 9.52628i | −0.987829 | − | 1.71097i | −0.628619 | − | 0.777714i | \(-0.716379\pi\) |
−0.359211 | − | 0.933257i | \(-0.616954\pi\) | |||||||
\(32\) | 0 | 0 | ||||||||
\(33\) | 0 | 0 | ||||||||
\(34\) | 0 | 0 | ||||||||
\(35\) | 0 | 0 | ||||||||
\(36\) | 0 | 0 | ||||||||
\(37\) | 5.00000 | − | 8.66025i | 0.821995 | − | 1.42374i | −0.0821995 | − | 0.996616i | \(-0.526194\pi\) |
0.904194 | − | 0.427121i | \(-0.140472\pi\) | |||||||
\(38\) | 0 | 0 | ||||||||
\(39\) | 0 | 0 | ||||||||
\(40\) | 0 | 0 | ||||||||
\(41\) | 0 | 0 | − | 1.00000i | \(-0.5\pi\) | |||||
1.00000i | \(0.5\pi\) | |||||||||
\(42\) | 0 | 0 | ||||||||
\(43\) | −13.0000 | −1.98248 | −0.991241 | − | 0.132068i | \(-0.957838\pi\) | ||||
−0.991241 | + | 0.132068i | \(0.957838\pi\) | |||||||
\(44\) | 0 | 0 | ||||||||
\(45\) | 0 | 0 | ||||||||
\(46\) | 0 | 0 | ||||||||
\(47\) | 0 | 0 | −0.866025 | − | 0.500000i | \(-0.833333\pi\) | ||||
0.866025 | + | 0.500000i | \(0.166667\pi\) | |||||||
\(48\) | 0 | 0 | ||||||||
\(49\) | −6.50000 | − | 2.59808i | −0.928571 | − | 0.371154i | ||||
\(50\) | 0 | 0 | ||||||||
\(51\) | 0 | 0 | ||||||||
\(52\) | 2.00000 | + | 3.46410i | 0.277350 | + | 0.480384i | ||||
\(53\) | 0 | 0 | 0.866025 | − | 0.500000i | \(-0.166667\pi\) | ||||
−0.866025 | + | 0.500000i | \(0.833333\pi\) | |||||||
\(54\) | 0 | 0 | ||||||||
\(55\) | 0 | 0 | ||||||||
\(56\) | 0 | 0 | ||||||||
\(57\) | 0 | 0 | ||||||||
\(58\) | 0 | 0 | ||||||||
\(59\) | 0 | 0 | 0.866025 | − | 0.500000i | \(-0.166667\pi\) | ||||
−0.866025 | + | 0.500000i | \(0.833333\pi\) | |||||||
\(60\) | 0 | 0 | ||||||||
\(61\) | 6.50000 | − | 11.2583i | 0.832240 | − | 1.44148i | −0.0640184 | − | 0.997949i | \(-0.520392\pi\) |
0.896258 | − | 0.443533i | \(-0.146275\pi\) | |||||||
\(62\) | 0 | 0 | ||||||||
\(63\) | 0 | 0 | ||||||||
\(64\) | −8.00000 | −1.00000 | ||||||||
\(65\) | 0 | 0 | ||||||||
\(66\) | 0 | 0 | ||||||||
\(67\) | 8.00000 | + | 13.8564i | 0.977356 | + | 1.69283i | 0.671932 | + | 0.740613i | \(0.265465\pi\) |
0.305424 | + | 0.952217i | \(0.401202\pi\) | |||||||
\(68\) | 0 | 0 | ||||||||
\(69\) | 0 | 0 | ||||||||
\(70\) | 0 | 0 | ||||||||
\(71\) | 0 | 0 | − | 1.00000i | \(-0.5\pi\) | |||||
1.00000i | \(0.5\pi\) | |||||||||
\(72\) | 0 | 0 | ||||||||
\(73\) | 3.50000 | + | 6.06218i | 0.409644 | + | 0.709524i | 0.994850 | − | 0.101361i | \(-0.0323196\pi\) |
−0.585206 | + | 0.810885i | \(0.698986\pi\) | |||||||
\(74\) | 0 | 0 | ||||||||
\(75\) | 0 | 0 | ||||||||
\(76\) | 14.0000 | 1.60591 | ||||||||
\(77\) | 0 | 0 | ||||||||
\(78\) | 0 | 0 | ||||||||
\(79\) | 2.00000 | − | 3.46410i | 0.225018 | − | 0.389742i | −0.731307 | − | 0.682048i | \(-0.761089\pi\) |
0.956325 | + | 0.292306i | \(0.0944227\pi\) | |||||||
\(80\) | 0 | 0 | ||||||||
\(81\) | 0 | 0 | ||||||||
\(82\) | 0 | 0 | ||||||||
\(83\) | 0 | 0 | − | 1.00000i | \(-0.5\pi\) | |||||
1.00000i | \(0.5\pi\) | |||||||||
\(84\) | 0 | 0 | ||||||||
\(85\) | 0 | 0 | ||||||||
\(86\) | 0 | 0 | ||||||||
\(87\) | 0 | 0 | ||||||||
\(88\) | 0 | 0 | ||||||||
\(89\) | 0 | 0 | −0.866025 | − | 0.500000i | \(-0.833333\pi\) | ||||
0.866025 | + | 0.500000i | \(0.166667\pi\) | |||||||
\(90\) | 0 | 0 | ||||||||
\(91\) | −1.00000 | + | 5.19615i | −0.104828 | + | 0.544705i | ||||
\(92\) | 0 | 0 | ||||||||
\(93\) | 0 | 0 | ||||||||
\(94\) | 0 | 0 | ||||||||
\(95\) | 0 | 0 | ||||||||
\(96\) | 0 | 0 | ||||||||
\(97\) | 5.00000 | 0.507673 | 0.253837 | − | 0.967247i | \(-0.418307\pi\) | ||||
0.253837 | + | 0.967247i | \(0.418307\pi\) | |||||||
\(98\) | 0 | 0 | ||||||||
\(99\) | 0 | 0 | ||||||||
\(100\) | −5.00000 | + | 8.66025i | −0.500000 | + | 0.866025i | ||||
\(101\) | 0 | 0 | 0.866025 | − | 0.500000i | \(-0.166667\pi\) | ||||
−0.866025 | + | 0.500000i | \(0.833333\pi\) | |||||||
\(102\) | 0 | 0 | ||||||||
\(103\) | −10.0000 | + | 17.3205i | −0.985329 | + | 1.70664i | −0.344865 | + | 0.938652i | \(0.612075\pi\) |
−0.640464 | + | 0.767988i | \(0.721258\pi\) | |||||||
\(104\) | 0 | 0 | ||||||||
\(105\) | 0 | 0 | ||||||||
\(106\) | 0 | 0 | ||||||||
\(107\) | 0 | 0 | −0.866025 | − | 0.500000i | \(-0.833333\pi\) | ||||
0.866025 | + | 0.500000i | \(0.166667\pi\) | |||||||
\(108\) | 0 | 0 | ||||||||
\(109\) | 9.50000 | + | 16.4545i | 0.909935 | + | 1.57605i | 0.814152 | + | 0.580651i | \(0.197202\pi\) |
0.0957826 | + | 0.995402i | \(0.469465\pi\) | |||||||
\(110\) | 0 | 0 | ||||||||
\(111\) | 0 | 0 | ||||||||
\(112\) | −8.00000 | − | 6.92820i | −0.755929 | − | 0.654654i | ||||
\(113\) | 0 | 0 | − | 1.00000i | \(-0.5\pi\) | |||||
1.00000i | \(0.5\pi\) | |||||||||
\(114\) | 0 | 0 | ||||||||
\(115\) | 0 | 0 | ||||||||
\(116\) | 0 | 0 | ||||||||
\(117\) | 0 | 0 | ||||||||
\(118\) | 0 | 0 | ||||||||
\(119\) | 0 | 0 | ||||||||
\(120\) | 0 | 0 | ||||||||
\(121\) | 5.50000 | − | 9.52628i | 0.500000 | − | 0.866025i | ||||
\(122\) | 0 | 0 | ||||||||
\(123\) | 0 | 0 | ||||||||
\(124\) | 11.0000 | − | 19.0526i | 0.987829 | − | 1.71097i | ||||
\(125\) | 0 | 0 | ||||||||
\(126\) | 0 | 0 | ||||||||
\(127\) | −1.00000 | −0.0887357 | −0.0443678 | − | 0.999015i | \(-0.514127\pi\) | ||||
−0.0443678 | + | 0.999015i | \(0.514127\pi\) | |||||||
\(128\) | 0 | 0 | ||||||||
\(129\) | 0 | 0 | ||||||||
\(130\) | 0 | 0 | ||||||||
\(131\) | 0 | 0 | −0.866025 | − | 0.500000i | \(-0.833333\pi\) | ||||
0.866025 | + | 0.500000i | \(0.166667\pi\) | |||||||
\(132\) | 0 | 0 | ||||||||
\(133\) | 14.0000 | + | 12.1244i | 1.21395 | + | 1.05131i | ||||
\(134\) | 0 | 0 | ||||||||
\(135\) | 0 | 0 | ||||||||
\(136\) | 0 | 0 | ||||||||
\(137\) | 0 | 0 | 0.866025 | − | 0.500000i | \(-0.166667\pi\) | ||||
−0.866025 | + | 0.500000i | \(0.833333\pi\) | |||||||
\(138\) | 0 | 0 | ||||||||
\(139\) | −16.0000 | −1.35710 | −0.678551 | − | 0.734553i | \(-0.737392\pi\) | ||||
−0.678551 | + | 0.734553i | \(0.737392\pi\) | |||||||
\(140\) | 0 | 0 | ||||||||
\(141\) | 0 | 0 | ||||||||
\(142\) | 0 | 0 | ||||||||
\(143\) | 0 | 0 | ||||||||
\(144\) | 0 | 0 | ||||||||
\(145\) | 0 | 0 | ||||||||
\(146\) | 0 | 0 | ||||||||
