Properties

Label 189.2.v.a
Level 189189
Weight 22
Character orbit 189.v
Analytic conductor 1.5091.509
Analytic rank 00
Dimension 5454
Inner twists 22

Related objects

Downloads

Learn more

Show commands: Magma / PariGP / SageMath

Newspace parameters

comment: Compute space of new eigenforms
 
[N,k,chi] = [189,2,Mod(22,189)]
 
mf = mfinit([N,k,chi],0)
 
lf = mfeigenbasis(mf)
 
from sage.modular.dirichlet import DirichletCharacter
 
H = DirichletGroup(189, base_ring=CyclotomicField(18))
 
chi = DirichletCharacter(H, H._module([14, 0]))
 
N = Newforms(chi, 2, names="a")
 
//Please install CHIMP (https://github.com/edgarcosta/CHIMP) if you want to run this code
 
chi := DirichletCharacter("189.22");
 
S:= CuspForms(chi, 2);
 
N := Newforms(S);
 
Level: N N == 189=337 189 = 3^{3} \cdot 7
Weight: k k == 2 2
Character orbit: [χ][\chi] == 189.v (of order 99, degree 66, minimal)

Newform invariants

comment: select newform
 
sage: f = N[0] # Warning: the index may be different
 
gp: f = lf[1] \\ Warning: the index may be different
 
Self dual: no
Analytic conductor: 1.509172598201.50917259820
Analytic rank: 00
Dimension: 5454
Relative dimension: 99 over Q(ζ9)\Q(\zeta_{9})
Twist minimal: yes
Sato-Tate group: SU(2)[C9]\mathrm{SU}(2)[C_{9}]

qq-expansion

The algebraic qq-expansion of this newform has not been computed, but we have computed the trace expansion.

Tr(f)(q)=\operatorname{Tr}(f)(q) = 54q3q33q527q89q96q11+24q129q139q1530q1727q1812q203q219q2212q23+36q24+27q25+18q26+63q27+117q99+O(q100) 54 q - 3 q^{3} - 3 q^{5} - 27 q^{8} - 9 q^{9} - 6 q^{11} + 24 q^{12} - 9 q^{13} - 9 q^{15} - 30 q^{17} - 27 q^{18} - 12 q^{20} - 3 q^{21} - 9 q^{22} - 12 q^{23} + 36 q^{24} + 27 q^{25} + 18 q^{26} + 63 q^{27}+ \cdots - 117 q^{99}+O(q^{100}) Copy content Toggle raw display

Embeddings

For each embedding ιm\iota_m of the coefficient field, the values ιm(an)\iota_m(a_n) are shown below.

For more information on an embedded modular form you can click on its label.

comment: embeddings in the coefficient field
 
gp: mfembed(f)
 
