Properties

Label 189.2.g.a
Level $189$
Weight $2$
Character orbit 189.g
Analytic conductor $1.509$
Analytic rank $0$
Dimension $2$
Inner twists $2$

Related objects

Downloads

Learn more

Show commands: Magma / PariGP / SageMath

Newspace parameters

comment: Compute space of new eigenforms
 
[N,k,chi] = [189,2,Mod(100,189)]
 
mf = mfinit([N,k,chi],0)
 
lf = mfeigenbasis(mf)
 
from sage.modular.dirichlet import DirichletCharacter
 
H = DirichletGroup(189, base_ring=CyclotomicField(6))
 
chi = DirichletCharacter(H, H._module([4, 2]))
 
N = Newforms(chi, 2, names="a")
 
//Please install CHIMP (https://github.com/edgarcosta/CHIMP) if you want to run this code
 
chi := DirichletCharacter("189.100");
 
S:= CuspForms(chi, 2);
 
N := Newforms(S);
 
Level: \( N \) \(=\) \( 189 = 3^{3} \cdot 7 \)
Weight: \( k \) \(=\) \( 2 \)
Character orbit: \([\chi]\) \(=\) 189.g (of order \(3\), degree \(2\), not minimal)

Newform invariants

comment: select newform
 
sage: f = N[0] # Warning: the index may be different
 
gp: f = lf[1] \\ Warning: the index may be different
 
Self dual: no
Analytic conductor: \(1.50917259820\)
Analytic rank: \(0\)
Dimension: \(2\)
Coefficient field: \(\Q(\sqrt{-3}) \)
comment: defining polynomial
 
gp: f.mod \\ as an extension of the character field
 
Defining polynomial: \( x^{2} - x + 1 \) Copy content Toggle raw display
Coefficient ring: \(\Z[a_1, a_2]\)
Coefficient ring index: \( 1 \)
Twist minimal: no (minimal twist has level 63)
Sato-Tate group: $\mathrm{SU}(2)[C_{3}]$

$q$-expansion

comment: q-expansion
 
sage: f.q_expansion() # note that sage often uses an isomorphic number field
 
gp: mfcoefs(f, 20)
 

Coefficients of the \(q\)-expansion are expressed in terms of a primitive root of unity \(\zeta_{6}\). We also show the integral \(q\)-expansion of the trace form.

\(f(q)\) \(=\) \( q + ( - \zeta_{6} + 1) q^{2} + \zeta_{6} q^{4} + q^{5} + (3 \zeta_{6} - 1) q^{7} + 3 q^{8} + ( - \zeta_{6} + 1) q^{10} - 5 q^{11} + ( - 5 \zeta_{6} + 5) q^{13} + (\zeta_{6} + 2) q^{14} + ( - \zeta_{6} + 1) q^{16}+ \cdots + (8 \zeta_{6} - 5) q^{98}+O(q^{100}) \) Copy content Toggle raw display
\(\operatorname{Tr}(f)(q)\) \(=\) \( 2 q + q^{2} + q^{4} + 2 q^{5} + q^{7} + 6 q^{8} + q^{10} - 10 q^{11} + 5 q^{13} + 5 q^{14} + q^{16} + 3 q^{17} - q^{19} + q^{20} - 5 q^{22} - 6 q^{23} - 8 q^{25} - 5 q^{26} - 4 q^{28} - q^{29} + 5 q^{32}+ \cdots - 2 q^{98}+O(q^{100}) \) Copy content Toggle raw display

Character values

We give the values of \(\chi\) on generators for \(\left(\mathbb{Z}/189\mathbb{Z}\right)^\times\).

\(n\) \(29\) \(136\)
\(\chi(n)\) \(-1 + \zeta_{6}\) \(-\zeta_{6}\)

Embeddings

For each embedding \(\iota_m\) of the coefficient field, the values \(\iota_m(a_n)\) are shown below.

For more information on an embedded modular form you can click on its label.

comment: embeddings in the coefficient field
 
gp: mfembed(f)
 
Label   \(\iota_m(\nu)\) \( a_{2} \) \( a_{3} \) \( a_{4} \) \( a_{5} \) \( a_{6} \) \( a_{7} \) \( a_{8} \) \( a_{9} \) \( a_{10} \)
100.1
0.500000 0.866025i
0.500000 + 0.866025i
0.500000 + 0.866025i 0 0.500000 0.866025i 1.00000 0 0.500000 2.59808i 3.00000 0 0.500000 + 0.866025i
172.1 0.500000 0.866025i 0 0.500000 + 0.866025i 1.00000 0 0.500000 + 2.59808i 3.00000 0 0.500000 0.866025i
\(n\): e.g. 2-40 or 990-1000
Significant digits:
Format:

Inner twists

Char Parity Ord Mult Type
1.a even 1 1 trivial
63.g even 3 1 inner

Twists

       By twisting character orbit
Char Parity Ord Mult Type Twist Min Dim
1.a even 1 1 trivial 189.2.g.a 2
3.b odd 2 1 63.2.g.a 2
4.b odd 2 1 3024.2.t.d 2
7.b odd 2 1 1323.2.g.a 2
7.c even 3 1 189.2.h.a 2
7.c even 3 1 1323.2.f.a 2
7.d odd 6 1 1323.2.f.b 2
7.d odd 6 1 1323.2.h.a 2
9.c even 3 1 189.2.h.a 2
9.c even 3 1 567.2.e.b 2
9.d odd 6 1 63.2.h.a yes 2
9.d odd 6 1 567.2.e.a 2
12.b even 2 1 1008.2.t.d 2
21.c even 2 1 441.2.g.a 2
21.g even 6 1 441.2.f.a 2
21.g even 6 1 441.2.h.a 2
21.h odd 6 1 63.2.h.a yes 2
21.h odd 6 1 441.2.f.b 2
28.g odd 6 1 3024.2.q.b 2
36.f odd 6 1 3024.2.q.b 2
36.h even 6 1 1008.2.q.c 2
63.g even 3 1 inner 189.2.g.a 2
63.g even 3 1 3969.2.a.c 1
63.h even 3 1 567.2.e.b 2
63.h even 3 1 1323.2.f.a 2
63.i even 6 1 441.2.f.a 2
63.j odd 6 1 441.2.f.b 2
63.j odd 6 1 567.2.e.a 2
63.k odd 6 1 1323.2.g.a 2
63.k odd 6 1 3969.2.a.a 1
63.l odd 6 1 1323.2.h.a 2
63.n odd 6 1 63.2.g.a 2
63.n odd 6 1 3969.2.a.d 1
63.o even 6 1 441.2.h.a 2
63.s even 6 1 441.2.g.a 2
63.s even 6 1 3969.2.a.f 1
63.t odd 6 1 1323.2.f.b 2
84.n even 6 1 1008.2.q.c 2
252.o even 6 1 1008.2.t.d 2
252.bl odd 6 1 3024.2.t.d 2
    
        By twisted newform orbit
Twist Min Dim Char Parity Ord Mult Type
63.2.g.a 2 3.b odd 2 1
63.2.g.a 2 63.n odd 6 1
63.2.h.a yes 2 9.d odd 6 1
63.2.h.a yes 2 21.h odd 6 1
189.2.g.a 2 1.a even 1 1 trivial
189.2.g.a 2 63.g even 3 1 inner
189.2.h.a 2 7.c even 3 1
189.2.h.a 2 9.c even 3 1
441.2.f.a 2 21.g even 6 1
441.2.f.a 2 63.i even 6 1
441.2.f.b 2 21.h odd 6 1
441.2.f.b 2 63.j odd 6 1
441.2.g.a 2 21.c even 2 1
441.2.g.a 2 63.s even 6 1
441.2.h.a 2 21.g even 6 1
441.2.h.a 2 63.o even 6 1
567.2.e.a 2 9.d odd 6 1
567.2.e.a 2 63.j odd 6 1
567.2.e.b 2 9.c even 3 1
567.2.e.b 2 63.h even 3 1
1008.2.q.c 2 36.h even 6 1
1008.2.q.c 2 84.n even 6 1
1008.2.t.d 2 12.b even 2 1
1008.2.t.d 2 252.o even 6 1
1323.2.f.a 2 7.c even 3 1
1323.2.f.a 2 63.h even 3 1
1323.2.f.b 2 7.d odd 6 1
1323.2.f.b 2 63.t odd 6 1
1323.2.g.a 2 7.b odd 2 1
1323.2.g.a 2 63.k odd 6 1
1323.2.h.a 2 7.d odd 6 1
1323.2.h.a 2 63.l odd 6 1
3024.2.q.b 2 28.g odd 6 1
3024.2.q.b 2 36.f odd 6 1
3024.2.t.d 2 4.b odd 2 1
3024.2.t.d 2 252.bl odd 6 1
3969.2.a.a 1 63.k odd 6 1
3969.2.a.c 1 63.g even 3 1
3969.2.a.d 1 63.n odd 6 1
3969.2.a.f 1 63.s even 6 1

Hecke kernels

This newform subspace can be constructed as the kernel of the linear operator \( T_{2}^{2} - T_{2} + 1 \) acting on \(S_{2}^{\mathrm{new}}(189, [\chi])\). Copy content Toggle raw display

Hecke characteristic polynomials

$p$ $F_p(T)$
$2$ \( T^{2} - T + 1 \) Copy content Toggle raw display
$3$ \( T^{2} \) Copy content Toggle raw display
$5$ \( (T - 1)^{2} \) Copy content Toggle raw display
$7$ \( T^{2} - T + 7 \) Copy content Toggle raw display
$11$ \( (T + 5)^{2} \) Copy content Toggle raw display
$13$ \( T^{2} - 5T + 25 \) Copy content Toggle raw display
$17$ \( T^{2} - 3T + 9 \) Copy content Toggle raw display
$19$ \( T^{2} + T + 1 \) Copy content Toggle raw display
$23$ \( (T + 3)^{2} \) Copy content Toggle raw display
$29$ \( T^{2} + T + 1 \) Copy content Toggle raw display
$31$ \( T^{2} \) Copy content Toggle raw display
$37$ \( T^{2} + 3T + 9 \) Copy content Toggle raw display
$41$ \( T^{2} + 5T + 25 \) Copy content Toggle raw display
$43$ \( T^{2} - T + 1 \) Copy content Toggle raw display
$47$ \( T^{2} \) Copy content Toggle raw display
$53$ \( T^{2} + 9T + 81 \) Copy content Toggle raw display
$59$ \( T^{2} \) Copy content Toggle raw display
$61$ \( T^{2} - 14T + 196 \) Copy content Toggle raw display
$67$ \( T^{2} + 4T + 16 \) Copy content Toggle raw display
$71$ \( (T - 12)^{2} \) Copy content Toggle raw display
$73$ \( T^{2} + 3T + 9 \) Copy content Toggle raw display
$79$ \( T^{2} + 8T + 64 \) Copy content Toggle raw display
$83$ \( T^{2} + 9T + 81 \) Copy content Toggle raw display
$89$ \( T^{2} + 13T + 169 \) Copy content Toggle raw display
$97$ \( T^{2} - 9T + 81 \) Copy content Toggle raw display
show more
show less