Properties

Label 189.4.e.f.109.2
Level $189$
Weight $4$
Character 189.109
Analytic conductor $11.151$
Analytic rank $0$
Dimension $14$
Inner twists $2$

Related objects

Downloads

Learn more

Show commands: Magma / PariGP / SageMath

Newspace parameters

comment: Compute space of new eigenforms
 
[N,k,chi] = [189,4,Mod(109,189)]
 
mf = mfinit([N,k,chi],0)
 
lf = mfeigenbasis(mf)
 
from sage.modular.dirichlet import DirichletCharacter
 
H = DirichletGroup(189, base_ring=CyclotomicField(6))
 
chi = DirichletCharacter(H, H._module([0, 4]))
 
N = Newforms(chi, 4, names="a")
 
//Please install CHIMP (https://github.com/edgarcosta/CHIMP) if you want to run this code
 
chi := DirichletCharacter("189.109");
 
S:= CuspForms(chi, 4);
 
N := Newforms(S);
 
Level: \( N \) \(=\) \( 189 = 3^{3} \cdot 7 \)
Weight: \( k \) \(=\) \( 4 \)
Character orbit: \([\chi]\) \(=\) 189.e (of order \(3\), degree \(2\), minimal)

Newform invariants

comment: select newform
 
sage: f = N[0] # Warning: the index may be different
 
gp: f = lf[1] \\ Warning: the index may be different
 
Self dual: no
Analytic conductor: \(11.1513609911\)
Analytic rank: \(0\)
Dimension: \(14\)
Relative dimension: \(7\) over \(\Q(\zeta_{3})\)
Coefficient field: \(\mathbb{Q}[x]/(x^{14} - \cdots)\)
comment: defining polynomial
 
gp: f.mod \\ as an extension of the character field
 
Defining polynomial: \( x^{14} - x^{13} + 44 x^{12} + 23 x^{11} + 1346 x^{10} + 854 x^{9} + 20545 x^{8} + 27750 x^{7} + \cdots + 254016 \) Copy content Toggle raw display
Coefficient ring: \(\Z[a_1, \ldots, a_{7}]\)
Coefficient ring index: \( 3^{8} \)
Twist minimal: yes
Sato-Tate group: $\mathrm{SU}(2)[C_{3}]$

Embedding invariants

Embedding label 109.2
Root \(2.38108 + 4.12414i\) of defining polynomial
Character \(\chi\) \(=\) 189.109
Dual form 189.4.e.f.163.2

$q$-expansion

comment: q-expansion
 
sage: f.q_expansion() # note that sage often uses an isomorphic number field
 
gp: mfcoefs(f, 20)
 
\(f(q)\) \(=\) \(q+(-2.38108 - 4.12414i) q^{2} +(-7.33904 + 12.7116i) q^{4} +(-9.35067 - 16.1958i) q^{5} +(14.2072 + 11.8809i) q^{7} +31.8020 q^{8} +(-44.5293 + 77.1270i) q^{10} +(-29.7289 + 51.4920i) q^{11} -12.2112 q^{13} +(15.1702 - 86.8818i) q^{14} +(-17.0107 - 29.4633i) q^{16} +(-5.76073 + 9.97788i) q^{17} +(-24.9027 - 43.1328i) q^{19} +274.500 q^{20} +283.147 q^{22} +(62.8958 + 108.939i) q^{23} +(-112.370 + 194.631i) q^{25} +(29.0758 + 50.3607i) q^{26} +(-255.292 + 93.4013i) q^{28} +228.511 q^{29} +(94.7837 - 164.170i) q^{31} +(46.2007 - 80.0220i) q^{32} +54.8669 q^{34} +(59.5747 - 341.192i) q^{35} +(-16.5729 - 28.7051i) q^{37} +(-118.590 + 205.405i) q^{38} +(-297.370 - 515.060i) q^{40} -524.149 q^{41} +234.349 q^{43} +(-436.363 - 755.803i) q^{44} +(299.519 - 518.783i) q^{46} +(136.871 + 237.067i) q^{47} +(60.6878 + 337.588i) q^{49} +1070.25 q^{50} +(89.6185 - 155.224i) q^{52} +(-127.968 + 221.647i) q^{53} +1111.94 q^{55} +(451.817 + 377.837i) q^{56} +(-544.101 - 942.411i) q^{58} +(-84.4163 + 146.213i) q^{59} +(97.5707 + 168.997i) q^{61} -902.749 q^{62} -712.200 q^{64} +(114.183 + 197.771i) q^{65} +(-257.574 + 446.132i) q^{67} +(-84.5564 - 146.456i) q^{68} +(-1548.98 + 566.709i) q^{70} +319.048 q^{71} +(-317.759 + 550.375i) q^{73} +(-78.9227 + 136.698i) q^{74} +731.048 q^{76} +(-1034.14 + 378.349i) q^{77} +(426.001 + 737.855i) q^{79} +(-318.122 + 551.004i) q^{80} +(1248.04 + 2161.67i) q^{82} -264.419 q^{83} +215.467 q^{85} +(-558.004 - 966.491i) q^{86} +(-945.439 + 1637.55i) q^{88} +(457.099 + 791.718i) q^{89} +(-173.487 - 145.080i) q^{91} -1846.38 q^{92} +(651.800 - 1128.95i) q^{94} +(-465.714 + 806.640i) q^{95} -455.582 q^{97} +(1247.76 - 1054.11i) q^{98} +O(q^{100})\)
\(\operatorname{Tr}(f)(q)\) \(=\) \( 14 q - q^{2} - 31 q^{4} + q^{5} + 20 q^{7} + 168 q^{8} - 12 q^{10} - 98 q^{11} - 248 q^{13} - 134 q^{14} - 139 q^{16} - 30 q^{17} - 182 q^{19} - 220 q^{20} + 552 q^{22} + 6 q^{23} - 388 q^{25} + 245 q^{26}+ \cdots + 10160 q^{98}+O(q^{100}) \) Copy content Toggle raw display

Character values

We give the values of \(\chi\) on generators for \(\left(\mathbb{Z}/189\mathbb{Z}\right)^\times\).

\(n\) \(29\) \(136\)
\(\chi(n)\) \(1\) \(e\left(\frac{2}{3}\right)\)

Coefficient data

For each \(n\) we display the coefficients of the \(q\)-expansion \(a_n\), the Satake parameters \(\alpha_p\), and the Satake angles \(\theta_p = \textrm{Arg}(\alpha_p)\).



Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))
Significant digits:
\(n\) \(a_n\) \(a_n / n^{(k-1)/2}\) \( \alpha_n \) \( \theta_n \)
\(p\) \(a_p\) \(a_p / p^{(k-1)/2}\) \( \alpha_p\) \( \theta_p \)
\(2\) −2.38108 4.12414i −0.841837 1.45810i −0.888340 0.459187i \(-0.848141\pi\)
0.0465026 0.998918i \(-0.485192\pi\)
\(3\) 0 0
\(4\) −7.33904 + 12.7116i −0.917380 + 1.58895i
\(5\) −9.35067 16.1958i −0.836350 1.44860i −0.892927 0.450202i \(-0.851352\pi\)
0.0565773 0.998398i \(-0.481981\pi\)
\(6\) 0 0
\(7\) 14.2072 + 11.8809i 0.767116 + 0.641509i
\(8\) 31.8020 1.40546
\(9\) 0 0
\(10\) −44.5293 + 77.1270i −1.40814 + 2.43897i
\(11\) −29.7289 + 51.4920i −0.814873 + 1.41140i 0.0945458 + 0.995521i \(0.469860\pi\)
−0.909419 + 0.415881i \(0.863473\pi\)
\(12\) 0 0
\(13\) −12.2112 −0.260521 −0.130261 0.991480i \(-0.541581\pi\)
−0.130261 + 0.991480i \(0.541581\pi\)
\(14\) 15.1702 86.8818i 0.289601 1.65858i
\(15\) 0 0
\(16\) −17.0107 29.4633i −0.265791 0.460364i
\(17\) −5.76073 + 9.97788i −0.0821872 + 0.142352i −0.904189 0.427132i \(-0.859524\pi\)
0.822002 + 0.569485i \(0.192857\pi\)
\(18\) 0 0
\(19\) −24.9027 43.1328i −0.300688 0.520807i 0.675604 0.737265i \(-0.263883\pi\)
−0.976292 + 0.216458i \(0.930550\pi\)
\(20\) 274.500 3.06900
\(21\) 0 0
\(22\) 283.147 2.74396
\(23\) 62.8958 + 108.939i 0.570204 + 0.987622i 0.996545 + 0.0830591i \(0.0264690\pi\)
−0.426341 + 0.904562i \(0.640198\pi\)
\(24\) 0 0
\(25\) −112.370 + 194.631i −0.898961 + 1.55705i
\(26\) 29.0758 + 50.3607i 0.219317 + 0.379867i
\(27\) 0 0
\(28\) −255.292 + 93.4013i −1.72306 + 0.630400i
\(29\) 228.511 1.46322 0.731610 0.681723i \(-0.238769\pi\)
0.731610 + 0.681723i \(0.238769\pi\)
\(30\) 0 0
\(31\) 94.7837 164.170i 0.549150 0.951156i −0.449183 0.893440i \(-0.648285\pi\)
0.998333 0.0577163i \(-0.0183819\pi\)
\(32\) 46.2007 80.0220i 0.255225 0.442063i
\(33\) 0 0
\(34\) 54.8669 0.276753
\(35\) 59.5747 341.192i 0.287713 1.64777i
\(36\) 0 0
\(37\) −16.5729 28.7051i −0.0736370 0.127543i 0.826856 0.562414i \(-0.190127\pi\)
−0.900493 + 0.434871i \(0.856794\pi\)
\(38\) −118.590 + 205.405i −0.506261 + 0.876869i
\(39\) 0 0
\(40\) −297.370 515.060i −1.17546 2.03595i
\(41\) −524.149 −1.99654 −0.998272 0.0587584i \(-0.981286\pi\)
−0.998272 + 0.0587584i \(0.981286\pi\)
\(42\) 0 0
\(43\) 234.349 0.831115 0.415558 0.909567i \(-0.363586\pi\)
0.415558 + 0.909567i \(0.363586\pi\)
\(44\) −436.363 755.803i −1.49510 2.58958i
\(45\) 0 0
\(46\) 299.519 518.783i 0.960037 1.66283i
\(47\) 136.871 + 237.067i 0.424780 + 0.735741i 0.996400 0.0847779i \(-0.0270181\pi\)
−0.571620 + 0.820519i \(0.693685\pi\)
\(48\) 0 0
\(49\) 60.6878 + 337.588i 0.176932 + 0.984223i
\(50\) 1070.25 3.02712
\(51\) 0 0
\(52\) 89.6185 155.224i 0.238997 0.413955i
\(53\) −127.968 + 221.647i −0.331656 + 0.574445i −0.982837 0.184478i \(-0.940941\pi\)
0.651181 + 0.758923i \(0.274274\pi\)
\(54\) 0 0
\(55\) 1111.94 2.72608
\(56\) 451.817 + 377.837i 1.07815 + 0.901617i
\(57\) 0 0
\(58\) −544.101 942.411i −1.23179 2.13353i
\(59\) −84.4163 + 146.213i −0.186272 + 0.322633i −0.944005 0.329933i \(-0.892974\pi\)
0.757732 + 0.652566i \(0.226307\pi\)
\(60\) 0 0
\(61\) 97.5707 + 168.997i 0.204797 + 0.354720i 0.950068 0.312042i \(-0.101013\pi\)
−0.745271 + 0.666762i \(0.767680\pi\)
\(62\) −902.749 −1.84918
\(63\) 0 0
\(64\) −712.200 −1.39102
\(65\) 114.183 + 197.771i 0.217887 + 0.377391i
\(66\) 0 0
\(67\) −257.574 + 446.132i −0.469667 + 0.813487i −0.999399 0.0346782i \(-0.988959\pi\)
0.529732 + 0.848165i \(0.322293\pi\)
\(68\) −84.5564 146.456i −0.150794 0.261182i
\(69\) 0 0
\(70\) −1548.98 + 566.709i −2.64483 + 0.967638i
\(71\) 319.048 0.533295 0.266648 0.963794i \(-0.414084\pi\)
0.266648 + 0.963794i \(0.414084\pi\)
\(72\) 0 0
\(73\) −317.759 + 550.375i −0.509464 + 0.882418i 0.490476 + 0.871455i \(0.336823\pi\)
−0.999940 + 0.0109632i \(0.996510\pi\)
\(74\) −78.9227 + 136.698i −0.123981 + 0.214741i
\(75\) 0 0
\(76\) 731.048 1.10338
\(77\) −1034.14 + 378.349i −1.53053 + 0.559960i
\(78\) 0 0
\(79\) 426.001 + 737.855i 0.606694 + 1.05083i 0.991781 + 0.127945i \(0.0408380\pi\)
−0.385087 + 0.922880i \(0.625829\pi\)
\(80\) −318.122 + 551.004i −0.444589 + 0.770051i
\(81\) 0 0
\(82\) 1248.04 + 2161.67i 1.68077 + 2.91117i
\(83\) −264.419 −0.349684 −0.174842 0.984597i \(-0.555941\pi\)
−0.174842 + 0.984597i \(0.555941\pi\)
\(84\) 0 0
\(85\) 215.467 0.274949
\(86\) −558.004 966.491i −0.699664 1.21185i
\(87\) 0 0
\(88\) −945.439 + 1637.55i −1.14527 + 1.98367i
\(89\) 457.099 + 791.718i 0.544409 + 0.942943i 0.998644 + 0.0520615i \(0.0165792\pi\)
−0.454235 + 0.890882i \(0.650087\pi\)
\(90\) 0 0
\(91\) −173.487 145.080i −0.199850 0.167127i
\(92\) −1846.38 −2.09237
\(93\) 0 0
\(94\) 651.800 1128.95i 0.715191 1.23875i
\(95\) −465.714 + 806.640i −0.502961 + 0.871153i
\(96\) 0 0
\(97\) −455.582 −0.476880 −0.238440 0.971157i \(-0.576636\pi\)
−0.238440 + 0.971157i \(0.576636\pi\)
\(98\) 1247.76 1054.11i 1.28615 1.08654i
\(99\) 0 0
\(100\) −1649.38 2856.81i −1.64938 2.85681i
\(101\) 450.092 779.583i 0.443424 0.768034i −0.554517 0.832173i \(-0.687097\pi\)
0.997941 + 0.0641390i \(0.0204301\pi\)
\(102\) 0 0
\(103\) 57.1898 + 99.0557i 0.0547095 + 0.0947597i 0.892083 0.451871i \(-0.149243\pi\)
−0.837374 + 0.546631i \(0.815910\pi\)
\(104\) −388.341 −0.366153
\(105\) 0 0
\(106\) 1218.81 1.11680
\(107\) 452.033 + 782.944i 0.408408 + 0.707384i 0.994712 0.102708i \(-0.0327507\pi\)
−0.586303 + 0.810092i \(0.699417\pi\)
\(108\) 0 0
\(109\) −723.304 + 1252.80i −0.635596 + 1.10088i 0.350793 + 0.936453i \(0.385912\pi\)
−0.986389 + 0.164431i \(0.947421\pi\)
\(110\) −2647.62 4585.81i −2.29491 3.97490i
\(111\) 0 0
\(112\) 108.378 620.693i 0.0914351 0.523660i
\(113\) 10.2655 0.00854596 0.00427298 0.999991i \(-0.498640\pi\)
0.00427298 + 0.999991i \(0.498640\pi\)
\(114\) 0 0
\(115\) 1176.24 2037.30i 0.953779 1.65199i
\(116\) −1677.05 + 2904.74i −1.34233 + 2.32498i
\(117\) 0 0
\(118\) 804.006 0.627244
\(119\) −200.390 + 73.3148i −0.154367 + 0.0564769i
\(120\) 0 0
\(121\) −1102.12 1908.92i −0.828037 1.43420i
\(122\) 464.646 804.791i 0.344812 0.597232i
\(123\) 0 0
\(124\) 1391.24 + 2409.70i 1.00756 + 1.74514i
\(125\) 1865.28 1.33468
\(126\) 0 0
\(127\) −1590.09 −1.11101 −0.555503 0.831514i \(-0.687474\pi\)
−0.555503 + 0.831514i \(0.687474\pi\)
\(128\) 1326.20 + 2297.04i 0.915783 + 1.58618i
\(129\) 0 0
\(130\) 543.756 941.813i 0.366851 0.635404i