\(147\) | 0 | 0 | ||||||||
\(148\) | 20.0000 | 1.64399 | ||||||||
\(149\) | 0 | 0 | −0.866025 | − | 0.500000i | \(-0.833333\pi\) | ||||
0.866025 | + | 0.500000i | \(0.166667\pi\) | |||||||
\(150\) | 0 | 0 | ||||||||
\(151\) | −11.5000 | − | 19.9186i | −0.935857 | − | 1.62095i | −0.773099 | − | 0.634285i | \(-0.781294\pi\) |
−0.162758 | − | 0.986666i | \(-0.552039\pi\) | |||||||
\(152\) | 0 | 0 | ||||||||
\(153\) | 0 | 0 | ||||||||
\(154\) | 0 | 0 | ||||||||
\(155\) | 0 | 0 | ||||||||
\(156\) | 0 | 0 | ||||||||
\(157\) | −7.00000 | − | 12.1244i | −0.558661 | − | 0.967629i | −0.997609 | − | 0.0691164i | \(-0.977982\pi\) |
0.438948 | − | 0.898513i | \(-0.355351\pi\) | |||||||
\(158\) | 0 | 0 | ||||||||
\(159\) | 0 | 0 | ||||||||
\(160\) | 0 | 0 | ||||||||
\(161\) | 0 | 0 | ||||||||
\(162\) | 0 | 0 | ||||||||
\(163\) | −8.50000 | + | 14.7224i | −0.665771 | + | 1.15315i | 0.313304 | + | 0.949653i | \(0.398564\pi\) |
−0.979076 | + | 0.203497i | \(0.934769\pi\) | |||||||
\(164\) | 0 | 0 | ||||||||
\(165\) | 0 | 0 | ||||||||
\(166\) | 0 | 0 | ||||||||
\(167\) | 0 | 0 | − | 1.00000i | \(-0.5\pi\) | |||||
1.00000i | \(0.5\pi\) | |||||||||
\(168\) | 0 | 0 | ||||||||
\(169\) | −9.00000 | −0.692308 | ||||||||
\(170\) | 0 | 0 | ||||||||
\(171\) | 0 | 0 | ||||||||
\(172\) | −13.0000 | − | 22.5167i | −0.991241 | − | 1.71688i | ||||
\(173\) | 0 | 0 | −0.866025 | − | 0.500000i | \(-0.833333\pi\) | ||||
0.866025 | + | 0.500000i | \(0.166667\pi\) | |||||||
\(174\) | 0 | 0 | ||||||||
\(175\) | −12.5000 | + | 4.33013i | −0.944911 | + | 0.327327i | ||||
\(176\) | 0 | 0 | ||||||||
\(177\) | 0 | 0 | ||||||||
\(178\) | 0 | 0 | ||||||||
\(179\) | 0 | 0 | 0.866025 | − | 0.500000i | \(-0.166667\pi\) | ||||
−0.866025 | + | 0.500000i | \(0.833333\pi\) | |||||||
\(180\) | 0 | 0 | ||||||||
\(181\) | −7.00000 | −0.520306 | −0.260153 | − | 0.965567i | \(-0.583773\pi\) | ||||
−0.260153 | + | 0.965567i | \(0.583773\pi\) | |||||||
\(182\) | 0 | 0 | ||||||||
\(183\) | 0 | 0 | ||||||||
\(184\) | 0 | 0 | ||||||||
\(185\) | 0 | 0 | ||||||||
\(186\) | 0 | 0 | ||||||||
\(187\) | 0 | 0 | ||||||||
\(188\) | 0 | 0 | ||||||||
\(189\) | 0 | 0 | ||||||||
\(190\) | 0 | 0 | ||||||||
\(191\) | 0 | 0 | −0.866025 | − | 0.500000i | \(-0.833333\pi\) | ||||
0.866025 | + | 0.500000i | \(0.166667\pi\) | |||||||
\(192\) | 0 | 0 | ||||||||
\(193\) | −1.00000 | − | 1.73205i | −0.0719816 | − | 0.124676i | 0.827788 | − | 0.561041i | \(-0.189599\pi\) |
−0.899770 | + | 0.436365i | \(0.856266\pi\) | |||||||
\(194\) | 0 | 0 | ||||||||
\(195\) | 0 | 0 | ||||||||
\(196\) | −2.00000 | − | 13.8564i | −0.142857 | − | 0.989743i | ||||
\(197\) | 0 | 0 | − | 1.00000i | \(-0.5\pi\) | |||||
1.00000i | \(0.5\pi\) | |||||||||
\(198\) | 0 | 0 | ||||||||
\(199\) | −8.50000 | − | 14.7224i | −0.602549 | − | 1.04365i | −0.992434 | − | 0.122782i | \(-0.960818\pi\) |
0.389885 | − | 0.920864i | \(-0.372515\pi\) | |||||||
\(200\) | 0 | 0 | ||||||||
\(201\) | 0 | 0 | ||||||||
\(202\) | 0 | 0 | ||||||||
\(203\) | 0 | 0 | ||||||||
\(204\) | 0 | 0 | ||||||||
\(205\) | 0 | 0 | ||||||||
\(206\) | 0 | 0 | ||||||||
\(207\) | 0 | 0 | ||||||||
\(208\) | −4.00000 | + | 6.92820i | −0.277350 | + | 0.480384i | ||||
\(209\) | 0 | 0 | ||||||||
\(210\) | 0 | 0 | ||||||||
\(211\) | 29.0000 | 1.99644 | 0.998221 | − | 0.0596196i | \(-0.0189888\pi\) | ||||
0.998221 | + | 0.0596196i | \(0.0189888\pi\) | |||||||
\(212\) | 0 | 0 | ||||||||
\(213\) | 0 | 0 | ||||||||
\(214\) | 0 | 0 | ||||||||
\(215\) | 0 | 0 | ||||||||
\(216\) | 0 | 0 | ||||||||
\(217\) | 27.5000 | − | 9.52628i | 1.86682 | − | 0.646686i | ||||
\(218\) | 0 | 0 | ||||||||
\(219\) | 0 | 0 | ||||||||
\(220\) | 0 | 0 | ||||||||
\(221\) | 0 | 0 | ||||||||
\(222\) | 0 | 0 | ||||||||
\(223\) | −28.0000 | −1.87502 | −0.937509 | − | 0.347960i | \(-0.886874\pi\) | ||||
−0.937509 | + | 0.347960i | \(0.886874\pi\) | |||||||
\(224\) | 0 | 0 | ||||||||
\(225\) | 0 | 0 | ||||||||
\(226\) | 0 | 0 | ||||||||
\(227\) | 0 | 0 | 0.866025 | − | 0.500000i | \(-0.166667\pi\) | ||||
−0.866025 | + | 0.500000i | \(0.833333\pi\) | |||||||
\(228\) | 0 | 0 | ||||||||
\(229\) | −14.5000 | + | 25.1147i | −0.958187 | + | 1.65963i | −0.231287 | + | 0.972886i | \(0.574293\pi\) |
−0.726900 | + | 0.686743i | \(0.759040\pi\) | |||||||
\(230\) | 0 | 0 | ||||||||
\(231\) | 0 | 0 | ||||||||
\(232\) | 0 | 0 | ||||||||
\(233\) | 0 | 0 | −0.866025 | − | 0.500000i | \(-0.833333\pi\) | ||||
0.866025 | + | 0.500000i | \(0.166667\pi\) | |||||||
\(234\) | 0 | 0 | ||||||||
\(235\) | 0 | 0 | ||||||||
\(236\) | 0 | 0 | ||||||||
\(237\) | 0 | 0 | ||||||||
\(238\) | 0 | 0 | ||||||||
\(239\) | 0 | 0 | − | 1.00000i | \(-0.5\pi\) | |||||
1.00000i | \(0.5\pi\) | |||||||||
\(240\) | 0 | 0 | ||||||||
\(241\) | 15.5000 | + | 26.8468i | 0.998443 | + | 1.72935i | 0.547533 | + | 0.836784i | \(0.315567\pi\) |
0.450910 | + | 0.892570i | \(0.351100\pi\) | |||||||
\(242\) | 0 | 0 | ||||||||
\(243\) | 0 | 0 | ||||||||
\(244\) | 26.0000 | 1.66448 | ||||||||
\(245\) | 0 | 0 | ||||||||
\(246\) | 0 | 0 | ||||||||
\(247\) | 7.00000 | − | 12.1244i | 0.445399 | − | 0.771454i | ||||
\(248\) | 0 | 0 | ||||||||
\(249\) | 0 | 0 | ||||||||
\(250\) | 0 | 0 | ||||||||
\(251\) | 0 | 0 | − | 1.00000i | \(-0.5\pi\) | |||||
1.00000i | \(0.5\pi\) | |||||||||
\(252\) | 0 | 0 | ||||||||
\(253\) | 0 | 0 | ||||||||
\(254\) | 0 | 0 | ||||||||
\(255\) | 0 | 0 | ||||||||
\(256\) | −8.00000 | − | 13.8564i | −0.500000 | − | 0.866025i | ||||
\(257\) | 0 | 0 | −0.866025 | − | 0.500000i | \(-0.833333\pi\) | ||||
0.866025 | + | 0.500000i | \(0.166667\pi\) | |||||||
\(258\) | 0 | 0 | ||||||||
\(259\) | 20.0000 | + | 17.3205i | 1.24274 | + | 1.07624i | ||||
\(260\) | 0 | 0 | ||||||||
\(261\) | 0 | 0 | ||||||||
\(262\) | 0 | 0 | ||||||||
\(263\) | 0 | 0 | 0.866025 | − | 0.500000i | \(-0.166667\pi\) | ||||
−0.866025 | + | 0.500000i | \(0.833333\pi\) | |||||||
\(264\) | 0 | 0 | ||||||||
\(265\) | 0 | 0 | ||||||||
\(266\) | 0 | 0 | ||||||||
\(267\) | 0 | 0 | ||||||||
