Properties

Label 189.4.e.f.163.6
Level $189$
Weight $4$
Character 189.163
Analytic conductor $11.151$
Analytic rank $0$
Dimension $14$
Inner twists $2$

Related objects

Downloads

Learn more

Show commands: Magma / PariGP / SageMath

Newspace parameters

comment: Compute space of new eigenforms
 
[N,k,chi] = [189,4,Mod(109,189)]
 
mf = mfinit([N,k,chi],0)
 
lf = mfeigenbasis(mf)
 
from sage.modular.dirichlet import DirichletCharacter
 
H = DirichletGroup(189, base_ring=CyclotomicField(6))
 
chi = DirichletCharacter(H, H._module([0, 4]))
 
N = Newforms(chi, 4, names="a")
 
//Please install CHIMP (https://github.com/edgarcosta/CHIMP) if you want to run this code
 
chi := DirichletCharacter("189.109");
 
S:= CuspForms(chi, 4);
 
N := Newforms(S);
 
Level: \( N \) \(=\) \( 189 = 3^{3} \cdot 7 \)
Weight: \( k \) \(=\) \( 4 \)
Character orbit: \([\chi]\) \(=\) 189.e (of order \(3\), degree \(2\), minimal)

Newform invariants

comment: select newform
 
sage: f = N[0] # Warning: the index may be different
 
gp: f = lf[1] \\ Warning: the index may be different
 
Self dual: no
Analytic conductor: \(11.1513609911\)
Analytic rank: \(0\)
Dimension: \(14\)
Relative dimension: \(7\) over \(\Q(\zeta_{3})\)
Coefficient field: \(\mathbb{Q}[x]/(x^{14} - \cdots)\)
comment: defining polynomial
 
gp: f.mod \\ as an extension of the character field
 
Defining polynomial: \( x^{14} - x^{13} + 44 x^{12} + 23 x^{11} + 1346 x^{10} + 854 x^{9} + 20545 x^{8} + 27750 x^{7} + \cdots + 254016 \) Copy content Toggle raw display
Coefficient ring: \(\Z[a_1, \ldots, a_{7}]\)
Coefficient ring index: \( 3^{8} \)
Twist minimal: yes
Sato-Tate group: $\mathrm{SU}(2)[C_{3}]$

Embedding invariants

Embedding label 163.6
Root \(-1.81482 + 3.14336i\) of defining polynomial
Character \(\chi\) \(=\) 189.163
Dual form 189.4.e.f.109.6

$q$-expansion

comment: q-expansion
 
sage: f.q_expansion() # note that sage often uses an isomorphic number field
 
gp: mfcoefs(f, 20)
 
