Properties

Label 189.2.p.a
Level 189189
Weight 22
Character orbit 189.p
Analytic conductor 1.5091.509
Analytic rank 00
Dimension 22
CM discriminant -3
Inner twists 44

Related objects

Downloads

Learn more

Show commands: Magma / PariGP / SageMath

Newspace parameters

comment: Compute space of new eigenforms
 
[N,k,chi] = [189,2,Mod(26,189)]
 
mf = mfinit([N,k,chi],0)
 
lf = mfeigenbasis(mf)
 
from sage.modular.dirichlet import DirichletCharacter
 
H = DirichletGroup(189, base_ring=CyclotomicField(6))
 
chi = DirichletCharacter(H, H._module([3, 5]))
 
N = Newforms(chi, 2, names="a")
 
//Please install CHIMP (https://github.com/edgarcosta/CHIMP) if you want to run this code
 
chi := DirichletCharacter("189.26");
 
S:= CuspForms(chi, 2);
 
N := Newforms(S);
 
Level: N N == 189=337 189 = 3^{3} \cdot 7
Weight: k k == 2 2
Character orbit: [χ][\chi] == 189.p (of order 66, degree 22, minimal)

Newform invariants

comment: select newform
 
sage: f = N[0] # Warning: the index may be different
 
gp: f = lf[1] \\ Warning: the index may be different
 
Self dual: no
Analytic conductor: 1.509172598201.50917259820
Analytic rank: 00
Dimension: 22
Coefficient field: Q(3)\Q(\sqrt{-3})
comment: defining polynomial
 
gp: f.mod \\ as an extension of the character field
 
Defining polynomial: x2x+1 x^{2} - x + 1 Copy content Toggle raw display
Coefficient ring: Z[a1,,a7]\Z[a_1, \ldots, a_{7}]
Coefficient ring index: 1 1
Twist minimal: yes
Sato-Tate group: U(1)[D6]\mathrm{U}(1)[D_{6}]

qq-expansion

comment: q-expansion
 
sage: f.q_expansion() # note that sage often uses an isomorphic number field
 
gp: mfcoefs(f, 20)
 

Coefficients of the qq-expansion are expressed in terms of a primitive root of unity ζ6\zeta_{6}. We also show the integral qq-expansion of the trace form.

f(q)f(q) == q+(2ζ62)q4+(3ζ61)q7+(8ζ64)q134ζ6q16+(3ζ6+6)q19+(5ζ6+5)q25+(2ζ64)q28+(ζ61)q31++(22ζ611)q97+O(q100) q + (2 \zeta_{6} - 2) q^{4} + (3 \zeta_{6} - 1) q^{7} + (8 \zeta_{6} - 4) q^{13} - 4 \zeta_{6} q^{16} + ( - 3 \zeta_{6} + 6) q^{19} + ( - 5 \zeta_{6} + 5) q^{25} + ( - 2 \zeta_{6} - 4) q^{28} + ( - \zeta_{6} - 1) q^{31} + \cdots + (22 \zeta_{6} - 11) q^{97} +O(q^{100}) Copy content Toggle raw display
Tr(f)(q)\operatorname{Tr}(f)(q) == 2q2q4+q74q16+9q19+5q2510q283q3110q37+26q4313q4924q5215q61+16q64+16q67+27q73+4q7936q91+O(q100) 2 q - 2 q^{4} + q^{7} - 4 q^{16} + 9 q^{19} + 5 q^{25} - 10 q^{28} - 3 q^{31} - 10 q^{37} + 26 q^{43} - 13 q^{49} - 24 q^{52} - 15 q^{61} + 16 q^{64} + 16 q^{67} + 27 q^{73} + 4 q^{79} - 36 q^{91}+O(q^{100}) Copy content Toggle raw display

Character values

We give the values of χ\chi on generators for (Z/189Z)×\left(\mathbb{Z}/189\mathbb{Z}\right)^\times.

nn 2929 136136
χ(n)\chi(n) 1-1 ζ6\zeta_{6}

Embeddings

For each embedding ιm\iota_m of the coefficient field, the values ιm(an)\iota_m(a_n) are shown below.