\(268\) | −16.0000 | + | 27.7128i | −0.977356 | + | 1.69283i | ||||
\(269\) | 0 | 0 | 0.866025 | − | 0.500000i | \(-0.166667\pi\) | ||||
−0.866025 | + | 0.500000i | \(0.833333\pi\) | |||||||
\(270\) | 0 | 0 | ||||||||
\(271\) | 0.500000 | − | 0.866025i | 0.0303728 | − | 0.0526073i | −0.850439 | − | 0.526073i | \(-0.823664\pi\) |
0.880812 | + | 0.473466i | \(0.156997\pi\) | |||||||
\(272\) | 0 | 0 | ||||||||
\(273\) | 0 | 0 | ||||||||
\(274\) | 0 | 0 | ||||||||
\(275\) | 0 | 0 | ||||||||
\(276\) | 0 | 0 | ||||||||
\(277\) | −2.50000 | − | 4.33013i | −0.150210 | − | 0.260172i | 0.781094 | − | 0.624413i | \(-0.214662\pi\) |
−0.931305 | + | 0.364241i | \(0.881328\pi\) | |||||||
\(278\) | 0 | 0 | ||||||||
\(279\) | 0 | 0 | ||||||||
\(280\) | 0 | 0 | ||||||||
\(281\) | 0 | 0 | − | 1.00000i | \(-0.5\pi\) | |||||
1.00000i | \(0.5\pi\) | |||||||||
\(282\) | 0 | 0 | ||||||||
\(283\) | 12.5000 | + | 21.6506i | 0.743048 | + | 1.28700i | 0.951101 | + | 0.308879i | \(0.0999539\pi\) |
−0.208053 | + | 0.978117i | \(0.566713\pi\) | |||||||
\(284\) | 0 | 0 | ||||||||
\(285\) | 0 | 0 | ||||||||
\(286\) | 0 | 0 | ||||||||
\(287\) | 0 | 0 | ||||||||
\(288\) | 0 | 0 | ||||||||
\(289\) | 8.50000 | − | 14.7224i | 0.500000 | − | 0.866025i | ||||
\(290\) | 0 | 0 | ||||||||
\(291\) | 0 | 0 | ||||||||
\(292\) | −7.00000 | + | 12.1244i | −0.409644 | + | 0.709524i | ||||
\(293\) | 0 | 0 | − | 1.00000i | \(-0.5\pi\) | |||||
1.00000i | \(0.5\pi\) | |||||||||
\(294\) | 0 | 0 | ||||||||
\(295\) | 0 | 0 | ||||||||
\(296\) | 0 | 0 | ||||||||
\(297\) | 0 | 0 | ||||||||
\(298\) | 0 | 0 | ||||||||
\(299\) | 0 | 0 | ||||||||
\(300\) | 0 | 0 | ||||||||
\(301\) | 6.50000 | − | 33.7750i | 0.374654 | − | 1.94676i | ||||
\(302\) | 0 | 0 | ||||||||
\(303\) | 0 | 0 | ||||||||
\(304\) | 14.0000 | + | 24.2487i | 0.802955 | + | 1.39076i | ||||
\(305\) | 0 | 0 | ||||||||
\(306\) | 0 | 0 | ||||||||
\(307\) | −19.0000 | −1.08439 | −0.542194 | − | 0.840254i | \(-0.682406\pi\) | ||||
−0.542194 | + | 0.840254i | \(0.682406\pi\) | |||||||
\(308\) | 0 | 0 | ||||||||
\(309\) | 0 | 0 | ||||||||
\(310\) | 0 | 0 | ||||||||
\(311\) | 0 | 0 | 0.866025 | − | 0.500000i | \(-0.166667\pi\) | ||||
−0.866025 | + | 0.500000i | \(0.833333\pi\) | |||||||
\(312\) | 0 | 0 | ||||||||
\(313\) | −17.5000 | + | 30.3109i | −0.989158 | + | 1.71327i | −0.367402 | + | 0.930062i | \(0.619753\pi\) |
−0.621757 | + | 0.783210i | \(0.713581\pi\) | |||||||
\(314\) | 0 | 0 | ||||||||
\(315\) | 0 | 0 | ||||||||
\(316\) | 8.00000 | 0.450035 | ||||||||
\(317\) | 0 | 0 | −0.866025 | − | 0.500000i | \(-0.833333\pi\) | ||||
0.866025 | + | 0.500000i | \(0.166667\pi\) | |||||||
\(318\) | 0 | 0 | ||||||||
\(319\) | 0 | 0 | ||||||||
\(320\) | 0 | 0 | ||||||||
\(321\) | 0 | 0 | ||||||||
\(322\) | 0 | 0 | ||||||||
\(323\) | 0 | 0 | ||||||||
\(324\) | 0 | 0 | ||||||||
\(325\) | 5.00000 | + | 8.66025i | 0.277350 | + | 0.480384i | ||||
\(326\) | 0 | 0 | ||||||||
\(327\) | 0 | 0 | ||||||||
\(328\) | 0 | 0 | ||||||||
\(329\) | 0 | 0 | ||||||||
\(330\) | 0 | 0 | ||||||||
\(331\) | 0.500000 | − | 0.866025i | 0.0274825 | − | 0.0476011i | −0.851957 | − | 0.523612i | \(-0.824584\pi\) |
0.879440 | + | 0.476011i | \(0.157918\pi\) | |||||||
\(332\) | 0 | 0 | ||||||||
\(333\) | 0 | 0 | ||||||||
\(334\) | 0 | 0 | ||||||||
\(335\) | 0 | 0 | ||||||||
\(336\) | 0 | 0 | ||||||||
\(337\) | 5.00000 | 0.272367 | 0.136184 | − | 0.990684i | \(-0.456516\pi\) | ||||
0.136184 | + | 0.990684i | \(0.456516\pi\) | |||||||
\(338\) | 0 | 0 | ||||||||
\(339\) | 0 | 0 | ||||||||
\(340\) | 0 | 0 | ||||||||
\(341\) | 0 | 0 | ||||||||
\(342\) | 0 | 0 | ||||||||
\(343\) | 10.0000 | − | 15.5885i | 0.539949 | − | 0.841698i | ||||
\(344\) | 0 | 0 | ||||||||
\(345\) | 0 | 0 | ||||||||
\(346\) | 0 | 0 | ||||||||
\(347\) | 0 | 0 | 0.866025 | − | 0.500000i | \(-0.166667\pi\) | ||||
−0.866025 | + | 0.500000i | \(0.833333\pi\) | |||||||
\(348\) | 0 | 0 | ||||||||
\(349\) | 23.0000 | 1.23116 | 0.615581 | − | 0.788074i | \(-0.288921\pi\) | ||||
0.615581 | + | 0.788074i | \(0.288921\pi\) | |||||||
\(350\) | 0 | 0 | ||||||||
\(351\) | 0 | 0 | ||||||||
\(352\) | 0 | 0 | ||||||||
\(353\) | 0 | 0 | 0.866025 | − | 0.500000i | \(-0.166667\pi\) | ||||
−0.866025 | + | 0.500000i | \(0.833333\pi\) | |||||||
\(354\) | 0 | 0 | ||||||||
\(355\) | 0 | 0 | ||||||||
\(356\) | 0 | 0 | ||||||||
\(357\) | 0 | 0 | ||||||||
\(358\) | 0 | 0 | ||||||||
\(359\) | 0 | 0 | −0.866025 | − | 0.500000i | \(-0.833333\pi\) | ||||
0.866025 | + | 0.500000i | \(0.166667\pi\) | |||||||
\(360\) | 0 | 0 | ||||||||
\(361\) | −15.0000 | − | 25.9808i | −0.789474 | − | 1.36741i | ||||
\(362\) | 0 | 0 | ||||||||
\(363\) | 0 | 0 | ||||||||
\(364\) | −10.0000 | + | 3.46410i | −0.524142 | + | 0.181568i | ||||
\(365\) | 0 | 0 | ||||||||
\(366\) | 0 | 0 | ||||||||
\(367\) | −17.5000 | − | 30.3109i | −0.913493 | − | 1.58222i | −0.809093 | − | 0.587680i | \(-0.800041\pi\) |
−0.104399 | − | 0.994535i | \(-0.533292\pi\) | |||||||
\(368\) | 0 | 0 | ||||||||
\(369\) | 0 | 0 | ||||||||
\(370\) | 0 | 0 | ||||||||
\(371\) | 0 | 0 | ||||||||
\(372\) | 0 | 0 | ||||||||
\(373\) | 6.50000 | − | 11.2583i | 0.336557 | − | 0.582934i | −0.647225 | − | 0.762299i | \(-0.724071\pi\) |
0.983783 | + | 0.179364i | \(0.0574041\pi\) | |||||||
\(374\) | 0 | 0 | ||||||||
\(375\) | 0 | 0 | ||||||||
\(376\) | 0 | 0 | ||||||||
\(377\) | 0 | 0 | ||||||||
\(378\) | 0 | 0 | ||||||||
\(379\) | 8.00000 | 0.410932 | 0.205466 | − | 0.978664i | \(-0.434129\pi\) | ||||
0.205466 | + | 0.978664i | \(0.434129\pi\) | |||||||
\(380\) | 0 | 0 | ||||||||
\(381\) | 0 | 0 | ||||||||
\(382\) | 0 | 0 | ||||||||
\(383\) | 0 | 0 | −0.866025 | − | 0.500000i | \(-0.833333\pi\) | ||||
0.866025 | + | 0.500000i | \(0.166667\pi\) | |||||||
\(384\) | 0 | 0 | ||||||||
\(385\) | 0 | 0 | ||||||||
\(386\) | 0 | 0 | ||||||||
\(387\) | 0 | 0 | ||||||||
\(388\) | 5.00000 | + | 8.66025i | 0.253837 | + | 0.439658i | ||||
\(389\) | 0 | 0 | 0.866025 | − | 0.500000i | \(-0.166667\pi\) | ||||