\(131\) −112.441 194.753i −0.0749924 0.129891i 0.826091 0.563537i \(-0.190560\pi\)
−0.901083 + 0.433647i \(0.857227\pi\)
\(132\) 0 0
\(133\) 158.659 908.662i 0.103440 0.592413i
\(134\) 2453.21 1.58153
\(135\) 0 0
\(136\) −183.203 + 317.317i −0.115511 + 0.200071i
\(137\) −1125.86 + 1950.04i −0.702106 + 1.21608i 0.265619 + 0.964078i \(0.414424\pi\)
−0.967726 + 0.252006i \(0.918910\pi\)
\(138\) 0 0
\(139\) 3015.34 1.83998 0.919992 0.391937i \(-0.128195\pi\)
0.919992 + 0.391937i \(0.128195\pi\)
\(140\) 3899.87 + 3261.31i 2.35428 + 1.96879i
\(141\) 0 0
\(142\) −759.676 1315.80i −0.448948 0.777601i
\(143\) 363.026 628.779i 0.212292 0.367700i
\(144\) 0 0
\(145\) −2136.73 3700.92i −1.22376 2.11962i
\(146\) 3026.43 1.71554
\(147\) 0 0
\(148\) 486.517 0.270212
\(149\) 193.654 + 335.418i 0.106475 + 0.184420i 0.914340 0.404948i \(-0.132710\pi\)
−0.807865 + 0.589368i \(0.799377\pi\)
\(150\) 0 0
\(151\) −821.513 + 1422.90i −0.442740 + 0.766848i −0.997892 0.0649008i \(-0.979327\pi\)
0.555152 + 0.831749i \(0.312660\pi\)
\(152\) −791.956 1371.71i −0.422606 0.731975i
\(153\) 0 0
\(154\) 4022.72 + 3364.05i 2.10494 + 1.76028i
\(155\) −3545.17 −1.83713
\(156\) 0 0
\(157\) 346.834 600.734i 0.176308 0.305374i −0.764305 0.644855i \(-0.776918\pi\)
0.940613 + 0.339480i \(0.110251\pi\)
\(158\) 2028.68 3513.78i 1.02148 1.76925i
\(159\) 0 0
\(160\) −1728.03 −0.853830
\(161\) −400.720 + 2294.97i −0.196156 + 1.12341i
\(162\) 0 0
\(163\) −872.770 1511.68i −0.419390 0.726406i 0.576488 0.817106i \(-0.304423\pi\)
−0.995878 + 0.0907002i \(0.971089\pi\)
\(164\) 3846.75 6662.77i 1.83159 3.17241i
\(165\) 0 0
\(166\) 629.602 + 1090.50i 0.294377 + 0.509876i
\(167\) −3320.55 −1.53863 −0.769316 0.638868i \(-0.779403\pi\)
−0.769316 + 0.638868i \(0.779403\pi\)
\(168\) 0 0
\(169\) −2047.89 −0.932129
\(170\) −513.043 888.616i −0.231462 0.400904i
\(171\) 0 0
\(172\) −1719.90 + 2978.95i −0.762448 + 1.32060i
\(173\) −27.0575 46.8650i −0.0118910 0.0205958i 0.860019 0.510263i \(-0.170452\pi\)
−0.871910 + 0.489667i \(0.837118\pi\)
\(174\) 0 0
\(175\) −3908.85 + 1430.09i −1.68847 + 0.617743i
\(176\) 2022.83 0.866345
\(177\) 0 0
\(178\) 2176.77 3770.28i 0.916607 1.58761i
\(179\) 1860.27 3222.08i 0.776776 1.34542i −0.157014 0.987596i \(-0.550187\pi\)
0.933791 0.357820i \(-0.116480\pi\)
\(180\) 0 0
\(181\) 1280.85 0.525992 0.262996 0.964797i \(-0.415289\pi\)
0.262996 + 0.964797i \(0.415289\pi\)
\(182\) −185.247 + 1060.93i −0.0754472 + 0.432096i
\(183\) 0 0
\(184\) 2000.21 + 3464.47i 0.801400 + 1.38807i
\(185\) −309.936 + 536.824i −0.123173 + 0.213341i
\(186\) 0 0
\(187\) −342.521 593.263i −0.133944 0.231998i
\(188\) −4018.00 −1.55874
\(189\) 0 0
\(190\) 4435.60 1.69364
\(191\) −470.005 814.072i −0.178054 0.308399i 0.763160 0.646210i \(-0.223647\pi\)
−0.941214 + 0.337811i \(0.890314\pi\)
\(192\) 0 0
\(193\) 706.461 1223.63i 0.263483 0.456365i −0.703682 0.710515i \(-0.748462\pi\)
0.967165 + 0.254149i \(0.0817955\pi\)
\(194\) 1084.78 + 1878.89i 0.401455 + 0.695341i
\(195\) 0 0
\(196\) −4736.68 1706.14i −1.72619 0.621770i
\(197\) 3007.74 1.08778 0.543890 0.839156i \(-0.316951\pi\)
0.543890 + 0.839156i \(0.316951\pi\)
\(198\) 0 0
\(199\) 11.0224 19.0913i 0.00392640 0.00680073i −0.864056 0.503397i \(-0.832084\pi\)
0.867982 + 0.496596i \(0.165417\pi\)
\(200\) −3573.60 + 6189.65i −1.26346 + 2.18837i
\(201\) 0 0
\(202\) −4286.82 −1.49316
\(203\) 3246.49 + 2714.92i 1.12246 + 0.938669i
\(204\) 0 0
\(205\) 4901.15 + 8489.03i 1.66981 + 2.89219i
\(206\) 272.347 471.718i 0.0921130 0.159544i
\(207\) 0 0
\(208\) 207.720 + 359.782i 0.0692443 + 0.119935i
\(209\) 2961.32 0.980090
\(210\) 0 0
\(211\) −4881.84 −1.59279 −0.796397 0.604774i \(-0.793264\pi\)
−0.796397 + 0.604774i \(0.793264\pi\)
\(212\) −1878.32 3253.35i −0.608509 1.05397i
\(213\) 0 0
\(214\) 2152.65 3728.50i 0.687626 1.19100i
\(215\) −2191.33 3795.49i −0.695103 1.20395i
\(216\) 0 0
\(217\) 3297.10 1206.28i 1.03144 0.377362i
\(218\) 6888.96 2.14027
\(219\) 0 0
\(220\) −8160.58 + 14134.5i −2.50085 + 4.33159i
\(221\) 70.3454 121.842i 0.0214115 0.0370858i
\(222\) 0 0
\(223\) 144.053 0.0432579 0.0216290 0.999766i \(-0.493115\pi\)
0.0216290 + 0.999766i \(0.493115\pi\)
\(224\) 1607.12 587.980i 0.479375 0.175384i
\(225\) 0 0
\(226\) −24.4428 42.3362i −0.00719431 0.0124609i
\(227\) −2461.07 + 4262.69i −0.719590 + 1.24637i 0.241573 + 0.970383i \(0.422337\pi\)
−0.961163 + 0.275983i \(0.910997\pi\)
\(228\) 0 0
\(229\) 7.89445 + 13.6736i 0.00227808 + 0.00394575i 0.867162 0.498026i \(-0.165942\pi\)
−0.864884 + 0.501972i \(0.832608\pi\)
\(230\) −11202.8 −3.21171
\(231\) 0 0
\(232\) 7267.10 2.05650
\(233\) 363.752 + 630.037i 0.102276 + 0.177146i 0.912622 0.408805i \(-0.134054\pi\)
−0.810346 + 0.585951i \(0.800721\pi\)
\(234\) 0 0
\(235\) 2559.67 4433.48i 0.710529 1.23067i
\(236\) −1239.07 2146.13i −0.341765 0.591954i
\(237\) 0 0
\(238\) 779.504 + 651.869i 0.212301 + 0.177540i
\(239\) 63.6850 0.0172361 0.00861807 0.999963i \(-0.497257\pi\)
0.00861807 + 0.999963i \(0.497257\pi\)
\(240\) 0 0
\(241\) −1674.89 + 2900.99i −0.447672 + 0.775391i −0.998234 0.0594033i \(-0.981080\pi\)
0.550562 + 0.834794i \(0.314414\pi\)
\(242\) −5248.45 + 9090.57i −1.39414 + 2.41473i
\(243\) 0 0
\(244\) −2864.30 −0.751508
\(245\) 4900.06 4139.57i 1.27777 1.07946i
\(246\) 0 0
\(247\) 304.092 + 526.703i 0.0783356 + 0.135681i
\(248\) 3014.31 5220.94i 0.771811 1.33682i
\(249\) 0 0
\(250\) −4441.37 7692.67i −1.12359 1.94611i
\(251\) 4922.71 1.23792 0.618961 0.785422i \(-0.287554\pi\)
0.618961 + 0.785422i \(0.287554\pi\)
\(252\) 0 0
\(253\) −7479.30 −1.85857
\(254\) 3786.13 + 6557.77i 0.935287 + 1.61996i
\(255\) 0 0
\(256\) 3466.74 6004.58i 0.846373 1.46596i
\(257\) 1436.70 + 2488.43i 0.348711 + 0.603985i 0.986021 0.166622i \(-0.0532861\pi\)
−0.637310 + 0.770608i \(0.719953\pi\)
\(258\) 0 0
\(259\) 105.589 604.720i 0.0253319 0.145079i
\(260\) −3351.97 −0.799540
\(261\) 0 0
\(262\) −535.461 + 927.445i −0.126263 + 0.218694i
\(263\) −2183.85 + 3782.54i −0.512023 + 0.886850i 0.487880 + 0.872911i \(0.337770\pi\)
−0.999903 + 0.0139391i \(0.995563\pi\)
\(264\) 0 0
\(265\) 4786.35 1.10952
\(266\) −4125.23 + 1509.26i −0.950880 + 0.347889i
\(267\) 0 0
\(268\) −3780.69 6548.35i −0.861726 1.49255i
\(269\) −2677.45 + 4637.48i −0.606866 + 1.05112i 0.384887 + 0.922964i \(0.374240\pi\)
−0.991754 + 0.128160i \(0.959093\pi\)
\(270\) 0 0
\(271\) 1521.12 + 2634.66i 0.340966 + 0.590570i 0.984612 0.174753i \(-0.0559127\pi\)