For more information on an embedded modular form you can click on its label.

comment: embeddings in the coefficient field
 
gp: mfembed(f)
 
Label   ιm(ν)\iota_m(\nu) a2 a_{2} a3 a_{3} a4 a_{4} a5 a_{5} a6 a_{6} a7 a_{7} a8 a_{8} a9 a_{9} a10 a_{10}
26.1
0.500000 0.866025i
0.500000 + 0.866025i
0 0 −1.00000 1.73205i 0 0 0.500000 2.59808i 0 0 0
80.1 0 0 −1.00000 + 1.73205i 0 0 0.500000 + 2.59808i 0 0 0
nn: e.g. 2-40 or 990-1000
Significant digits:
Format:

Inner twists

Char Parity Ord Mult Type
1.a even 1 1 trivial
3.b odd 2 1 CM by Q(3)\Q(\sqrt{-3})
7.d odd 6 1 inner
21.g even 6 1 inner

Twists

       By twisting character orbit
Char Parity Ord Mult Type Twist Min Dim
1.a even 1 1 trivial 189.2.p.a 2
3.b odd 2 1 CM 189.2.p.a 2
7.c even 3 1 1323.2.c.a 2
7.d odd 6 1 inner 189.2.p.a 2
7.d odd 6 1 1323.2.c.a 2
9.c even 3 1 567.2.i.a 2
9.c even 3 1 567.2.s.b 2
9.d odd 6 1 567.2.i.a 2
9.d odd 6 1 567.2.s.b 2
21.g even 6 1 inner 189.2.p.a 2
21.g even 6 1 1323.2.c.a 2
21.h odd 6 1 1323.2.c.a 2
63.i even 6 1 567.2.s.b 2
63.k odd 6 1 567.2.i.a 2
63.s even 6 1 567.2.i.a 2
63.t odd 6 1 567.2.s.b 2
    
        By twisted newform orbit
Twist Min Dim Char Parity Ord Mult Type
189.2.p.a 2 1.a even 1 1 trivial
189.2.p.a 2 3.b odd 2 1 CM
189.2.p.a 2 7.d odd 6 1 inner
189.2.p.a 2 21.g even 6 1 inner
567.2.i.a 2 9.c even 3 1
567.2.i.a 2 9.d odd 6 1
567.2.i.a 2 63.k odd 6 1
567.2.i.a 2 63.s even 6 1
567.2.s.b 2 9.c even 3 1
567.2.s.b 2 9.d odd 6 1
567.2.s.b 2 63.i even 6 1
567.2.s.b 2 63.t odd 6 1
1323.2.c.a 2 7.c even 3 1
1323.2.c.a 2 7.d odd 6 1
1323.2.c.a 2 21.g even 6 1
1323.2.c.a 2 21.h odd 6 1

Hecke kernels

This newform subspace can be constructed as the kernel of the linear operator T2 T_{2} acting on S2new(189,[χ])S_{2}^{\mathrm{new}}(189, [\chi]). Copy content Toggle raw display

Hecke characteristic polynomials

pp Fp(T)F_p(T)
22 T2 T^{2} Copy content Toggle raw display
33 T2 T^{2} Copy content Toggle raw display
55 T2 T^{2} Copy content Toggle raw display
77 T2T+7 T^{2} - T + 7 Copy content Toggle raw display
1111 T2 T^{2} Copy content Toggle raw display
1313 T2+48 T^{2} + 48 Copy content Toggle raw display
1717 T2 T^{2} Copy content Toggle raw display
1919 T29T+27 T^{2} - 9T + 27 Copy content Toggle raw display
2323 T2 T^{2} Copy content Toggle raw display
2929 T2 T^{2} Copy content Toggle raw display
3131 T2+3T+3 T^{2} + 3T + 3 Copy content Toggle raw display
3737 T2+10T+100 T^{2} + 10T + 100 Copy content Toggle raw display
4141 T2 T^{2} Copy content Toggle raw display
4343 (T13)2 (T - 13)^{2} Copy content Toggle raw display
4747 T2 T^{2} Copy content Toggle raw display
5353 T2 T^{2} Copy content Toggle raw display
5959 T2 T^{2} Copy content Toggle raw display
6161 T2+15T+75 T^{2} + 15T + 75 Copy content Toggle raw display
6767 T216T+256 T^{2} - 16T + 256 Copy content Toggle raw display
7171 T2 T^{2} Copy content Toggle raw display
7373 T227T+243 T^{2} - 27T + 243 Copy content Toggle raw display
7979 T24T+16 T^{2} - 4T + 16 Copy content Toggle raw display
8383 T2 T^{2} Copy content Toggle raw display
8989 T2 T^{2} Copy content Toggle raw display
9797 T2+363 T^{2} + 363 Copy content Toggle raw display
show more
show less