−0.866025 | + | 0.500000i | \(0.833333\pi\) | |||||||
\(390\) | 0 | 0 | ||||||||
\(391\) | 0 | 0 | ||||||||
\(392\) | 0 | 0 | ||||||||
\(393\) | 0 | 0 | ||||||||
\(394\) | 0 | 0 | ||||||||
\(395\) | 0 | 0 | ||||||||
\(396\) | 0 | 0 | ||||||||
\(397\) | 0.500000 | − | 0.866025i | 0.0250943 | − | 0.0434646i | −0.853206 | − | 0.521575i | \(-0.825345\pi\) |
0.878300 | + | 0.478110i | \(0.158678\pi\) | |||||||
\(398\) | 0 | 0 | ||||||||
\(399\) | 0 | 0 | ||||||||
\(400\) | −20.0000 | −1.00000 | ||||||||
\(401\) | 0 | 0 | −0.866025 | − | 0.500000i | \(-0.833333\pi\) | ||||
0.866025 | + | 0.500000i | \(0.166667\pi\) | |||||||
\(402\) | 0 | 0 | ||||||||
\(403\) | −11.0000 | − | 19.0526i | −0.547949 | − | 0.949076i | ||||
\(404\) | 0 | 0 | ||||||||
\(405\) | 0 | 0 | ||||||||
\(406\) | 0 | 0 | ||||||||
\(407\) | 0 | 0 | ||||||||
\(408\) | 0 | 0 | ||||||||
\(409\) | −19.0000 | − | 32.9090i | −0.939490 | − | 1.62724i | −0.766426 | − | 0.642333i | \(-0.777967\pi\) |
−0.173064 | − | 0.984911i | \(-0.555367\pi\) | |||||||
\(410\) | 0 | 0 | ||||||||
\(411\) | 0 | 0 | ||||||||
\(412\) | −40.0000 | −1.97066 | ||||||||
\(413\) | 0 | 0 | ||||||||
\(414\) | 0 | 0 | ||||||||
\(415\) | 0 | 0 | ||||||||
\(416\) | 0 | 0 | ||||||||
\(417\) | 0 | 0 | ||||||||
\(418\) | 0 | 0 | ||||||||
\(419\) | 0 | 0 | − | 1.00000i | \(-0.5\pi\) | |||||
1.00000i | \(0.5\pi\) | |||||||||
\(420\) | 0 | 0 | ||||||||
\(421\) | −19.0000 | −0.926003 | −0.463002 | − | 0.886357i | \(-0.653228\pi\) | ||||
−0.463002 | + | 0.886357i | \(0.653228\pi\) | |||||||
\(422\) | 0 | 0 | ||||||||
\(423\) | 0 | 0 | ||||||||
\(424\) | 0 | 0 | ||||||||
\(425\) | 0 | 0 | ||||||||
\(426\) | 0 | 0 | ||||||||
\(427\) | 26.0000 | + | 22.5167i | 1.25823 | + | 1.08966i | ||||
\(428\) | 0 | 0 | ||||||||
\(429\) | 0 | 0 | ||||||||
\(430\) | 0 | 0 | ||||||||
\(431\) | 0 | 0 | 0.866025 | − | 0.500000i | \(-0.166667\pi\) | ||||
−0.866025 | + | 0.500000i | \(0.833333\pi\) | |||||||
\(432\) | 0 | 0 | ||||||||
\(433\) | −37.0000 | −1.77811 | −0.889053 | − | 0.457804i | \(-0.848636\pi\) | ||||
−0.889053 | + | 0.457804i | \(0.848636\pi\) | |||||||
\(434\) | 0 | 0 | ||||||||
\(435\) | 0 | 0 | ||||||||
\(436\) | −19.0000 | + | 32.9090i | −0.909935 | + | 1.57605i | ||||
\(437\) | 0 | 0 | ||||||||
\(438\) | 0 | 0 | ||||||||
\(439\) | 14.0000 | − | 24.2487i | 0.668184 | − | 1.15733i | −0.310228 | − | 0.950662i | \(-0.600405\pi\) |
0.978412 | − | 0.206666i | \(-0.0662612\pi\) | |||||||
\(440\) | 0 | 0 | ||||||||
\(441\) | 0 | 0 | ||||||||
\(442\) | 0 | 0 | ||||||||
\(443\) | 0 | 0 | −0.866025 | − | 0.500000i | \(-0.833333\pi\) | ||||
0.866025 | + | 0.500000i | \(0.166667\pi\) | |||||||
\(444\) | 0 | 0 | ||||||||
\(445\) | 0 | 0 | ||||||||
\(446\) | 0 | 0 | ||||||||
\(447\) | 0 | 0 | ||||||||
\(448\) | 4.00000 | − | 20.7846i | 0.188982 | − | 0.981981i | ||||
\(449\) | 0 | 0 | − | 1.00000i | \(-0.5\pi\) | |||||
1.00000i | \(0.5\pi\) | |||||||||
\(450\) | 0 | 0 | ||||||||
\(451\) | 0 | 0 | ||||||||
\(452\) | 0 | 0 | ||||||||
\(453\) | 0 | 0 | ||||||||
\(454\) | 0 | 0 | ||||||||
\(455\) | 0 | 0 | ||||||||
\(456\) | 0 | 0 | ||||||||
\(457\) | 15.5000 | − | 26.8468i | 0.725059 | − | 1.25584i | −0.233890 | − | 0.972263i | \(-0.575146\pi\) |
0.958950 | − | 0.283577i | \(-0.0915211\pi\) | |||||||
\(458\) | 0 | 0 | ||||||||
\(459\) | 0 | 0 | ||||||||
\(460\) | 0 | 0 | ||||||||
\(461\) | 0 | 0 | − | 1.00000i | \(-0.5\pi\) | |||||
1.00000i | \(0.5\pi\) | |||||||||
\(462\) | 0 | 0 | ||||||||
\(463\) | 23.0000 | 1.06890 | 0.534450 | − | 0.845200i | \(-0.320519\pi\) | ||||
0.534450 | + | 0.845200i | \(0.320519\pi\) | |||||||
\(464\) | 0 | 0 | ||||||||
\(465\) | 0 | 0 | ||||||||
\(466\) | 0 | 0 | ||||||||
\(467\) | 0 | 0 | −0.866025 | − | 0.500000i | \(-0.833333\pi\) | ||||
0.866025 | + | 0.500000i | \(0.166667\pi\) | |||||||
\(468\) | 0 | 0 | ||||||||
\(469\) | −40.0000 | + | 13.8564i | −1.84703 | + | 0.639829i | ||||
\(470\) | 0 | 0 | ||||||||
\(471\) | 0 | 0 | ||||||||
\(472\) | 0 | 0 | ||||||||
\(473\) | 0 | 0 | ||||||||
\(474\) | 0 | 0 | ||||||||
\(475\) | 35.0000 | 1.60591 | ||||||||
\(476\) | 0 | 0 | ||||||||
\(477\) | 0 | 0 | ||||||||
\(478\) | 0 | 0 | ||||||||
\(479\) | 0 | 0 | 0.866025 | − | 0.500000i | \(-0.166667\pi\) | ||||
−0.866025 | + | 0.500000i | \(0.833333\pi\) | |||||||
\(480\) | 0 | 0 | ||||||||
\(481\) | 10.0000 | − | 17.3205i | 0.455961 | − | 0.789747i | ||||
\(482\) | 0 | 0 | ||||||||
\(483\) | 0 | 0 | ||||||||
\(484\) | 22.0000 | 1.00000 | ||||||||
\(485\) | 0 | 0 | ||||||||
\(486\) | 0 | 0 | ||||||||
\(487\) | 12.5000 | + | 21.6506i | 0.566429 | + | 0.981084i | 0.996915 | + | 0.0784867i | \(0.0250088\pi\) |
−0.430486 | + | 0.902597i | \(0.641658\pi\) | |||||||
\(488\) | 0 | 0 | ||||||||
\(489\) | 0 | 0 | ||||||||
\(490\) | 0 | 0 | ||||||||
\(491\) | 0 | 0 | − | 1.00000i | \(-0.5\pi\) | |||||
1.00000i | \(0.5\pi\) | |||||||||
\(492\) | 0 | 0 | ||||||||
\(493\) | 0 | 0 | ||||||||
\(494\) | 0 | 0 | ||||||||
\(495\) | 0 | 0 | ||||||||
\(496\) | 44.0000 | 1.97566 | ||||||||
\(497\) | 0 | 0 | ||||||||
\(498\) | 0 | 0 | ||||||||
\(499\) | −5.50000 | + | 9.52628i | −0.246214 | + | 0.426455i | −0.962472 | − | 0.271380i | \(-0.912520\pi\) |
0.716258 | + | 0.697835i | \(0.245853\pi\) | |||||||
\(500\) | 0 | 0 | ||||||||
\(501\) | 0 | 0 | ||||||||
\(502\) | 0 | 0 | ||||||||
\(503\) | 0 | 0 | − | 1.00000i | \(-0.5\pi\) | |||||
1.00000i | \(0.5\pi\) | |||||||||
\(504\) | 0 | 0 | ||||||||
\(505\) | 0 | 0 | ||||||||
\(506\) | 0 | 0 | ||||||||
\(507\) | 0 | 0 | ||||||||
\(508\) | −1.00000 | − | 1.73205i | −0.0443678 | − | 0.0768473i | ||||
\(509\) | 0 | 0 | −0.866025 | − | 0.500000i | \(-0.833333\pi\) | ||||
0.866025 | + | 0.500000i | \(0.166667\pi\) | |||||||
\(510\) | 0 | 0 | ||||||||
\(511\) | −17.5000 | + | 6.06218i | −0.774154 | + | 0.268175i | ||||
\(512\) | 0 | 0 | ||||||||
\(513\) | 0 | 0 | ||||||||
\(514\) | 0 | 0 | ||||||||
\(515\) | 0 | 0 | ||||||||
\(516\) | 0 | 0 | ||||||||
\(517\) | 0 | 0 | ||||||||
\(518\) | 0 | 0 | ||||||||