−0.643647 + 0.765323i \(0.722579\pi\)
\(272\) 391.975 0.0873786
\(273\) 0 0
\(274\) 10723.0 2.36424
\(275\) −6681.29 11572.3i −1.46508 2.53759i
\(276\) 0 0
\(277\) 4290.02 7430.53i 0.930549 1.61176i 0.148165 0.988963i \(-0.452663\pi\)
0.782384 0.622796i \(-0.214003\pi\)
\(278\) −7179.75 12435.7i −1.54897 2.68289i
\(279\) 0 0
\(280\) 1894.59 10850.6i 0.404370 2.31588i
\(281\) −953.058 −0.202330 −0.101165 0.994870i \(-0.532257\pi\)
−0.101165 + 0.994870i \(0.532257\pi\)
\(282\) 0 0
\(283\) 3765.80 6522.56i 0.791002 1.37006i −0.134345 0.990935i \(-0.542893\pi\)
0.925347 0.379122i \(-0.123774\pi\)
\(284\) −2341.50 + 4055.60i −0.489234 + 0.847379i
\(285\) 0 0
\(286\) −3457.57 −0.714861
\(287\) −7446.68 6227.37i −1.53158 1.28080i
\(288\) 0 0
\(289\) 2390.13 + 4139.82i 0.486491 + 0.842626i
\(290\) −10175.4 + 17624.4i −2.06042 + 3.56875i
\(291\) 0 0
\(292\) −4664.09 8078.45i −0.934745 1.61903i
\(293\) −1325.09 −0.264207 −0.132104 0.991236i \(-0.542173\pi\)
−0.132104 + 0.991236i \(0.542173\pi\)
\(294\) 0 0
\(295\) 3157.40 0.623155
\(296\) −527.052 912.880i −0.103494 0.179257i
\(297\) 0 0
\(298\) 922.209 1597.31i 0.179269 0.310503i
\(299\) −768.033 1330.27i −0.148550 0.257296i
\(300\) 0 0
\(301\) 3329.44 + 2784.29i 0.637561 + 0.533168i
\(302\) 7824.33 1.49086
\(303\) 0 0
\(304\) −847.223 + 1467.43i −0.159841 + 0.276852i
\(305\) 1824.70 3160.48i 0.342564 0.593339i
\(306\) 0 0
\(307\) −8871.73 −1.64930 −0.824652 0.565640i \(-0.808629\pi\)
−0.824652 + 0.565640i \(0.808629\pi\)
\(308\) 2780.14 15922.2i 0.514329 2.94563i
\(309\) 0 0
\(310\) 8441.31 + 14620.8i 1.54656 + 2.67872i
\(311\) 2265.54 3924.04i 0.413078 0.715472i −0.582147 0.813084i \(-0.697787\pi\)
0.995225 + 0.0976120i \(0.0311204\pi\)
\(312\) 0 0
\(313\) −2158.30 3738.29i −0.389759 0.675082i 0.602658 0.798000i \(-0.294108\pi\)
−0.992417 + 0.122917i \(0.960775\pi\)
\(314\) −3303.35 −0.593691
\(315\) 0 0
\(316\) −12505.7 −2.22628
\(317\) −3348.77 5800.24i −0.593331 1.02768i −0.993780 0.111360i \(-0.964479\pi\)
0.400449 0.916319i \(-0.368854\pi\)
\(318\) 0 0
\(319\) −6793.38 + 11766.5i −1.19234 + 2.06519i
\(320\) 6659.55 + 11534.7i 1.16338 + 2.01503i
\(321\) 0 0
\(322\) 10418.9 3811.87i 1.80318 0.659713i
\(323\) 573.831 0.0988508
\(324\) 0 0
\(325\) 1372.17 2376.68i 0.234199 0.405644i
\(326\) −4156.26 + 7198.86i −0.706117 + 1.22303i
\(327\) 0 0
\(328\) −16669.0 −2.80607
\(329\) −872.027 + 4994.21i −0.146129 + 0.836898i
\(330\) 0 0
\(331\) 4032.83 + 6985.07i 0.669681 + 1.15992i 0.977993 + 0.208636i \(0.0669025\pi\)
−0.308312 + 0.951285i \(0.599764\pi\)
\(332\) 1940.58 3361.19i 0.320793 0.555630i
\(333\) 0 0
\(334\) 7906.47 + 13694.4i 1.29528 + 2.24349i
\(335\) 9633.97 1.57122
\(336\) 0 0
\(337\) −480.216 −0.0776232 −0.0388116 0.999247i \(-0.512357\pi\)
−0.0388116 + 0.999247i \(0.512357\pi\)
\(338\) 4876.17 + 8445.78i 0.784701 + 1.35914i
\(339\) 0 0
\(340\) −1581.32 + 2738.93i −0.252233 + 0.436880i
\(341\) 5635.63 + 9761.20i 0.894976 + 1.55014i
\(342\) 0 0
\(343\) −3148.66 + 5517.21i −0.495660 + 0.868516i
\(344\) 7452.78 1.16810
\(345\) 0 0
\(346\) −128.852 + 223.178i −0.0200206 + 0.0346767i
\(347\) 1118.56 1937.40i 0.173047 0.299727i −0.766437 0.642320i \(-0.777972\pi\)
0.939484 + 0.342593i \(0.111305\pi\)
\(348\) 0 0
\(349\) 2602.84 0.399217 0.199609 0.979876i \(-0.436033\pi\)
0.199609 + 0.979876i \(0.436033\pi\)
\(350\) 15205.2 + 12715.5i 2.32215 + 1.94192i
\(351\) 0 0
\(352\) 2746.99 + 4757.93i 0.415953 + 0.720451i
\(353\) 3469.23 6008.89i 0.523084 0.906008i −0.476555 0.879145i \(-0.658115\pi\)
0.999639 0.0268634i \(-0.00855192\pi\)
\(354\) 0 0
\(355\) −2983.31 5167.24i −0.446021 0.772532i
\(356\) −13418.7 −1.99772
\(357\) 0 0
\(358\) −17717.8 −2.61568
\(359\) −1076.56 1864.65i −0.158269 0.274130i 0.775976 0.630763i \(-0.217258\pi\)
−0.934244 + 0.356633i \(0.883925\pi\)
\(360\) 0 0
\(361\) 2189.21 3791.82i 0.319173 0.552825i
\(362\) −3049.79 5282.40i −0.442800 0.766952i
\(363\) 0 0
\(364\) 3117.42 1140.54i 0.448894 0.164233i
\(365\) 11885.0 1.70436
\(366\) 0 0
\(367\) −924.490 + 1601.26i −0.131493 + 0.227753i −0.924252 0.381782i \(-0.875310\pi\)
0.792759 + 0.609535i \(0.208644\pi\)
\(368\) 2139.80 3706.24i 0.303111 0.525003i
\(369\) 0 0
\(370\) 2951.92 0.414765
\(371\) −4451.43 + 1628.60i −0.622930 + 0.227905i
\(372\) 0 0
\(373\) 22.1091 + 38.2941i 0.00306908 + 0.00531581i 0.867556 0.497340i \(-0.165690\pi\)
−0.864487 + 0.502656i \(0.832356\pi\)
\(374\) −1631.13 + 2825.21i −0.225519 + 0.390610i
\(375\) 0 0
\(376\) 4352.77 + 7539.21i 0.597013 + 1.03406i
\(377\) −2790.39 −0.381200
\(378\) 0 0
\(379\) 3338.62 0.452489 0.226245 0.974071i \(-0.427355\pi\)
0.226245 + 0.974071i \(0.427355\pi\)
\(380\) −6835.79 11839.9i −0.922812 1.59836i
\(381\) 0 0
\(382\) −2238.23 + 3876.73i −0.299785 + 0.519243i
\(383\) −4000.27 6928.67i −0.533693 0.924383i −0.999225 0.0393522i \(-0.987471\pi\)
0.465533 0.885031i \(-0.345863\pi\)
\(384\) 0 0
\(385\) 15797.5 + 13210.9i 2.09121 + 1.74880i
\(386\) −6728.54 −0.887238
\(387\) 0 0
\(388\) 3343.53 5791.17i 0.437480 0.757738i
\(389\) 562.916 974.998i 0.0733701 0.127081i −0.827006 0.562193i \(-0.809958\pi\)
0.900376 + 0.435112i \(0.143291\pi\)
\(390\) 0 0
\(391\) −1449.30 −0.187454
\(392\) 1929.99 + 10736.0i 0.248672 + 1.38329i
\(393\) 0 0
\(394\) −7161.66 12404.4i −0.915734 1.58610i
\(395\) 7966.79 13798.9i 1.01482 1.75771i
\(396\) 0 0
\(397\) −91.3716 158.260i −0.0115512 0.0200072i 0.860192 0.509970i \(-0.170344\pi\)
−0.871743 + 0.489963i \(0.837010\pi\)
\(398\) −104.980 −0.0132216
\(399\) 0 0
\(400\) 7645.96 0.955745
\(401\) 4698.90 + 8138.74i 0.585167 + 1.01354i 0.994855 + 0.101313i \(0.0323045\pi\)
−0.409687 + 0.912226i \(0.634362\pi\)
\(402\) 0 0
\(403\) −1157.42 + 2004.72i −0.143065 + 0.247796i
\(404\) 6606.49 + 11442.8i 0.813577 + 1.40916i
\(405\) 0 0
\(406\) 3466.56 19853.4i 0.423750 2.42687i
\(407\) 1970.78 0.240019
\(408\) 0 0
\(409\) −1304.28 + 2259.07i −0.157683 + 0.273115i −0.934033 0.357187i \(-0.883736\pi\)
0.776350 + 0.630302i \(0.217069\pi\)
\(410\) 23340.0 40426.1i 2.81141 4.86951i
\(411\) 0 0
\(412\) −1678.87 −0.200758
\(413\) −2936.47 + 1074.34i −0.349864 + 0.128002i
\(414\) 0 0
\(415\) 2472.50 + 4282.49i 0.292458 + 0.506552i
\(416\) −564.166 + 977.164i −0.0664916 + 0.115167i
\(417\) 0 0
\(418\) −7051.13 12212.9i −0.825077 1.42907i
\(419\) −9533.73 −1.11158 −0.555792 0.831322i \(-0.687585\pi\)