Label   a2 a_{2} a3 a_{3} a4 a_{4} a5 a_{5} a6 a_{6} a7 a_{7} a8 a_{8} a9 a_{9} a10 a_{10}
22.1 −1.88664 + 1.58308i 0.279041 1.70943i 0.705975 4.00378i −1.28676 + 0.468343i 2.17970 + 3.66681i 0.173648 + 0.984808i 2.54355 + 4.40555i −2.84427 0.954001i 1.68623 2.92064i
22.2 −1.17963 + 0.989828i 0.853595 + 1.50711i 0.0644735 0.365648i −1.99174 + 0.724932i −2.49871 0.932919i 0.173648 + 0.984808i −1.25403 2.17204i −1.54275 + 2.57292i 1.63195 2.82663i
22.3 −1.09798 + 0.921318i −1.39977 1.02012i 0.00944557 0.0535685i 1.35272 0.492351i 2.47678 0.169559i 0.173648 + 0.984808i −1.39433 2.41506i 0.918713 + 2.85587i −1.03166 + 1.78688i
22.4 0.0808704 0.0678583i 1.71585 0.236354i −0.345361 + 1.95864i 0.0449304 0.0163533i 0.122723 0.135549i 0.173648 + 0.984808i 0.210549 + 0.364682i 2.88827 0.811094i 0.00252383 0.00437140i
22.5 0.731503 0.613803i −1.57520 0.720230i −0.188955 + 1.07162i −3.78665 + 1.37823i −1.59435 + 0.440016i 0.173648 + 0.984808i 1.47445 + 2.55382i 1.96254 + 2.26902i −1.92398 + 3.33244i
22.6 0.786541 0.659987i −0.244375 1.71472i −0.164231 + 0.931402i 3.56827 1.29874i −1.32391 1.18742i 0.173648 + 0.984808i 1.51229 + 2.61937i −2.88056 + 0.838073i 1.94944 3.37653i
22.7 0.969537 0.813538i −0.430185 + 1.67778i −0.0691389 + 0.392106i −0.855069 + 0.311220i 0.947857 + 1.97664i 0.173648 + 0.984808i 1.51760 + 2.62856i −2.62988 1.44351i −0.575832 + 0.997370i
22.8 1.89179 1.58740i −1.45321 + 0.942429i 0.711733 4.03644i 2.16637 0.788496i −1.25316 + 4.08971i 0.173648 + 0.984808i −2.59144 4.48850i 1.22366 2.73910i 2.84667 4.93057i
22.9 2.00215 1.68000i 1.58061 + 0.708280i 0.838893 4.75760i −3.29720 + 1.20008i 4.35453 1.23735i 0.173648 + 0.984808i −3.69957 6.40784i 1.99668 + 2.23903i −4.58534 + 7.94204i
43.1 −1.88664 1.58308i 0.279041 + 1.70943i 0.705975 + 4.00378i −1.28676 0.468343i 2.17970 3.66681i 0.173648 0.984808i 2.54355 4.40555i −2.84427 + 0.954001i 1.68623 + 2.92064i
43.2 −1.17963 0.989828i 0.853595 1.50711i 0.0644735 + 0.365648i −1.99174 0.724932i −2.49871 + 0.932919i 0.173648 0.984808i −1.25403 + 2.17204i −1.54275 2.57292i 1.63195 + 2.82663i
43.3 −1.09798 0.921318i −1.39977 + 1.02012i 0.00944557 + 0.0535685i 1.35272 + 0.492351i 2.47678 + 0.169559i 0.173648 0.984808i −1.39433 + 2.41506i 0.918713 2.85587i −1.03166 1.78688i
43.4 0.0808704 + 0.0678583i 1.71585 + 0.236354i −0.345361 1.95864i 0.0449304 + 0.0163533i 0.122723 + 0.135549i 0.173648 0.984808i 0.210549 0.364682i 2.88827 + 0.811094i 0.00252383 + 0.00437140i
43.5 0.731503 + 0.613803i −1.57520 + 0.720230i −0.188955 1.07162i −3.78665 1.37823i −1.59435 0.440016i 0.173648 0.984808i 1.47445 2.55382i 1.96254 2.26902i −1.92398 3.33244i
43.6 0.786541 + 0.659987i −0.244375 + 1.71472i −0.164231 0.931402i 3.56827 + 1.29874i −1.32391 + 1.18742i 0.173648 0.984808i 1.51229 2.61937i −2.88056 0.838073i 1.94944 + 3.37653i
43.7 0.969537 + 0.813538i −0.430185 1.67778i −0.0691389 0.392106i −0.855069 0.311220i 0.947857 1.97664i 0.173648 0.984808i 1.51760 2.62856i −2.62988 + 1.44351i −0.575832 0.997370i
43.8 1.89179 + 1.58740i −1.45321 0.942429i 0.711733 + 4.03644i 2.16637 + 0.788496i −1.25316 4.08971i 0.173648 0.984808i −2.59144 + 4.48850i 1.22366 + 2.73910i 2.84667 + 4.93057i
43.9 2.00215 + 1.68000i 1.58061 0.708280i 0.838893 + 4.75760i −3.29720 1.20008i 4.35453 + 1.23735i 0.173648 0.984808i −3.69957 + 6.40784i 1.99668 2.23903i −4.58534 7.94204i
85.1 −2.52562 0.919249i 1.69786 + 0.342450i 4.00163 + 3.35776i 0.203200 1.15240i −3.97334 2.42565i 0.766044 0.642788i −4.33224 7.50367i 2.76546 + 1.16287i −1.57255 + 2.72374i
85.2 −2.17921 0.793168i −1.72903 0.102202i 2.58775 + 2.17138i 0.443161 2.51329i 3.68686 + 1.59413i 0.766044 0.642788i −1.59792 2.76768i 2.97911 + 0.353421i −2.95920 + 5.12549i
See all 54 embeddings
nn: e.g. 2-40 or 990-1000
Embeddings: e.g. 1-3 or 22.9
Significant digits:
Format:

Inner twists

Char Parity Ord Mult Type
1.a even 1 1 trivial
27.e even 9 1 inner

Twists

       By twisting character orbit
Char Parity Ord Mult Type Twist Min Dim
1.a even 1 1 trivial 189.2.v.a 54
3.b odd 2 1 567.2.v.b 54
27.e even 9 1 inner 189.2.v.a 54
27.e even 9 1 5103.2.a.i 27
27.f odd 18 1 567.2.v.b 54
27.f odd 18 1 5103.2.a.f 27
    
        By twisted newform orbit
Twist Min Dim Char Parity Ord Mult Type
189.2.v.a 54 1.a even 1 1 trivial
189.2.v.a 54 27.e even 9 1 inner
567.2.v.b 54 3.b odd 2 1
567.2.v.b 54 27.f odd 18 1
5103.2.a.f 27 27.f odd 18 1
5103.2.a.i 27 27.e even 9 1

Hecke kernels

This newform subspace can be constructed as the kernel of the linear operator T254+21T25127T249+612T248+117T247648T246++729 T_{2}^{54} + 21 T_{2}^{51} - 27 T_{2}^{49} + 612 T_{2}^{48} + 117 T_{2}^{47} - 648 T_{2}^{46} + \cdots + 729 acting on S2new(189,[χ])S_{2}^{\mathrm{new}}(189, [\chi]). Copy content Toggle raw display