\(519\) | 0 | 0 | ||||||||
\(520\) | 0 | 0 | ||||||||
\(521\) | 0 | 0 | 0.866025 | − | 0.500000i | \(-0.166667\pi\) | ||||
−0.866025 | + | 0.500000i | \(0.833333\pi\) | |||||||
\(522\) | 0 | 0 | ||||||||
\(523\) | −4.00000 | + | 6.92820i | −0.174908 | + | 0.302949i | −0.940129 | − | 0.340818i | \(-0.889296\pi\) |
0.765222 | + | 0.643767i | \(0.222629\pi\) | |||||||
\(524\) | 0 | 0 | ||||||||
\(525\) | 0 | 0 | ||||||||
\(526\) | 0 | 0 | ||||||||
\(527\) | 0 | 0 | ||||||||
\(528\) | 0 | 0 | ||||||||
\(529\) | 11.5000 | + | 19.9186i | 0.500000 | + | 0.866025i | ||||
\(530\) | 0 | 0 | ||||||||
\(531\) | 0 | 0 | ||||||||
\(532\) | −7.00000 | + | 36.3731i | −0.303488 | + | 1.57697i | ||||
\(533\) | 0 | 0 | ||||||||
\(534\) | 0 | 0 | ||||||||
\(535\) | 0 | 0 | ||||||||
\(536\) | 0 | 0 | ||||||||
\(537\) | 0 | 0 | ||||||||
\(538\) | 0 | 0 | ||||||||
\(539\) | 0 | 0 | ||||||||
\(540\) | 0 | 0 | ||||||||
\(541\) | −14.5000 | + | 25.1147i | −0.623404 | + | 1.07977i | 0.365444 | + | 0.930834i | \(0.380917\pi\) |
−0.988847 | + | 0.148933i | \(0.952416\pi\) | |||||||
\(542\) | 0 | 0 | ||||||||
\(543\) | 0 | 0 | ||||||||
\(544\) | 0 | 0 | ||||||||
\(545\) | 0 | 0 | ||||||||
\(546\) | 0 | 0 | ||||||||
\(547\) | 41.0000 | 1.75303 | 0.876517 | − | 0.481371i | \(-0.159861\pi\) | ||||
0.876517 | + | 0.481371i | \(0.159861\pi\) | |||||||
\(548\) | 0 | 0 | ||||||||
\(549\) | 0 | 0 | ||||||||
\(550\) | 0 | 0 | ||||||||
\(551\) | 0 | 0 | ||||||||
\(552\) | 0 | 0 | ||||||||
\(553\) | 8.00000 | + | 6.92820i | 0.340195 | + | 0.294617i | ||||
\(554\) | 0 | 0 | ||||||||
\(555\) | 0 | 0 | ||||||||
\(556\) | −16.0000 | − | 27.7128i | −0.678551 | − | 1.17529i | ||||
\(557\) | 0 | 0 | 0.866025 | − | 0.500000i | \(-0.166667\pi\) | ||||
−0.866025 | + | 0.500000i | \(0.833333\pi\) | |||||||
\(558\) | 0 | 0 | ||||||||
\(559\) | −26.0000 | −1.09968 | ||||||||
\(560\) | 0 | 0 | ||||||||
\(561\) | 0 | 0 | ||||||||
\(562\) | 0 | 0 | ||||||||
\(563\) | 0 | 0 | 0.866025 | − | 0.500000i | \(-0.166667\pi\) | ||||
−0.866025 | + | 0.500000i | \(0.833333\pi\) | |||||||
\(564\) | 0 | 0 | ||||||||
\(565\) | 0 | 0 | ||||||||
\(566\) | 0 | 0 | ||||||||
\(567\) | 0 | 0 | ||||||||
\(568\) | 0 | 0 | ||||||||
\(569\) | 0 | 0 | −0.866025 | − | 0.500000i | \(-0.833333\pi\) | ||||
0.866025 | + | 0.500000i | \(0.166667\pi\) | |||||||
\(570\) | 0 | 0 | ||||||||
\(571\) | 15.5000 | + | 26.8468i | 0.648655 | + | 1.12350i | 0.983444 | + | 0.181210i | \(0.0580014\pi\) |
−0.334790 | + | 0.942293i | \(0.608665\pi\) | |||||||
\(572\) | 0 | 0 | ||||||||
\(573\) | 0 | 0 | ||||||||
\(574\) | 0 | 0 | ||||||||
\(575\) | 0 | 0 | ||||||||
\(576\) | 0 | 0 | ||||||||
\(577\) | 23.0000 | + | 39.8372i | 0.957503 | + | 1.65844i | 0.728535 | + | 0.685009i | \(0.240202\pi\) |
0.228968 | + | 0.973434i | \(0.426465\pi\) | |||||||
\(578\) | 0 | 0 | ||||||||
\(579\) | 0 | 0 | ||||||||
\(580\) | 0 | 0 | ||||||||
\(581\) | 0 | 0 | ||||||||
\(582\) | 0 | 0 | ||||||||
\(583\) | 0 | 0 | ||||||||
\(584\) | 0 | 0 | ||||||||
\(585\) | 0 | 0 | ||||||||
\(586\) | 0 | 0 | ||||||||
\(587\) | 0 | 0 | − | 1.00000i | \(-0.5\pi\) | |||||
1.00000i | \(0.5\pi\) | |||||||||
\(588\) | 0 | 0 | ||||||||
\(589\) | −77.0000 | −3.17273 | ||||||||
\(590\) | 0 | 0 | ||||||||
\(591\) | 0 | 0 | ||||||||
\(592\) | 20.0000 | + | 34.6410i | 0.821995 | + | 1.42374i | ||||
\(593\) | 0 | 0 | −0.866025 | − | 0.500000i | \(-0.833333\pi\) | ||||
0.866025 | + | 0.500000i | \(0.166667\pi\) | |||||||
\(594\) | 0 | 0 | ||||||||
\(595\) | 0 | 0 | ||||||||
\(596\) | 0 | 0 | ||||||||
\(597\) | 0 | 0 | ||||||||
\(598\) | 0 | 0 | ||||||||
\(599\) | 0 | 0 | 0.866025 | − | 0.500000i | \(-0.166667\pi\) | ||||
−0.866025 | + | 0.500000i | \(0.833333\pi\) | |||||||
\(600\) | 0 | 0 | ||||||||
\(601\) | 23.0000 | 0.938190 | 0.469095 | − | 0.883148i | \(-0.344580\pi\) | ||||
0.469095 | + | 0.883148i | \(0.344580\pi\) | |||||||
\(602\) | 0 | 0 | ||||||||
\(603\) | 0 | 0 | ||||||||
\(604\) | 23.0000 | − | 39.8372i | 0.935857 | − | 1.62095i | ||||
\(605\) | 0 | 0 | ||||||||
\(606\) | 0 | 0 | ||||||||
\(607\) | 24.5000 | − | 42.4352i | 0.994424 | − | 1.72239i | 0.405887 | − | 0.913923i | \(-0.366962\pi\) |
0.588537 | − | 0.808470i | \(-0.299704\pi\) | |||||||
\(608\) | 0 | 0 | ||||||||
\(609\) | 0 | 0 | ||||||||
\(610\) | 0 | 0 | ||||||||
\(611\) | 0 | 0 | ||||||||
\(612\) | 0 | 0 | ||||||||
\(613\) | 18.5000 | + | 32.0429i | 0.747208 | + | 1.29420i | 0.949156 | + | 0.314806i | \(0.101939\pi\) |
−0.201948 | + | 0.979396i | \(0.564727\pi\) | |||||||
\(614\) | 0 | 0 | ||||||||
\(615\) | 0 | 0 | ||||||||
\(616\) | 0 | 0 | ||||||||
\(617\) | 0 | 0 | − | 1.00000i | \(-0.5\pi\) | |||||
1.00000i | \(0.5\pi\) | |||||||||
\(618\) | 0 | 0 | ||||||||
\(619\) | −16.0000 | − | 27.7128i | −0.643094 | − | 1.11387i | −0.984738 | − | 0.174042i | \(-0.944317\pi\) |
0.341644 | − | 0.939829i | \(-0.389016\pi\) | |||||||
\(620\) | 0 | 0 | ||||||||
\(621\) | 0 | 0 | ||||||||
\(622\) | 0 | 0 | ||||||||
\(623\) | 0 | 0 | ||||||||
\(624\) | 0 | 0 | ||||||||
\(625\) | −12.5000 | + | 21.6506i | −0.500000 | + | 0.866025i | ||||
\(626\) | 0 | 0 | ||||||||
\(627\) | 0 | 0 | ||||||||
\(628\) | 14.0000 | − | 24.2487i | 0.558661 | − | 0.967629i | ||||
\(629\) | 0 | 0 | ||||||||
\(630\) | 0 | 0 | ||||||||
\(631\) | −1.00000 | −0.0398094 | −0.0199047 | − | 0.999802i | \(-0.506336\pi\) | ||||
−0.0199047 | + | 0.999802i | \(0.506336\pi\) | |||||||
\(632\) | 0 | 0 | ||||||||
\(633\) | 0 | 0 | ||||||||
\(634\) | 0 | 0 | ||||||||
\(635\) | 0 | 0 | ||||||||
\(636\) | 0 | 0 | ||||||||
\(637\) | −13.0000 | − | 5.19615i | −0.515079 | − | 0.205879i | ||||
\(638\) | 0 | 0 | ||||||||
\(639\) | 0 | 0 | ||||||||
\(640\) | 0 | 0 | ||||||||
\(641\) | 0 | 0 | 0.866025 | − | 0.500000i | \(-0.166667\pi\) | ||||
−0.866025 | + | 0.500000i | \(0.833333\pi\) | |||||||
\(642\) | 0 | 0 | ||||||||
\(643\) | 47.0000 | 1.85350 | 0.926750 | − | 0.375680i | \(-0.122591\pi\) | ||||
0.926750 | + | 0.375680i | \(0.122591\pi\) | |||||||