−0.555792 + 0.831322i \(0.687585\pi\)
\(420\) 0 0
\(421\) −11430.2 −1.32322 −0.661611 0.749848i \(-0.730127\pi\)
−0.661611 + 0.749848i \(0.730127\pi\)
\(422\) 11624.0 + 20133.4i 1.34087 + 2.32246i
\(423\) 0 0
\(424\) −4069.64 + 7048.82i −0.466130 + 0.807361i
\(425\) −1294.67 2242.43i −0.147766 0.255939i
\(426\) 0 0
\(427\) −621.639 + 3560.20i −0.0704525 + 0.403490i
\(428\) −13269.9 −1.49866
\(429\) 0 0
\(430\) −10435.4 + 18074.7i −1.17033 + 2.02707i
\(431\) −3496.39 + 6055.93i −0.390755 + 0.676807i −0.992549 0.121844i \(-0.961119\pi\)
0.601794 + 0.798651i \(0.294453\pi\)
\(432\) 0 0
\(433\) −4730.76 −0.525048 −0.262524 0.964925i \(-0.584555\pi\)
−0.262524 + 0.964925i \(0.584555\pi\)
\(434\) −12825.5 10725.5i −1.41854 1.18627i
\(435\) 0 0
\(436\) −10616.7 18388.7i −1.16617 2.01986i
\(437\) 3132.55 5425.74i 0.342907 0.593932i
\(438\) 0 0
\(439\) 4304.64 + 7455.86i 0.467994 + 0.810590i 0.999331 0.0365709i \(-0.0116435\pi\)
−0.531337 + 0.847161i \(0.678310\pi\)
\(440\) 35362.0 3.83140
\(441\) 0 0
\(442\) −669.991 −0.0721000
\(443\) −2635.95 4565.61i −0.282704 0.489658i 0.689346 0.724433i \(-0.257898\pi\)
−0.972050 + 0.234775i \(0.924565\pi\)
\(444\) 0 0
\(445\) 8548.36 14806.2i 0.910632 1.57726i
\(446\) −343.002 594.096i −0.0364162 0.0630746i
\(447\) 0 0
\(448\) −10118.4 8461.59i −1.06707 0.892349i
\(449\) −13513.8 −1.42039 −0.710197 0.704003i \(-0.751394\pi\)
−0.710197 + 0.704003i \(0.751394\pi\)
\(450\) 0 0
\(451\) 15582.4 26989.5i 1.62693 2.81793i
\(452\) −75.3386 + 130.490i −0.00783989 + 0.0135791i
\(453\) 0 0
\(454\) 23440.0 2.42311
\(455\) −727.478 + 4166.36i −0.0749554 + 0.429279i
\(456\) 0 0
\(457\) −3644.19 6311.93i −0.373016 0.646082i 0.617012 0.786954i \(-0.288343\pi\)
−0.990028 + 0.140871i \(0.955010\pi\)
\(458\) 37.5945 65.1157i 0.00383554 0.00664335i
\(459\) 0 0
\(460\) 17264.9 + 29903.7i 1.74996 + 3.03101i
\(461\) 5654.21 0.571243 0.285621 0.958343i \(-0.407800\pi\)
0.285621 + 0.958343i \(0.407800\pi\)
\(462\) 0 0
\(463\) 4102.17 0.411758 0.205879 0.978577i \(-0.433995\pi\)
0.205879 + 0.978577i \(0.433995\pi\)
\(464\) −3887.12 6732.69i −0.388912 0.673615i
\(465\) 0 0
\(466\) 1732.24 3000.33i 0.172199 0.298257i
\(467\) 2552.06 + 4420.29i 0.252880 + 0.438001i 0.964318 0.264748i \(-0.0852888\pi\)
−0.711437 + 0.702750i \(0.751955\pi\)
\(468\) 0 0
\(469\) −8959.85 + 3278.05i −0.882148 + 0.322743i
\(470\) −24379.1 −2.39260
\(471\) 0 0
\(472\) −2684.61 + 4649.88i −0.261799 + 0.453449i
\(473\) −6966.96 + 12067.1i −0.677254 + 1.17304i
\(474\) 0 0
\(475\) 11193.3 1.08123
\(476\) 538.723 3085.33i 0.0518747 0.297093i
\(477\) 0 0
\(478\) −151.639 262.646i −0.0145100 0.0251321i
\(479\) 2100.22 3637.69i 0.200337 0.346994i −0.748300 0.663361i \(-0.769130\pi\)
0.948637 + 0.316366i \(0.102463\pi\)
\(480\) 0 0
\(481\) 202.375 + 350.524i 0.0191840 + 0.0332277i
\(482\) 15952.1 1.50747
\(483\) 0 0
\(484\) 32353.9 3.03850
\(485\) 4260.00 + 7378.53i 0.398838 + 0.690808i
\(486\) 0 0
\(487\) −2150.49 + 3724.76i −0.200099 + 0.346581i −0.948560 0.316597i \(-0.897460\pi\)
0.748461 + 0.663179i \(0.230793\pi\)
\(488\) 3102.94 + 5374.45i 0.287835 + 0.498545i
\(489\) 0 0
\(490\) −28739.6 10351.9i −2.64964 0.954391i
\(491\) 1774.44 0.163095 0.0815474 0.996669i \(-0.474014\pi\)
0.0815474 + 0.996669i \(0.474014\pi\)
\(492\) 0 0
\(493\) −1316.39 + 2280.05i −0.120258 + 0.208293i
\(494\) 1448.13 2508.24i 0.131892 0.228443i
\(495\) 0 0
\(496\) −6449.33 −0.583838
\(497\) 4532.77 + 3790.58i 0.409099 + 0.342114i
\(498\) 0 0
\(499\) 3427.39 + 5936.41i 0.307477 + 0.532566i 0.977810 0.209495i \(-0.0671820\pi\)
−0.670333 + 0.742061i \(0.733849\pi\)
\(500\) −13689.3 + 23710.6i −1.22441 + 2.12074i
\(501\) 0 0
\(502\) −11721.3 20301.9i −1.04213 1.80502i
\(503\) −6584.76 −0.583698 −0.291849 0.956464i \(-0.594270\pi\)
−0.291849 + 0.956464i \(0.594270\pi\)
\(504\) 0 0
\(505\) −16834.7 −1.48343
\(506\) 17808.8 + 30845.7i 1.56462 + 2.71000i
\(507\) 0 0
\(508\) 11669.7 20212.6i 1.01922 1.76533i
\(509\) −2110.15 3654.88i −0.183754 0.318271i 0.759402 0.650621i \(-0.225492\pi\)
−0.943156 + 0.332351i \(0.892158\pi\)
\(510\) 0 0
\(511\) −11053.4 + 4044.01i −0.956897 + 0.350091i
\(512\) −11799.2 −1.01847
\(513\) 0 0
\(514\) 6841.77 11850.3i 0.587116 1.01691i
\(515\) 1069.53 1852.47i 0.0915126 0.158504i
\(516\) 0 0
\(517\) −16276.1 −1.38457
\(518\) −2745.37 + 1004.42i −0.232866 + 0.0851963i
\(519\) 0 0
\(520\) 3631.25 + 6289.50i 0.306232 + 0.530409i
\(521\) 2555.50 4426.25i 0.214891 0.372203i −0.738348 0.674420i \(-0.764394\pi\)
0.953239 + 0.302218i \(0.0977269\pi\)
\(522\) 0 0
\(523\) −7073.84 12252.3i −0.591429 1.02439i −0.994040 0.109014i \(-0.965231\pi\)
0.402611 0.915371i \(-0.368103\pi\)
\(524\) 3300.83 0.275186
\(525\) 0 0
\(526\) 20799.7 1.72416
\(527\) 1092.05 + 1891.48i 0.0902662 + 0.156346i
\(528\) 0 0
\(529\) −1828.27 + 3166.65i −0.150264 + 0.260265i
\(530\) −11396.7 19739.6i −0.934036 1.61780i
\(531\) 0 0
\(532\) 10386.1 + 8685.51i 0.846420 + 0.707828i
\(533\) 6400.49 0.520142
\(534\) 0 0
\(535\) 8453.62 14642.1i 0.683144 1.18324i
\(536\) −8191.37 + 14187.9i −0.660100 + 1.14333i
\(537\) 0 0
\(538\) 25500.8 2.04353
\(539\) −19187.3 6911.20i −1.53331 0.552294i
\(540\) 0 0
\(541\) −10813.7 18729.9i −0.859368 1.48847i −0.872532 0.488556i \(-0.837524\pi\)
0.0131641 0.999913i \(-0.495810\pi\)
\(542\) 7243.82 12546.7i 0.574075 0.994328i
\(543\) 0 0
\(544\) 532.300 + 921.970i 0.0419525 + 0.0726639i
\(545\) 27053.5 2.12632
\(546\) 0 0
\(547\) −11453.9 −0.895305 −0.447652 0.894208i \(-0.647740\pi\)
−0.447652 + 0.894208i \(0.647740\pi\)
\(548\) −16525.4 28622.9i −1.28820 2.23122i
\(549\) 0 0
\(550\) −31817.3 + 55109.2i −2.46672 + 4.27248i
\(551\) −5690.54 9856.30i −0.439973 0.762055i
\(552\) 0 0
\(553\) −2714.12 + 15544.1i −0.208709 + 1.19530i
\(554\) −40859.4 −3.13348
\(555\) 0 0
\(556\) −22129.7 + 38329.8i −1.68796 + 2.92364i
\(557\) −520.712 + 901.900i −0.0396109 + 0.0686081i −0.885151 0.465304i \(-0.845945\pi\)
0.845540 + 0.533912i \(0.179279\pi\)
\(558\) 0 0
\(559\) −2861.69 −0.216523
\(560\) −11066.0 + 4048.63i −0.835046 + 0.305510i
\(561\) 0 0
\(562\) 2269.30 + 3930.55i 0.170329 + 0.295018i
\(563\) 9969.46 17267.6i 0.746293 1.29262i −0.203296 0.979117i \(-0.565165\pi\)
0.949588 0.313500i \(-0.101501\pi\)
\(564\) 0 0
\(565\) −95.9890 166.258i −0.00714741 0.0123797i
\(566\) −35866.6 −2.66358
\(567\) 0 0
\(568\) 10146.4 0.749527