\(644\) | 0 | 0 | ||||||||
\(645\) | 0 | 0 | ||||||||
\(646\) | 0 | 0 | ||||||||
\(647\) | 0 | 0 | 0.866025 | − | 0.500000i | \(-0.166667\pi\) | ||||
−0.866025 | + | 0.500000i | \(0.833333\pi\) | |||||||
\(648\) | 0 | 0 | ||||||||
\(649\) | 0 | 0 | ||||||||
\(650\) | 0 | 0 | ||||||||
\(651\) | 0 | 0 | ||||||||
\(652\) | −34.0000 | −1.33154 | ||||||||
\(653\) | 0 | 0 | −0.866025 | − | 0.500000i | \(-0.833333\pi\) | ||||
0.866025 | + | 0.500000i | \(0.166667\pi\) | |||||||
\(654\) | 0 | 0 | ||||||||
\(655\) | 0 | 0 | ||||||||
\(656\) | 0 | 0 | ||||||||
\(657\) | 0 | 0 | ||||||||
\(658\) | 0 | 0 | ||||||||
\(659\) | 0 | 0 | − | 1.00000i | \(-0.5\pi\) | |||||
1.00000i | \(0.5\pi\) | |||||||||
\(660\) | 0 | 0 | ||||||||
\(661\) | 24.5000 | + | 42.4352i | 0.952940 | + | 1.65054i | 0.739014 | + | 0.673690i | \(0.235292\pi\) |
0.213925 | + | 0.976850i | \(0.431375\pi\) | |||||||
\(662\) | 0 | 0 | ||||||||
\(663\) | 0 | 0 | ||||||||
\(664\) | 0 | 0 | ||||||||
\(665\) | 0 | 0 | ||||||||
\(666\) | 0 | 0 | ||||||||
\(667\) | 0 | 0 | ||||||||
\(668\) | 0 | 0 | ||||||||
\(669\) | 0 | 0 | ||||||||
\(670\) | 0 | 0 | ||||||||
\(671\) | 0 | 0 | ||||||||
\(672\) | 0 | 0 | ||||||||
\(673\) | −37.0000 | −1.42625 | −0.713123 | − | 0.701039i | \(-0.752720\pi\) | ||||
−0.713123 | + | 0.701039i | \(0.752720\pi\) | |||||||
\(674\) | 0 | 0 | ||||||||
\(675\) | 0 | 0 | ||||||||
\(676\) | −9.00000 | − | 15.5885i | −0.346154 | − | 0.599556i | ||||
\(677\) | 0 | 0 | −0.866025 | − | 0.500000i | \(-0.833333\pi\) | ||||
0.866025 | + | 0.500000i | \(0.166667\pi\) | |||||||
\(678\) | 0 | 0 | ||||||||
\(679\) | −2.50000 | + | 12.9904i | −0.0959412 | + | 0.498525i | ||||
\(680\) | 0 | 0 | ||||||||
\(681\) | 0 | 0 | ||||||||
\(682\) | 0 | 0 | ||||||||
\(683\) | 0 | 0 | 0.866025 | − | 0.500000i | \(-0.166667\pi\) | ||||
−0.866025 | + | 0.500000i | \(0.833333\pi\) | |||||||
\(684\) | 0 | 0 | ||||||||
\(685\) | 0 | 0 | ||||||||
\(686\) | 0 | 0 | ||||||||
\(687\) | 0 | 0 | ||||||||
\(688\) | 26.0000 | − | 45.0333i | 0.991241 | − | 1.71688i | ||||
\(689\) | 0 | 0 | ||||||||
\(690\) | 0 | 0 | ||||||||
\(691\) | −20.5000 | + | 35.5070i | −0.779857 | + | 1.35075i | 0.152167 | + | 0.988355i | \(0.451375\pi\) |
−0.932024 | + | 0.362397i | \(0.881959\pi\) | |||||||
\(692\) | 0 | 0 | ||||||||
\(693\) | 0 | 0 | ||||||||
\(694\) | 0 | 0 | ||||||||
\(695\) | 0 | 0 | ||||||||
\(696\) | 0 | 0 | ||||||||
\(697\) | 0 | 0 | ||||||||
\(698\) | 0 | 0 | ||||||||
\(699\) | 0 | 0 | ||||||||
\(700\) | −20.0000 | − | 17.3205i | −0.755929 | − | 0.654654i | ||||
\(701\) | 0 | 0 | − | 1.00000i | \(-0.5\pi\) | |||||
1.00000i | \(0.5\pi\) | |||||||||
\(702\) | 0 | 0 | ||||||||
\(703\) | −35.0000 | − | 60.6218i | −1.32005 | − | 2.28639i | ||||
\(704\) | 0 | 0 | ||||||||
\(705\) | 0 | 0 | ||||||||
\(706\) | 0 | 0 | ||||||||
\(707\) | 0 | 0 | ||||||||
\(708\) | 0 | 0 | ||||||||
\(709\) | 15.5000 | − | 26.8468i | 0.582115 | − | 1.00825i | −0.413114 | − | 0.910679i | \(-0.635559\pi\) |
0.995228 | − | 0.0975728i | \(-0.0311079\pi\) | |||||||
\(710\) | 0 | 0 | ||||||||
\(711\) | 0 | 0 | ||||||||
\(712\) | 0 | 0 | ||||||||
\(713\) | 0 | 0 | ||||||||
\(714\) | 0 | 0 | ||||||||
\(715\) | 0 | 0 | ||||||||
\(716\) | 0 | 0 | ||||||||
\(717\) | 0 | 0 | ||||||||
\(718\) | 0 | 0 | ||||||||
\(719\) | 0 | 0 | −0.866025 | − | 0.500000i | \(-0.833333\pi\) | ||||
0.866025 | + | 0.500000i | \(0.166667\pi\) | |||||||
\(720\) | 0 | 0 | ||||||||
\(721\) | −40.0000 | − | 34.6410i | −1.48968 | − | 1.29010i | ||||
\(722\) | 0 | 0 | ||||||||
\(723\) | 0 | 0 | ||||||||
\(724\) | −7.00000 | − | 12.1244i | −0.260153 | − | 0.450598i | ||||
\(725\) | 0 | 0 | ||||||||
\(726\) | 0 | 0 | ||||||||
\(727\) | 5.00000 | 0.185440 | 0.0927199 | − | 0.995692i | \(-0.470444\pi\) | ||||
0.0927199 | + | 0.995692i | \(0.470444\pi\) | |||||||
\(728\) | 0 | 0 | ||||||||
\(729\) | 0 | 0 | ||||||||
\(730\) | 0 | 0 | ||||||||
\(731\) | 0 | 0 | ||||||||
\(732\) | 0 | 0 | ||||||||
\(733\) | 21.5000 | − | 37.2391i | 0.794121 | − | 1.37546i | −0.129275 | − | 0.991609i | \(-0.541265\pi\) |
0.923396 | − | 0.383849i | \(-0.125402\pi\) | |||||||
\(734\) | 0 | 0 | ||||||||
\(735\) | 0 | 0 | ||||||||
\(736\) | 0 | 0 | ||||||||
\(737\) | 0 | 0 | ||||||||
\(738\) | 0 | 0 | ||||||||
\(739\) | 18.5000 | + | 32.0429i | 0.680534 | + | 1.17872i | 0.974818 | + | 0.223001i | \(0.0715853\pi\) |
−0.294285 | + | 0.955718i | \(0.595081\pi\) | |||||||
\(740\) | 0 | 0 | ||||||||
\(741\) | 0 | 0 | ||||||||
\(742\) | 0 | 0 | ||||||||
\(743\) | 0 | 0 | − | 1.00000i | \(-0.5\pi\) | |||||
1.00000i | \(0.5\pi\) | |||||||||
\(744\) | 0 | 0 | ||||||||
\(745\) | 0 | 0 | ||||||||
\(746\) | 0 | 0 | ||||||||
\(747\) | 0 | 0 | ||||||||
\(748\) | 0 | 0 | ||||||||
\(749\) | 0 | 0 | ||||||||
\(750\) | 0 | 0 | ||||||||
\(751\) | −20.5000 | + | 35.5070i | −0.748056 | + | 1.29567i | 0.200698 | + | 0.979653i | \(0.435679\pi\) |
−0.948753 | + | 0.316017i | \(0.897654\pi\) | |||||||
\(752\) | 0 | 0 | ||||||||
\(753\) | 0 | 0 | ||||||||
\(754\) | 0 | 0 | ||||||||
\(755\) | 0 | 0 | ||||||||
\(756\) | 0 | 0 | ||||||||
\(757\) | −55.0000 | −1.99901 | −0.999505 | − | 0.0314762i | \(-0.989979\pi\) | ||||
−0.999505 | + | 0.0314762i | \(0.989979\pi\) | |||||||
\(758\) | 0 | 0 | ||||||||
\(759\) | 0 | 0 | ||||||||
\(760\) | 0 | 0 | ||||||||
\(761\) | 0 | 0 | −0.866025 | − | 0.500000i | \(-0.833333\pi\) | ||||
0.866025 | + | 0.500000i | \(0.166667\pi\) | |||||||
\(762\) | 0 | 0 | ||||||||
\(763\) | −47.5000 | + | 16.4545i | −1.71962 | + | 0.595692i | ||||
\(764\) | 0 | 0 | ||||||||
\(765\) | 0 | 0 | ||||||||
\(766\) | 0 | 0 | ||||||||
\(767\) | 0 | 0 | ||||||||
\(768\) | 0 | 0 | ||||||||
\(769\) | −49.0000 | −1.76699 | −0.883493 | − | 0.468445i | \(-0.844814\pi\) | ||||
−0.883493 | + | 0.468445i | \(0.844814\pi\) | |||||||
\(770\) | 0 | 0 | ||||||||
\(771\) | 0 | 0 | ||||||||
\(772\) | 2.00000 | − | 3.46410i | 0.0719816 | − | 0.124676i | ||||
\(773\) | 0 | 0 | 0.866025 | − | 0.500000i | \(-0.166667\pi\) | ||||
−0.866025 | + | 0.500000i | \(0.833333\pi\) | |||||||
\(774\) | 0 | 0 | ||||||||
\(775\) | 27.5000 | − | 47.6314i | 0.987829 | − | 1.71097i | ||||
\(776\) | 0 | 0 | ||||||||
\(777\) | 0 | 0 | ||||||||
\(778\) | 0 | 0 | ||||||||
\(779\) | 0 | 0 | ||||||||
\(780\) | 0 | 0 | ||||||||
\(781\) | 0 | 0 | ||||||||
\(782\) | 0 | 0 | ||||||||
\(783\) | 0 | 0 | ||||||||
\(784\) | 22.0000 | − | 17.3205i | 0.785714 | − | 0.618590i | ||||
\(785\) | 0 | 0 | ||||||||
\(786\) | 0 | 0 | ||||||||
\(787\) | 12.5000 | + | 21.6506i | 0.445577 | + | 0.771762i | 0.998092 | − | 0.0617409i | \(-0.0196653\pi\) |
−0.552515 | + | 0.833503i | \(0.686332\pi\) | |||||||
\(788\) | 0 | 0 | ||||||||
\(789\) | 0 | 0 | ||||||||
\(790\) | 0 | 0 | ||||||||
\(791\) | 0 | 0 | ||||||||
\(792\) | 0 | 0 | ||||||||
\(793\) | 13.0000 | − | 22.5167i | 0.461644 | − | 0.799590i | ||||
\(794\) | 0 | 0 | ||||||||
\(795\) | 0 | 0 | ||||||||
\(796\) | 17.0000 | − | 29.4449i | 0.602549 | − | 1.04365i | ||||
\(797\) | 0 | 0 | − | 1.00000i | \(-0.5\pi\) | |||||
1.00000i | \(0.5\pi\) | |||||||||
\(798\) | 0 | 0 | ||||||||
\(799\) | 0 | 0 | ||||||||
\(800\) | 0 | 0 | ||||||||
\(801\) | 0 | 0 | ||||||||
\(802\) | 0 | 0 | ||||||||
\(803\) | 0 | 0 | ||||||||
\(804\) | 0 | 0 | ||||||||
\(805\) | 0 | 0 | ||||||||
\(806\) | 0 | 0 | ||||||||
\(807\) | 0 | 0 | ||||||||
\(808\) | 0 | 0 | ||||||||
\(809\) | 0 | 0 | 0.866025 | − | 0.500000i | \(-0.166667\pi\) | ||||
−0.866025 | + | 0.500000i | \(0.833333\pi\) | |||||||
\(810\) | 0 | 0 | ||||||||
\(811\) | 56.0000 | 1.96643 | 0.983213 | − | 0.182462i | \(-0.0584065\pi\) | ||||
0.983213 | + | 0.182462i | \(0.0584065\pi\) | |||||||
\(812\) | 0 | 0 | ||||||||
\(813\) | 0 | 0 | ||||||||
\(814\) | 0 | 0 | ||||||||
\(815\) | 0 | 0 | ||||||||
\(816\) | 0 | 0 | ||||||||
\(817\) | −45.5000 | + | 78.8083i | −1.59184 | + | 2.75715i | ||||
\(818\) | 0 | 0 | ||||||||
\(819\) | 0 | 0 | ||||||||
\(820\) | 0 | 0 | ||||||||
\(821\) | 0 | 0 | −0.866025 | − | 0.500000i | \(-0.833333\pi\) | ||||
0.866025 | + | 0.500000i | \(0.166667\pi\) | |||||||
\(822\) | 0 | 0 | ||||||||
\(823\) | −23.5000 | − | 40.7032i | −0.819159 | − | 1.41882i | −0.906303 | − | 0.422628i | \(-0.861108\pi\) |
0.0871445 | − | 0.996196i | \(-0.472226\pi\) | |||||||
\(824\) | 0 | 0 | ||||||||
\(825\) | 0 | 0 | ||||||||
\(826\) | 0 | 0 | ||||||||
\(827\) | 0 | 0 | − | 1.00000i | \(-0.5\pi\) | |||||
1.00000i | \(0.5\pi\) | |||||||||
\(828\) | 0 | 0 | ||||||||
\(829\) | 3.50000 | + | 6.06218i | 0.121560 | + | 0.210548i | 0.920383 | − | 0.391018i | \(-0.127877\pi\) |
−0.798823 | + | 0.601566i | \(0.794544\pi\) | |||||||
\(830\) | 0 | 0 | ||||||||
\(831\) | 0 | 0 | ||||||||
\(832\) | −16.0000 | −0.554700 | ||||||||
\(833\) | 0 | 0 | ||||||||
\(834\) | 0 | 0 | ||||||||
\(835\) | 0 | 0 | ||||||||
\(836\) | 0 | 0 | ||||||||
\(837\) | 0 | 0 | ||||||||
\(838\) | 0 | 0 | ||||||||
\(839\) | 0 | 0 | − | 1.00000i | \(-0.5\pi\) | |||||
1.00000i | \(0.5\pi\) | |||||||||
\(840\) | 0 | 0 | ||||||||
\(841\) | −29.0000 | −1.00000 | ||||||||
\(842\) | 0 | 0 | ||||||||
\(843\) | 0 | 0 | ||||||||
\(844\) | 29.0000 | + | 50.2295i | 0.998221 | + | 1.72897i | ||||
\(845\) | 0 | 0 | ||||||||
\(846\) | 0 | 0 | ||||||||
\(847\) | 22.0000 | + | 19.0526i | 0.755929 | + | 0.654654i | ||||
\(848\) | 0 | 0 | ||||||||
\(849\) | 0 | 0 | ||||||||
\(850\) | 0 | 0 | ||||||||
\(851\) | 0 | 0 | ||||||||
\(852\) | 0 | 0 | ||||||||
\(853\) | 35.0000 | 1.19838 | 0.599189 | − | 0.800608i | \(-0.295490\pi\) | ||||
0.599189 | + | 0.800608i | \(0.295490\pi\) | |||||||
\(854\) | 0 | 0 | ||||||||
\(855\) | 0 | 0 | ||||||||
\(856\) | 0 | 0 | ||||||||
\(857\) | 0 | 0 | 0.866025 | − | 0.500000i | \(-0.166667\pi\) | ||||
−0.866025 | + | 0.500000i | \(0.833333\pi\) | |||||||
\(858\) | 0 | 0 | ||||||||
\(859\) | 21.5000 | − | 37.2391i | 0.733571 | − | 1.27058i | −0.221777 | − | 0.975097i | \(-0.571186\pi\) |
0.955348 | − | 0.295484i | \(-0.0954809\pi\) | |||||||
\(860\) | 0 | 0 | ||||||||
\(861\) | 0 | 0 | ||||||||
\(862\) | 0 | 0 | ||||||||
\(863\) | 0 | 0 | −0.866025 | − | 0.500000i | \(-0.833333\pi\) | ||||
0.866025 | + | 0.500000i | \(0.166667\pi\) | |||||||
\(864\) | 0 | 0 | ||||||||
\(865\) | 0 | 0 | ||||||||
\(866\) | 0 | 0 | ||||||||
\(867\) | 0 | 0 | ||||||||
\(868\) | 44.0000 | + | 38.1051i | 1.49346 | + | 1.29337i | ||||
\(869\) | 0 | 0 | ||||||||
\(870\) | 0 | 0 | ||||||||
\(871\) | 16.0000 | + | 27.7128i | 0.542139 | + | 0.939013i | ||||
\(872\) | 0 | 0 | ||||||||
\(873\) | 0 | 0 | ||||||||
\(874\) | 0 | 0 | ||||||||
\(875\) | 0 | 0 | ||||||||
\(876\) | 0 | 0 | ||||||||
\(877\) | 12.5000 | − | 21.6506i | 0.422095 | − | 0.731090i | −0.574049 | − | 0.818821i | \(-0.694628\pi\) |
0.996144 | + | 0.0877308i | \(0.0279615\pi\) | |||||||
\(878\) | 0 | 0 | ||||||||
\(879\) | 0 | 0 | ||||||||
\(880\) | 0 | 0 | ||||||||
\(881\) | 0 | 0 | − | 1.00000i | \(-0.5\pi\) | |||||
1.00000i | \(0.5\pi\) | |||||||||
\(882\) | 0 | 0 | ||||||||
\(883\) | 47.0000 | 1.58168 | 0.790838 | − | 0.612026i | \(-0.209645\pi\) | ||||
0.790838 | + | 0.612026i | \(0.209645\pi\) | |||||||
\(884\) | 0 | 0 | ||||||||
\(885\) | 0 | 0 | ||||||||
\(886\) | 0 | 0 | ||||||||
\(887\) | 0 | 0 | −0.866025 | − | 0.500000i | \(-0.833333\pi\) | ||||
0.866025 | + | 0.500000i | \(0.166667\pi\) | |||||||
\(888\) | 0 | 0 | ||||||||
\(889\) | 0.500000 | − | 2.59808i | 0.0167695 | − | 0.0871367i | ||||
\(890\) | 0 | 0 | ||||||||
\(891\) | 0 | 0 | ||||||||
\(892\) | −28.0000 | − | 48.4974i | −0.937509 | − | 1.62381i | ||||
\(893\) | 0 | 0 | ||||||||
\(894\) | 0 | 0 | ||||||||
\(895\) | 0 | 0 | ||||||||
\(896\) | 0 | 0 | ||||||||
\(897\) | 0 | 0 | ||||||||
\(898\) | 0 | 0 | ||||||||
\(899\) | 0 | 0 | ||||||||
\(900\) | 0 | 0 | ||||||||
\(901\) | 0 | 0 | ||||||||
\(902\) | 0 | 0 | ||||||||
\(903\) | 0 | 0 | ||||||||
\(904\) | 0 | 0 | ||||||||
\(905\) | 0 | 0 | ||||||||
\(906\) | 0 | 0 | ||||||||
\(907\) | 20.0000 | + | 34.6410i | 0.664089 | + | 1.15024i | 0.979531 | + | 0.201291i | \(0.0645138\pi\) |