\(569\) 7025.60 + 12168.7i 0.517625 + 0.896553i 0.999790 + 0.0204726i \(0.00651707\pi\)
−0.482165 + 0.876080i \(0.660150\pi\)
\(570\) 0 0
\(571\) 10751.2 18621.6i 0.787956 1.36478i −0.139261 0.990256i \(-0.544473\pi\)
0.927217 0.374524i \(-0.122194\pi\)
\(572\) 5328.52 + 9229.26i 0.389504 + 0.674642i
\(573\) 0 0
\(574\) −7951.46 + 45539.0i −0.578201 + 3.31143i
\(575\) −28270.4 −2.05036
\(576\) 0 0
\(577\) −8430.47 + 14602.0i −0.608259 + 1.05353i 0.383269 + 0.923637i \(0.374798\pi\)
−0.991527 + 0.129898i \(0.958535\pi\)
\(578\) 11382.1 19714.5i 0.819092 1.41871i
\(579\) 0 0
\(580\) 62726.2 4.49063
\(581\) −3756.65 3141.54i −0.268248 0.224325i
\(582\) 0 0
\(583\) −7608.70 13178.7i −0.540515 0.936199i
\(584\) −10105.4 + 17503.0i −0.716033 + 1.24021i
\(585\) 0 0
\(586\) 3155.14 + 5464.87i 0.222419 + 0.385241i
\(587\) −3952.45 −0.277913 −0.138957 0.990298i \(-0.544375\pi\)
−0.138957 + 0.990298i \(0.544375\pi\)
\(588\) 0 0
\(589\) −9441.48 −0.660492
\(590\) −7518.00 13021.6i −0.524595 0.908626i
\(591\) 0 0
\(592\) −563.832 + 976.585i −0.0391442 + 0.0677997i
\(593\) 7580.86 + 13130.4i 0.524973 + 0.909279i 0.999577 + 0.0290799i \(0.00925774\pi\)
−0.474605 + 0.880199i \(0.657409\pi\)
\(594\) 0 0
\(595\) 3061.18 + 2559.94i 0.210918 + 0.176382i
\(596\) −5684.93 −0.390711
\(597\) 0 0
\(598\) −3657.49 + 6334.96i −0.250110 + 0.433203i
\(599\) 3705.69 6418.44i 0.252772 0.437814i −0.711516 0.702670i \(-0.751991\pi\)
0.964288 + 0.264856i \(0.0853244\pi\)
\(600\) 0 0
\(601\) 10776.0 0.731388 0.365694 0.930735i \(-0.380832\pi\)
0.365694 + 0.930735i \(0.380832\pi\)
\(602\) 3555.13 20360.7i 0.240692 1.37847i
\(603\) 0 0
\(604\) −12058.2 20885.5i −0.812322 1.40698i
\(605\) −20611.1 + 35699.4i −1.38506 + 2.39899i
\(606\) 0 0
\(607\) −5.81913 10.0790i −0.000389113 0.000673963i 0.865831 0.500337i \(-0.166791\pi\)
−0.866220 + 0.499663i \(0.833457\pi\)
\(608\) −4602.09 −0.306973
\(609\) 0 0
\(610\) −17379.0 −1.15353
\(611\) −1671.36 2894.88i −0.110664 0.191676i
\(612\) 0 0
\(613\) −7810.70 + 13528.5i −0.514635 + 0.891373i 0.485221 + 0.874391i \(0.338739\pi\)
−0.999856 + 0.0169819i \(0.994594\pi\)
\(614\) 21124.3 + 36588.3i 1.38845 + 2.40486i
\(615\) 0 0
\(616\) −32887.6 + 12032.3i −2.15110 + 0.787003i
\(617\) 26376.5 1.72103 0.860517 0.509422i \(-0.170141\pi\)
0.860517 + 0.509422i \(0.170141\pi\)
\(618\) 0 0
\(619\) 10578.3 18322.1i 0.686877 1.18971i −0.285966 0.958240i \(-0.592314\pi\)
0.972843 0.231466i \(-0.0743523\pi\)
\(620\) 26018.1 45064.7i 1.68534 2.91910i
\(621\) 0 0
\(622\) −21577.7 −1.39098
\(623\) −2912.25 + 16678.8i −0.187282 + 1.07259i
\(624\) 0 0
\(625\) −3395.34 5880.90i −0.217302 0.376377i
\(626\) −10278.2 + 17802.3i −0.656227 + 1.13662i
\(627\) 0 0
\(628\) 5090.85 + 8817.62i 0.323483 + 0.560289i
\(629\) 381.888 0.0242081
\(630\) 0 0
\(631\) 18757.1 1.18337 0.591686 0.806169i \(-0.298463\pi\)
0.591686 + 0.806169i \(0.298463\pi\)
\(632\) 13547.7 + 23465.3i 0.852686 + 1.47690i
\(633\) 0 0
\(634\) −15947.4 + 27621.6i −0.998976 + 1.73028i
\(635\) 14868.4 + 25752.9i 0.929190 + 1.60940i
\(636\) 0 0
\(637\) −741.071 4122.36i −0.0460947 0.256411i
\(638\) 64702.2 4.01502
\(639\) 0 0
\(640\) 24801.6 42957.7i 1.53183 2.65321i
\(641\) −1998.41 + 3461.36i −0.123140 + 0.213284i −0.921004 0.389552i \(-0.872630\pi\)
0.797864 + 0.602837i \(0.205963\pi\)
\(642\) 0 0
\(643\) −22237.8 −1.36388 −0.681940 0.731408i \(-0.738864\pi\)
−0.681940 + 0.731408i \(0.738864\pi\)
\(644\) −26231.8 21936.7i −1.60509 1.34228i
\(645\) 0 0
\(646\) −1366.34 2366.56i −0.0832163 0.144135i
\(647\) −11496.1 + 19911.9i −0.698545 + 1.20992i 0.270425 + 0.962741i \(0.412836\pi\)
−0.968971 + 0.247175i \(0.920498\pi\)
\(648\) 0 0
\(649\) −5019.21 8693.53i −0.303577 0.525810i
\(650\) −13069.0 −0.788628
\(651\) 0 0
\(652\) 25621.2 1.53896
\(653\) −14849.7 25720.4i −0.889912 1.54137i −0.839978 0.542620i \(-0.817432\pi\)
−0.0499339 0.998753i \(-0.515901\pi\)
\(654\) 0 0
\(655\) −2102.80 + 3642.15i −0.125440 + 0.217268i
\(656\) 8916.12 + 15443.2i 0.530665 + 0.919138i
\(657\) 0 0
\(658\) 22673.2 8295.22i 1.34330 0.491461i
\(659\) 388.786 0.0229817 0.0114909 0.999934i \(-0.496342\pi\)
0.0114909 + 0.999934i \(0.496342\pi\)
\(660\) 0 0
\(661\) −4994.02 + 8649.89i −0.293865 + 0.508989i −0.974720 0.223429i \(-0.928275\pi\)
0.680855 + 0.732418i \(0.261608\pi\)
\(662\) 19204.9 33263.9i 1.12752 1.95293i
\(663\) 0 0
\(664\) −8409.06 −0.491468
\(665\) −16200.1 + 5926.98i −0.944682 + 0.345621i
\(666\) 0 0
\(667\) 14372.4 + 24893.7i 0.834334 + 1.44511i
\(668\) 24369.6 42209.4i 1.41151 2.44481i
\(669\) 0 0
\(670\) −22939.2 39731.9i −1.32271 2.29101i
\(671\) −11602.7 −0.667536
\(672\) 0 0
\(673\) 19996.8 1.14535 0.572674 0.819783i \(-0.305906\pi\)
0.572674 + 0.819783i \(0.305906\pi\)
\(674\) 1143.43 + 1980.48i 0.0653461 + 0.113183i
\(675\) 0 0
\(676\) 15029.5 26031.9i 0.855116 1.48110i
\(677\) 12561.9 + 21757.8i 0.713135 + 1.23519i 0.963675 + 0.267079i \(0.0860585\pi\)
−0.250540 + 0.968106i \(0.580608\pi\)
\(678\) 0 0
\(679\) −6472.54 5412.73i −0.365822 0.305923i
\(680\) 6852.28 0.386431
\(681\) 0 0
\(682\) 26837.7 46484.3i 1.50685 2.60994i
\(683\) −11544.9 + 19996.3i −0.646782 + 1.12026i 0.337105 + 0.941467i \(0.390552\pi\)
−0.983887 + 0.178792i \(0.942781\pi\)
\(684\) 0 0
\(685\) 42110.1 2.34883
\(686\) 30250.9 151.372i 1.68365 0.00842481i
\(687\) 0 0
\(688\) −3986.44 6904.71i −0.220903 0.382616i
\(689\) 1562.64 2706.58i 0.0864034 0.149655i
\(690\) 0 0
\(691\) 5377.95 + 9314.88i 0.296074 + 0.512814i 0.975234 0.221175i \(-0.0709893\pi\)
−0.679161 + 0.733990i \(0.737656\pi\)
\(692\) 794.304 0.0436343
\(693\) 0 0
\(694\) −10653.5 −0.582710
\(695\) −28195.5 48836.0i −1.53887 2.66540i
\(696\) 0 0
\(697\) 3019.48 5229.89i 0.164090 0.284213i
\(698\) −6197.55 10734.5i −0.336076 0.582100i
\(699\) 0 0
\(700\) 10508.5 60183.3i 0.567404 3.24959i
\(701\) 31197.1 1.68088 0.840442 0.541901i \(-0.182295\pi\)
0.840442 + 0.541901i \(0.182295\pi\)
\(702\) 0 0
\(703\) −825.420 + 1429.67i −0.0442835 + 0.0767013i
\(704\) 21172.9 36672.6i 1.13350 1.96328i
\(705\) 0 0
\(706\) −33042.0 −1.76141
\(707\) 15656.7 5728.16i 0.832858 0.304710i
\(708\) 0 0
\(709\) −14447.7 25024.2i −0.765296 1.32553i −0.940090 0.340927i \(-0.889259\pi\)
0.174793 0.984605i \(-0.444074\pi\)
\(710\) −14207.0 + 24607.2i −0.750955 + 1.30069i
\(711\) 0 0
\(712\) 14536.7 + 25178.2i 0.765146 + 1.32527i
\(713\) 23846.0 1.25251
\(714\) 0 0
\(715\) −13578.1 −0.710201
\(716\) 27305.2 + 47293.9i 1.42520 + 2.46852i
\(717\) 0 0
\(718\) −5126.73 + 8879.75i −0.266473 + 0.461545i
\(719\) 95.1583 + 164.819i 0.00493575 + 0.00854898i 0.868483 0.495719i \(-0.165096\pi\)
−0.863547 + 0.504268i \(0.831762\pi\)
\(720\) 0 0
\(721\) −364.366 + 2086.77i −0.0188207 + 0.107788i
\(722\) −20850.7 −1.07477
\(723\) 0 0
\(724\) −9400.18 + 16281.6i −0.482535 + 0.835775i
\(725\) −25677.8 + 44475.3i −1.31538 + 2.27830i
\(726\) 0 0
\(727\) −5281.27 −0.269424 −0.134712 0.990885i \(-0.543011\pi\)
−0.134712 + 0.990885i \(0.543011\pi\)
\(728\) −5517.22 4613.84i −0.280882 0.234891i
\(729\) 0 0
\(730\) −28299.2 49015.6i −1.43479 2.48514i
\(731\) −1350.02 + 2338.31i −0.0683070 + 0.118311i
\(732\) 0 0
\(733\) 13908.6 + 24090.4i 0.700853 + 1.21391i 0.968167 + 0.250304i \(0.0805306\pi\)
−0.267314 + 0.963609i \(0.586136\pi\)
\(734\) 8805.12 0.442783
\(735\) 0 0
\(736\) 11623.3 0.582122
\(737\) −15314.8 26526.0i −0.765438 1.32578i
\(738\) 0 0
\(739\) 4276.71 7407.48i 0.212884 0.368726i −0.739732 0.672902i \(-0.765048\pi\)
0.952616 + 0.304176i \(0.0983810\pi\)
\(740\) −4549.26 7879.55i −0.225992 0.391430i
\(741\) 0 0
\(742\) 17315.8 + 14480.5i 0.856715 + 0.716438i
\(743\) −14150.4 −0.698693 −0.349346 0.936994i \(-0.613596\pi\)
−0.349346 + 0.936994i \(0.613596\pi\)
\(744\) 0 0
\(745\) 3621.59 6272.78i 0.178100 0.308479i
\(746\) 105.287 182.362i 0.00516733 0.00895009i
\(747\) 0 0
\(748\) 10055.1 0.491511
\(749\) −2879.98 + 16494.0i −0.140497 + 0.804642i
\(750\) 0 0
\(751\) 12121.6 + 20995.3i 0.588981 + 1.02014i 0.994366 + 0.105999i \(0.0338039\pi\)
−0.405386 + 0.914146i \(0.632863\pi\)
\(752\) 4656.53 8065.34i 0.225806 0.391107i
\(753\) 0 0
\(754\) 6644.13 + 11508.0i 0.320908 + 0.555830i
\(755\) 30726.8 1.48114
\(756\) 0 0
\(757\) −13428.2 −0.644722 −0.322361 0.946617i \(-0.604476\pi\)
−0.322361 + 0.946617i \(0.604476\pi\)
\(758\) −7949.50 13768.9i −0.380922 0.659776i
\(759\) 0 0
\(760\) −14810.6 + 25652.8i −0.706893 + 1.22437i
\(761\) −5262.95 9115.70i −0.250699 0.434223i 0.713020 0.701144i \(-0.247327\pi\)
−0.963718 + 0.266921i \(0.913994\pi\)
\(762\) 0 0
\(763\) −25160.5 + 9205.23i −1.19380 + 0.436765i
\(764\) 13797.5 0.653373
\(765\) 0 0
\(766\) −19049.9 + 32995.4i −0.898565 + 1.55636i
\(767\) 1030.82 1785.44i 0.0485279 0.0840528i
\(768\) 0 0
\(769\) 31855.3 1.49380 0.746900 0.664936i \(-0.231541\pi\)
0.746900 + 0.664936i \(0.231541\pi\)
\(770\) 16868.4 96607.5i 0.789474 4.52142i
\(771\) 0 0
\(772\) 10369.5 + 17960.5i 0.483427 + 0.837321i
\(773\) 7406.35 12828.2i 0.344616 0.596892i −0.640668 0.767818i \(-0.721343\pi\)
0.985284 + 0.170926i \(0.0546759\pi\)
\(774\) 0 0
\(775\) 21301.7 + 36895.7i 0.987330 + 1.71011i
\(776\) −14488.4 −0.670237
\(777\) 0 0
\(778\) −5361.38 −0.247063
\(779\) 13052.7 + 22608.0i 0.600337 + 1.03981i
\(780\) 0 0
\(781\) −9484.94 + 16428.4i −0.434568 + 0.752694i
\(782\) 3450.90 + 5977.13i 0.157806 + 0.273327i
\(783\) 0 0
\(784\) 8914.14 7530.67i 0.406074 0.343051i
\(785\) −12972.5 −0.589821
\(786\) 0 0
\(787\) −19179.7 + 33220.1i −0.868718 + 1.50466i −0.00541041 + 0.999985i \(0.501722\pi\)
−0.863308 + 0.504678i \(0.831611\pi\)
\(788\) −22073.9 + 38233.2i −0.997908 + 1.72843i
\(789\) 0 0
\(790\) −75878.1 −3.41724
\(791\) 145.843 + 121.963i 0.00655574 + 0.00548231i
\(792\) 0 0
\(793\) −1191.45 2063.66i −0.0533541 0.0924120i
\(794\) −435.125 + 753.659i −0.0194484 + 0.0336856i
\(795\) 0 0
\(796\) 161.787 + 280.223i 0.00720400 + 0.0124777i
\(797\) 26078.1 1.15901 0.579506 0.814968i \(-0.303246\pi\)
0.579506 + 0.814968i \(0.303246\pi\)
\(798\) 0 0
\(799\) −3153.90 −0.139646
\(800\) 10383.2 + 17984.2i 0.458875 + 0.794795i
\(801\) 0 0
\(802\) 22376.9 38757.9i 0.985231 1.70647i
\(803\) −18893.3 32724.1i −0.830298 1.43812i
\(804\) 0 0
\(805\) 40916.0 14969.5i 1.79143 0.655412i
\(806\) 11023.6 0.481751
\(807\) 0 0
\(808\) 14313.8 24792.3i 0.623217 1.07944i
\(809\) 16938.9 29339.0i 0.736142 1.27504i −0.218079 0.975931i \(-0.569979\pi\)
0.954221 0.299104i \(-0.0966877\pi\)
\(810\) 0 0
\(811\) 15463.4 0.669537 0.334769 0.942300i \(-0.391342\pi\)
0.334769 + 0.942300i \(0.391342\pi\)
\(812\) −58337.1 + 21343.2i −2.52122 + 0.922414i
\(813\) 0 0
\(814\) −4692.57 8127.77i −0.202057 0.349973i
\(815\) −16322.0 + 28270.5i −0.701514 + 1.21506i
\(816\) 0 0
\(817\) −5835.94 10108.1i −0.249906 0.432851i
\(818\) 12422.3 0.530973
\(819\) 0 0
\(820\) −143879. −6.12740
\(821\) −14573.3 25241.7i −0.619503 1.07301i −0.989576 0.144008i \(-0.954001\pi\)
0.370073 0.929003i \(-0.379333\pi\)
\(822\) 0 0
\(823\) 915.651 1585.95i 0.0387820 0.0671724i −0.845983 0.533210i \(-0.820986\pi\)
0.884765 + 0.466038i \(0.154319\pi\)
\(824\) 1818.75 + 3150.17i 0.0768922 + 0.133181i
\(825\) 0 0
\(826\) 11422.7 + 9552.33i 0.481169 + 0.402383i
\(827\) 19801.5 0.832609 0.416304 0.909225i \(-0.363325\pi\)
0.416304 + 0.909225i \(0.363325\pi\)
\(828\) 0 0
\(829\) −10353.8 + 17933.3i −0.433778 + 0.751326i −0.997195 0.0748468i \(-0.976153\pi\)
0.563417 + 0.826173i \(0.309487\pi\)
\(830\) 11774.4 20393.9i 0.492404 0.852869i
\(831\) 0 0
\(832\) 8696.82 0.362389
\(833\) −3718.02 1339.22i −0.154648 0.0557038i
\(834\) 0 0
\(835\) 31049.4 + 53779.1i 1.28683 + 2.22886i
\(836\) −21733.3 + 37643.1i −0.899115 + 1.55731i
\(837\) 0 0
\(838\) 22700.5 + 39318.5i 0.935772 + 1.62080i
\(839\) 28880.2 1.18838 0.594192 0.804323i \(-0.297472\pi\)
0.594192 + 0.804323i \(0.297472\pi\)
\(840\) 0 0
\(841\) 27828.2 1.14101
\(842\) 27216.3 + 47140.0i 1.11394 + 1.92940i
\(843\) 0 0
\(844\) 35828.0 62055.9i 1.46120 2.53087i
\(845\) 19149.1 + 33167.2i 0.779585 + 1.35028i
\(846\) 0 0
\(847\) 7021.77 40214.5i 0.284853 1.63139i
\(848\) 8707.28 0.352605
\(849\) 0 0
\(850\) −6165.41 + 10678.8i −0.248790 + 0.430917i
\(851\) 2084.73 3610.86i 0.0839761 0.145451i
\(852\) 0 0
\(853\) 34006.5 1.36502 0.682509 0.730877i \(-0.260889\pi\)
0.682509 + 0.730877i \(0.260889\pi\)
\(854\) 16163.0 5913.38i 0.647641 0.236946i
\(855\) 0 0
\(856\) 14375.6 + 24899.2i 0.574003 + 0.994202i
\(857\) −13905.0 + 24084.2i −0.554243 + 0.959977i 0.443719 + 0.896166i \(0.353659\pi\)
−0.997962 + 0.0638114i \(0.979674\pi\)
\(858\) 0 0
\(859\) −7769.19 13456.6i −0.308593 0.534499i 0.669462 0.742847i \(-0.266525\pi\)
−0.978055 + 0.208348i \(0.933191\pi\)
\(860\) 64328.9 2.55069
\(861\) 0 0
\(862\) 33300.7 1.31581
\(863\) 17295.2 + 29956.2i 0.682196 + 1.18160i 0.974309 + 0.225214i \(0.0723083\pi\)