−0.315442 | + | 0.948945i | \(0.602153\pi\) | |||||||
\(908\) | 0 | 0 | ||||||||
\(909\) | 0 | 0 | ||||||||
\(910\) | 0 | 0 | ||||||||
\(911\) | 0 | 0 | − | 1.00000i | \(-0.5\pi\) | |||||
1.00000i | \(0.5\pi\) | |||||||||
\(912\) | 0 | 0 | ||||||||
\(913\) | 0 | 0 | ||||||||
\(914\) | 0 | 0 | ||||||||
\(915\) | 0 | 0 | ||||||||
\(916\) | −58.0000 | −1.91637 | ||||||||
\(917\) | 0 | 0 | ||||||||
\(918\) | 0 | 0 | ||||||||
\(919\) | −26.5000 | + | 45.8993i | −0.874154 | + | 1.51408i | −0.0164935 | + | 0.999864i | \(0.505250\pi\) |
−0.857661 | + | 0.514216i | \(0.828083\pi\) | |||||||
\(920\) | 0 | 0 | ||||||||
\(921\) | 0 | 0 | ||||||||
\(922\) | 0 | 0 | ||||||||
\(923\) | 0 | 0 | ||||||||
\(924\) | 0 | 0 | ||||||||
\(925\) | 50.0000 | 1.64399 | ||||||||
\(926\) | 0 | 0 | ||||||||
\(927\) | 0 | 0 | ||||||||
\(928\) | 0 | 0 | ||||||||
\(929\) | 0 | 0 | −0.866025 | − | 0.500000i | \(-0.833333\pi\) | ||||
0.866025 | + | 0.500000i | \(0.166667\pi\) | |||||||
\(930\) | 0 | 0 | ||||||||
\(931\) | −38.5000 | + | 30.3109i | −1.26179 | + | 0.993399i | ||||
\(932\) | 0 | 0 | ||||||||
\(933\) | 0 | 0 | ||||||||
\(934\) | 0 | 0 | ||||||||
\(935\) | 0 | 0 | ||||||||
\(936\) | 0 | 0 | ||||||||
\(937\) | 26.0000 | 0.849383 | 0.424691 | − | 0.905338i | \(-0.360383\pi\) | ||||
0.424691 | + | 0.905338i | \(0.360383\pi\) | |||||||
\(938\) | 0 | 0 | ||||||||
\(939\) | 0 | 0 | ||||||||
\(940\) | 0 | 0 | ||||||||
\(941\) | 0 | 0 | 0.866025 | − | 0.500000i | \(-0.166667\pi\) | ||||
−0.866025 | + | 0.500000i | \(0.833333\pi\) | |||||||
\(942\) | 0 | 0 | ||||||||
\(943\) | 0 | 0 | ||||||||
\(944\) | 0 | 0 | ||||||||
\(945\) | 0 | 0 | ||||||||
\(946\) | 0 | 0 | ||||||||
\(947\) | 0 | 0 | −0.866025 | − | 0.500000i | \(-0.833333\pi\) | ||||
0.866025 | + | 0.500000i | \(0.166667\pi\) | |||||||
\(948\) | 0 | 0 | ||||||||
\(949\) | 7.00000 | + | 12.1244i | 0.227230 | + | 0.393573i | ||||
\(950\) | 0 | 0 | ||||||||
\(951\) | 0 | 0 | ||||||||
\(952\) | 0 | 0 | ||||||||
\(953\) | 0 | 0 | − | 1.00000i | \(-0.5\pi\) | |||||
1.00000i | \(0.5\pi\) | |||||||||
\(954\) | 0 | 0 | ||||||||
\(955\) | 0 | 0 | ||||||||
\(956\) | 0 | 0 | ||||||||
\(957\) | 0 | 0 | ||||||||
\(958\) | 0 | 0 | ||||||||
\(959\) | 0 | 0 | ||||||||
\(960\) | 0 | 0 | ||||||||
\(961\) | −45.0000 | + | 77.9423i | −1.45161 | + | 2.51427i | ||||
\(962\) | 0 | 0 | ||||||||
\(963\) | 0 | 0 | ||||||||
\(964\) | −31.0000 | + | 53.6936i | −0.998443 | + | 1.72935i | ||||
\(965\) | 0 | 0 | ||||||||
\(966\) | 0 | 0 | ||||||||
\(967\) | 20.0000 | 0.643157 | 0.321578 | − | 0.946883i | \(-0.395787\pi\) | ||||
0.321578 | + | 0.946883i | \(0.395787\pi\) | |||||||
\(968\) | 0 | 0 | ||||||||
\(969\) | 0 | 0 | ||||||||
\(970\) | 0 | 0 | ||||||||
\(971\) | 0 | 0 | −0.866025 | − | 0.500000i | \(-0.833333\pi\) | ||||
0.866025 | + | 0.500000i | \(0.166667\pi\) | |||||||
\(972\) | 0 | 0 | ||||||||
\(973\) | 8.00000 | − | 41.5692i | 0.256468 | − | 1.33265i | ||||
\(974\) | 0 | 0 | ||||||||
\(975\) | 0 | 0 | ||||||||
\(976\) | 26.0000 | + | 45.0333i | 0.832240 | + | 1.44148i | ||||
\(977\) | 0 | 0 | 0.866025 | − | 0.500000i | \(-0.166667\pi\) | ||||
−0.866025 | + | 0.500000i | \(0.833333\pi\) | |||||||
\(978\) | 0 | 0 | ||||||||
\(979\) | 0 | 0 | ||||||||
\(980\) | 0 | 0 | ||||||||
\(981\) | 0 | 0 | ||||||||
\(982\) | 0 | 0 | ||||||||
\(983\) | 0 | 0 | 0.866025 | − | 0.500000i | \(-0.166667\pi\) | ||||
−0.866025 | + | 0.500000i | \(0.833333\pi\) | |||||||
\(984\) | 0 | 0 | ||||||||
\(985\) | 0 | 0 | ||||||||
\(986\) | 0 | 0 | ||||||||
\(987\) | 0 | 0 | ||||||||
\(988\) | 28.0000 | 0.890799 | ||||||||
\(989\) | 0 | 0 | ||||||||
\(990\) | 0 | 0 | ||||||||
\(991\) | −22.0000 | − | 38.1051i | −0.698853 | − | 1.21045i | −0.968864 | − | 0.247592i | \(-0.920361\pi\) |
0.270011 | − | 0.962857i | \(-0.412973\pi\) | |||||||
\(992\) | 0 | 0 | ||||||||
\(993\) | 0 | 0 | ||||||||
\(994\) | 0 | 0 | ||||||||
\(995\) | 0 | 0 | ||||||||
\(996\) | 0 | 0 | ||||||||
\(997\) | −29.5000 | − | 51.0955i | −0.934274 | − | 1.61821i | −0.775923 | − | 0.630828i | \(-0.782715\pi\) |
−0.158352 | − | 0.987383i | \(-0.550618\pi\) | |||||||
\(998\) | 0 | 0 | ||||||||
\(999\) | 0 | 0 |
(See \(a_n\) instead)
(See \(a_n\) instead)
(See \(a_n\) instead)
(See only \(a_p\))
(See only \(a_p\))
(See only \(a_p\))
Twists
By twisting character | |||||||
---|---|---|---|---|---|---|---|
Char | Parity | Ord | Type | Twist | Min | Dim | |
1.1 | even | 1 | trivial | 189.2.e.b.163.1 | yes | 2 | |
3.2 | odd | 2 | CM | 189.2.e.b.163.1 | yes | 2 | |
7.2 | even | 3 | 1323.2.a.k.1.1 | 1 | |||
7.4 | even | 3 | inner | 189.2.e.b.109.1 | ✓ | 2 | |
7.5 | odd | 6 | 1323.2.a.j.1.1 | 1 | |||
9.2 | odd | 6 | 567.2.h.d.352.1 | 2 | |||
9.4 | even | 3 | 567.2.g.c.541.1 | 2 | |||
9.5 | odd | 6 | 567.2.g.c.541.1 | 2 | |||
9.7 | even | 3 | 567.2.h.d.352.1 | 2 | |||
21.2 | odd | 6 | 1323.2.a.k.1.1 | 1 | |||
21.5 | even | 6 | 1323.2.a.j.1.1 | 1 | |||
21.11 | odd | 6 | inner | 189.2.e.b.109.1 | ✓ | 2 | |
63.4 | even | 3 | 567.2.h.d.298.1 | 2 | |||
63.11 | odd | 6 | 567.2.g.c.109.1 | 2 | |||
63.25 | even | 3 | 567.2.g.c.109.1 | 2 | |||
63.32 | odd | 6 | 567.2.h.d.298.1 | 2 |
By twisted newform | |||||||
---|---|---|---|---|---|---|---|
Twist | Min | Dim | Char | Parity | Ord | Type | |
189.2.e.b.109.1 | ✓ | 2 | 7.4 | even | 3 | inner | |
189.2.e.b.109.1 | ✓ | 2 | 21.11 | odd | 6 | inner | |
189.2.e.b.163.1 | yes | 2 | 1.1 | even | 1 | trivial | |
189.2.e.b.163.1 | yes | 2 | 3.2 | odd | 2 | CM | |
567.2.g.c.109.1 | 2 | 63.11 | odd | 6 | |||
567.2.g.c.109.1 | 2 | 63.25 | even | 3 | |||
567.2.g.c.541.1 | 2 | 9.4 | even | 3 | |||
567.2.g.c.541.1 | 2 | 9.5 | odd | 6 | |||
567.2.h.d.298.1 | 2 | 63.4 | even | 3 | |||
567.2.h.d.298.1 | 2 | 63.32 | odd | 6 | |||
567.2.h.d.352.1 | 2 | 9.2 | odd | 6 | |||
567.2.h.d.352.1 | 2 | 9.7 | even | 3 | |||
1323.2.a.j.1.1 | 1 | 7.5 | odd | 6 | |||
1323.2.a.j.1.1 | 1 | 21.5 | even | 6 | |||
1323.2.a.k.1.1 | 1 | 7.2 | even | 3 | |||
1323.2.a.k.1.1 | 1 | 21.2 | odd | 6 |