−0.292113 + 0.956384i \(0.594358\pi\)
\(864\) 0 0
\(865\) −506.012 + 876.438i −0.0198901 + 0.0344506i
\(866\) 11264.3 + 19510.3i 0.442005 + 0.765575i
\(867\) 0 0
\(868\) −8863.84 + 50764.3i −0.346611 + 1.98508i
\(869\) −50658.2 −1.97752
\(870\) 0 0
\(871\) 3145.29 5447.80i 0.122358 0.211931i
\(872\) −23002.5 + 39841.5i −0.893307 + 1.54725i
\(873\) 0 0
\(874\) −29835.4 −1.15469
\(875\) 26500.3 + 22161.2i 1.02386 + 0.856212i
\(876\) 0 0
\(877\) 6942.18 + 12024.2i 0.267298 + 0.462975i 0.968163 0.250320i \(-0.0805357\pi\)
−0.700865 + 0.713294i \(0.747202\pi\)
\(878\) 20499.4 35505.9i 0.787950 1.36477i
\(879\) 0 0
\(880\) −18914.9 32761.5i −0.724568 1.25499i
\(881\) −50252.5 −1.92173 −0.960867 0.277009i \(-0.910657\pi\)
−0.960867 + 0.277009i \(0.910657\pi\)
\(882\) 0 0
\(883\) −22551.2 −0.859466 −0.429733 0.902956i \(-0.641392\pi\)
−0.429733 + 0.902956i \(0.641392\pi\)
\(884\) 1032.54 + 1788.40i 0.0392850 + 0.0680436i
\(885\) 0 0
\(886\) −12552.8 + 21742.1i −0.475982 + 0.824425i
\(887\) −14007.6 24261.9i −0.530248 0.918417i −0.999377 0.0352873i \(-0.988765\pi\)
0.469129 0.883130i \(-0.344568\pi\)
\(888\) 0 0
\(889\) −22590.7 18891.7i −0.852271 0.712721i
\(890\) −81417.1 −3.06641
\(891\) 0 0
\(892\) −1057.21 + 1831.15i −0.0396840 + 0.0687346i
\(893\) 6816.91 11807.2i 0.255453 0.442457i
\(894\) 0 0
\(895\) −69579.0 −2.59863
\(896\) −8449.42 + 48390.9i −0.315039 + 1.80427i
\(897\) 0 0
\(898\) 32177.4 + 55733.0i 1.19574 + 2.07108i
\(899\) 21659.1 37514.7i 0.803528 1.39175i
\(900\) 0 0
\(901\) −1474.38 2553.70i −0.0545157 0.0944240i
\(902\) −148411. −5.47844
\(903\) 0 0
\(904\) 326.462 0.0120110
\(905\) −11976.8 20744.4i −0.439913 0.761952i
\(906\) 0 0
\(907\) −13412.9 + 23231.9i −0.491035 + 0.850498i −0.999947 0.0103208i \(-0.996715\pi\)
0.508911 + 0.860819i \(0.330048\pi\)
\(908\) −36123.7 62568.2i −1.32027 2.28678i
\(909\) 0 0
\(910\) 18914.8 6920.19i 0.689034 0.252090i
\(911\) −9637.55 −0.350501 −0.175250 0.984524i \(-0.556074\pi\)
−0.175250 + 0.984524i \(0.556074\pi\)
\(912\) 0 0
\(913\) 7860.89 13615.5i 0.284948 0.493545i
\(914\) −17354.2 + 30058.4i −0.628037 + 1.08779i
\(915\) 0 0
\(916\) −231.751 −0.00835945
\(917\) 716.380 4102.80i 0.0257982 0.147749i
\(918\) 0 0
\(919\) −1879.62 3255.60i −0.0674678 0.116858i 0.830318 0.557290i \(-0.188159\pi\)
−0.897786 + 0.440432i \(0.854825\pi\)
\(920\) 37406.7 64790.2i 1.34050 2.32182i
\(921\) 0 0
\(922\) −13463.1 23318.8i −0.480893 0.832932i
\(923\) −3895.95 −0.138935
\(924\) 0 0
\(925\) 7449.20 0.264787
\(926\) −9767.58 16918.0i −0.346634 0.600387i
\(927\) 0 0
\(928\) 10557.4 18285.9i 0.373451 0.646836i
\(929\) 2081.28 + 3604.88i 0.0735033 + 0.127312i 0.900434 0.434992i \(-0.143249\pi\)
−0.826931 + 0.562303i \(0.809915\pi\)
\(930\) 0 0
\(931\) 13049.8 11024.5i 0.459389 0.388092i
\(932\) −10678.4 −0.375302
\(933\) 0 0
\(934\) 12153.3 21050.1i 0.425768 0.737452i
\(935\) −6405.59 + 11094.8i −0.224049 + 0.388063i
\(936\) 0 0
\(937\) −39048.7 −1.36144 −0.680718 0.732545i \(-0.738332\pi\)
−0.680718 + 0.732545i \(0.738332\pi\)
\(938\) 34853.2 + 29146.4i 1.21322 + 1.01457i
\(939\) 0 0
\(940\) 37571.0 + 65074.9i 1.30365 + 2.25799i
\(941\) 7507.70 13003.7i 0.260089 0.450488i −0.706176 0.708036i \(-0.749581\pi\)
0.966265 + 0.257548i \(0.0829147\pi\)
\(942\) 0 0
\(943\) −32966.8 57100.1i −1.13844 1.97183i
\(944\) 5743.91 0.198038
\(945\) 0 0
\(946\) 66355.4 2.28055
\(947\) −6233.93 10797.5i −0.213913 0.370508i 0.739023 0.673680i \(-0.235287\pi\)
−0.952936 + 0.303173i \(0.901954\pi\)
\(948\) 0 0
\(949\) 3880.22 6720.74i 0.132726 0.229889i
\(950\) −26652.1 46162.7i −0.910218 1.57654i
\(951\) 0 0
\(952\) −6372.80 + 2331.56i −0.216958 + 0.0793762i
\(953\) 26584.1 0.903612 0.451806 0.892116i \(-0.350780\pi\)
0.451806 + 0.892116i \(0.350780\pi\)
\(954\) 0 0
\(955\) −8789.72 + 15224.2i −0.297831 + 0.515859i
\(956\) −467.386 + 809.537i −0.0158121 + 0.0273873i
\(957\) 0 0
\(958\) −20003.1 −0.674605
\(959\) −39163.6 + 14328.4i −1.31873 + 0.482469i
\(960\) 0 0
\(961\) −3072.41 5321.57i −0.103132 0.178630i
\(962\) 963.740 1669.25i 0.0322996 0.0559446i
\(963\) 0 0
\(964\) −24584.1 42581.0i −0.821371 1.42266i
\(965\) −26423.5 −0.881455
\(966\) 0 0
\(967\) 26613.6 0.885041 0.442521 0.896758i \(-0.354084\pi\)
0.442521 + 0.896758i \(0.354084\pi\)
\(968\) −35049.5 60707.5i −1.16377 2.01572i
\(969\) 0 0
\(970\) 20286.8 35137.7i 0.671514 1.16310i
\(971\) 5136.34 + 8896.40i 0.169756 + 0.294026i 0.938334 0.345730i \(-0.112369\pi\)
−0.768578 + 0.639756i \(0.779035\pi\)
\(972\) 0 0
\(973\) 42839.5 + 35825.0i 1.41148 + 1.18037i
\(974\) 20481.9 0.673803
\(975\) 0 0
\(976\) 3319.48 5749.51i 0.108867 0.188563i
\(977\) −18448.9 + 31954.4i −0.604127 + 1.04638i 0.388062 + 0.921633i \(0.373145\pi\)
−0.992189 + 0.124745i \(0.960189\pi\)
\(978\) 0 0
\(979\) −54356.2 −1.77450
\(980\) 16658.8 + 92668.0i 0.543006 + 3.02058i
\(981\) 0 0
\(982\) −4225.09 7318.06i −0.137299 0.237809i
\(983\) 10721.7 18570.5i 0.347883 0.602551i −0.637990 0.770044i \(-0.720234\pi\)
0.985873 + 0.167493i \(0.0535673\pi\)
\(984\) 0 0
\(985\) −28124.4 48712.9i −0.909765 1.57576i
\(986\) 12537.7 0.404951
\(987\) 0 0
\(988\) −8926.97 −0.287454
\(989\) 14739.6 + 25529.7i 0.473905 + 0.820827i
\(990\) 0 0
\(991\) 8333.94 14434.8i 0.267141 0.462701i −0.700982 0.713179i \(-0.747254\pi\)
0.968122 + 0.250478i \(0.0805878\pi\)
\(992\) −8758.15 15169.6i −0.280314 0.485518i
\(993\) 0 0
\(994\) 4840.02 27719.4i 0.154443 0.884514i
\(995\) −412.266 −0.0131354
\(996\) 0 0
\(997\) −10124.4 + 17535.9i −0.321606 + 0.557039i −0.980820 0.194917i \(-0.937556\pi\)
0.659213 + 0.751956i \(0.270889\pi\)
\(998\) 16321.7 28270.1i 0.517691 0.896667i
\(999\) 0 0
Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))

Twists

       By twisting character
Char Parity Ord Type Twist Min Dim
1.1 even 1 trivial 189.4.e.f.109.2 14
3.2 odd 2 189.4.e.g.109.6 yes 14
7.2 even 3 inner 189.4.e.f.163.2 yes 14
7.3 odd 6 1323.4.a.bk.1.6 7
7.4 even 3 1323.4.a.bj.1.6 7
21.2 odd 6 189.4.e.g.163.6 yes 14
21.11 odd 6 1323.4.a.bi.1.2 7
21.17 even 6 1323.4.a.bh.1.2 7
    
        By twisted newform
Twist Min Dim Char Parity Ord Type
189.4.e.f.109.2 14 1.1 even 1 trivial
189.4.e.f.163.2 yes 14 7.2 even 3 inner
189.4.e.g.109.6 yes 14 3.2 odd 2
189.4.e.g.163.6 yes 14 21.2 odd 6
1323.4.a.bh.1.2 7 21.17 even 6
1323.4.a.bi.1.2 7 21.11 odd 6
1323.4.a.bj.1.6 7 7.4 even 3
1323.4.a.bk.1.6 7 7.3 odd 6