\(f(q)\) \(=\) \(q+(1.81482 - 3.14336i) q^{2} +(-2.58715 - 4.48108i) q^{4} +(-2.42081 + 4.19297i) q^{5} +(16.3234 + 8.74903i) q^{7} +10.2563 q^{8} +(8.78669 + 15.2190i) q^{10} +(10.0662 + 17.4351i) q^{11} +72.2571 q^{13} +(57.1255 - 35.4325i) q^{14} +(39.3105 - 68.0878i) q^{16} +(-66.1814 - 114.630i) q^{17} +(-38.4685 + 66.6293i) q^{19} +25.0520 q^{20} +73.0732 q^{22} +(11.2359 - 19.4611i) q^{23} +(50.7793 + 87.9524i) q^{25} +(131.134 - 227.130i) q^{26} +(-3.02609 - 95.7816i) q^{28} +193.429 q^{29} +(-44.8853 - 77.7435i) q^{31} +(-101.658 - 176.077i) q^{32} -480.430 q^{34} +(-76.2004 + 47.2639i) q^{35} +(-23.9643 + 41.5074i) q^{37} +(139.627 + 241.841i) q^{38} +(-24.8285 + 43.0043i) q^{40} +3.41948 q^{41} -168.358 q^{43} +(52.0854 - 90.2145i) q^{44} +(-40.7822 - 70.6368i) q^{46} +(-81.5891 + 141.317i) q^{47} +(189.909 + 285.628i) q^{49} +368.622 q^{50} +(-186.940 - 323.790i) q^{52} +(-168.687 - 292.175i) q^{53} -97.4733 q^{55} +(167.418 + 89.7325i) q^{56} +(351.038 - 608.016i) q^{58} +(-258.894 - 448.418i) q^{59} +(-212.414 + 367.911i) q^{61} -325.835 q^{62} -108.996 q^{64} +(-174.921 + 302.972i) q^{65} +(489.169 + 847.266i) q^{67} +(-342.442 + 593.128i) q^{68} +(10.2775 + 325.301i) q^{70} -40.4250 q^{71} +(-241.120 - 417.632i) q^{73} +(86.9818 + 150.657i) q^{74} +398.095 q^{76} +(11.7740 + 372.670i) q^{77} +(537.485 - 930.952i) q^{79} +(190.327 + 329.656i) q^{80} +(6.20574 - 10.7487i) q^{82} -811.700 q^{83} +640.851 q^{85} +(-305.539 + 529.209i) q^{86} +(103.241 + 178.819i) q^{88} +(-498.519 + 863.461i) q^{89} +(1179.48 + 632.180i) q^{91} -116.276 q^{92} +(296.139 + 512.928i) q^{94} +(-186.250 - 322.594i) q^{95} -1452.82 q^{97} +(1242.48 - 78.5877i) q^{98} +O(q^{100})\)
\(\operatorname{Tr}(f)(q)\) \(=\) \( 14 q - q^{2} - 31 q^{4} + q^{5} + 20 q^{7} + 168 q^{8} - 12 q^{10} - 98 q^{11} - 248 q^{13} - 134 q^{14} - 139 q^{16} - 30 q^{17} - 182 q^{19} - 220 q^{20} + 552 q^{22} + 6 q^{23} - 388 q^{25} + 245 q^{26}+ \cdots + 10160 q^{98}+O(q^{100}) \) Copy content Toggle raw display

Character values

We give the values of \(\chi\) on generators for \(\left(\mathbb{Z}/189\mathbb{Z}\right)^\times\).

\(n\) \(29\) \(136\)
\(\chi(n)\) \(1\) \(e\left(\frac{1}{3}\right)\)

Coefficient data

For each \(n\) we display the coefficients of the \(q\)-expansion \(a_n\), the Satake parameters \(\alpha_p\), and the Satake angles \(\theta_p = \textrm{Arg}(\alpha_p)\).



Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))
Significant digits:
\(n\) \(a_n\) \(a_n / n^{(k-1)/2}\) \( \alpha_n \) \( \theta_n \)
\(p\) \(a_p\) \(a_p / p^{(k-1)/2}\) \( \alpha_p\) \( \theta_p \)
\(2\) 1.81482 3.14336i 0.641636 1.11135i −0.343431 0.939178i \(-0.611589\pi\)
0.985067 0.172169i \(-0.0550774\pi\)
\(3\) 0 0
\(4\) −2.58715 4.48108i −0.323394 0.560135i
\(5\) −2.42081 + 4.19297i −0.216524 + 0.375031i −0.953743 0.300623i \(-0.902805\pi\)
0.737219 + 0.675654i \(0.236139\pi\)
\(6\) 0 0
\(7\) 16.3234 + 8.74903i 0.881382 + 0.472403i
\(8\) 10.2563 0.453268
\(9\) 0 0
\(10\) 8.78669 + 15.2190i 0.277859 + 0.481267i
\(11\) 10.0662 + 17.4351i 0.275915 + 0.477899i 0.970366 0.241642i \(-0.0776859\pi\)
−0.694451 + 0.719540i \(0.744353\pi\)
\(12\) 0 0
\(13\) 72.2571 1.54158 0.770789 0.637090i \(-0.219862\pi\)
0.770789 + 0.637090i \(0.219862\pi\)
\(14\) 57.1255 35.4325i 1.09053 0.676410i
\(15\) 0 0
\(16\) 39.3105 68.0878i 0.614227 1.06387i
\(17\) −66.1814 114.630i −0.944197 1.63540i −0.757351 0.653008i \(-0.773507\pi\)
−0.186846 0.982389i \(-0.559826\pi\)
\(18\) 0 0
\(19\) −38.4685 + 66.6293i −0.464488 + 0.804517i −0.999178 0.0405314i \(-0.987095\pi\)
0.534690 + 0.845048i \(0.320428\pi\)
\(20\) 25.0520 0.280090
\(21\) 0 0
\(22\) 73.0732 0.708148
\(23\) 11.2359 19.4611i 0.101863 0.176431i −0.810589 0.585615i \(-0.800853\pi\)
0.912452 + 0.409184i \(0.134186\pi\)
\(24\) 0 0
\(25\) 50.7793 + 87.9524i 0.406235 + 0.703619i
\(26\) 131.134 227.130i 0.989133 1.71323i
\(27\) 0 0
\(28\) −3.02609 95.7816i −0.0204242 0.646465i
\(29\) 193.429 1.23858 0.619290 0.785163i \(-0.287421\pi\)
0.619290 + 0.785163i \(0.287421\pi\)
\(30\) 0 0
\(31\) −44.8853 77.7435i −0.260053 0.450424i 0.706203 0.708009i \(-0.250407\pi\)
−0.966256 + 0.257585i \(0.917073\pi\)
\(32\) −101.658 176.077i −0.561586 0.972696i
\(33\) 0 0
\(34\) −480.430 −2.42332
\(35\) −76.2004 + 47.2639i −0.368006 + 0.228259i
\(36\) 0 0
\(37\) −23.9643 + 41.5074i −0.106479 + 0.184426i −0.914341 0.404944i \(-0.867291\pi\)
0.807863 + 0.589371i \(0.200624\pi\)
\(38\) 139.627 + 241.841i 0.596064 + 1.03241i
\(39\) 0 0
\(40\) −24.8285 + 43.0043i −0.0981434 + 0.169989i
\(41\) 3.41948 0.0130252 0.00651260 0.999979i \(-0.497927\pi\)
0.00651260 + 0.999979i \(0.497927\pi\)
\(42\) 0 0
\(43\) −168.358 −0.597076 −0.298538 0.954398i \(-0.596499\pi\)
−0.298538 + 0.954398i \(0.596499\pi\)
\(44\) 52.0854 90.2145i 0.178458 0.309099i
\(45\) 0 0
\(46\) −40.7822 70.6368i −0.130718 0.226409i
\(47\) −81.5891 + 141.317i −0.253213 + 0.438577i −0.964409 0.264417i \(-0.914821\pi\)
0.711196 + 0.702994i \(0.248154\pi\)
\(48\) 0 0
\(49\) 189.909 + 285.628i 0.553670 + 0.832736i
\(50\) 368.622 1.04262
\(51\) 0 0
\(52\) −186.940 323.790i −0.498537 0.863492i
\(53\) −168.687 292.175i −0.437188 0.757233i 0.560283 0.828301i \(-0.310692\pi\)
−0.997471 + 0.0710687i \(0.977359\pi\)
\(54\) 0 0
\(55\) −97.4733 −0.238969
\(56\) 167.418 + 89.7325i 0.399502 + 0.214125i
\(57\) 0 0
\(58\) 351.038 608.016i 0.794717 1.37649i
\(59\) −258.894 448.418i −0.571274 0.989475i −0.996436 0.0843579i \(-0.973116\pi\)
0.425162 0.905117i \(-0.360217\pi\)
\(60\) 0 0
\(61\) −212.414 + 367.911i −0.445849 + 0.772233i −0.998111 0.0614374i \(-0.980432\pi\)
0.552262 + 0.833671i \(0.313765\pi\)
\(62\) −325.835 −0.667436
\(63\) 0 0
\(64\) −108.996 −0.212883
\(65\) −174.921 + 302.972i −0.333789 + 0.578140i
\(66\) 0 0
\(67\) 489.169 + 847.266i 0.891963 + 1.54493i 0.837519 + 0.546408i \(0.184005\pi\)
0.0544438 + 0.998517i \(0.482661\pi\)
\(68\) −342.442 + 593.128i −0.610695 + 1.05775i
\(69\) 0 0
\(70\) 10.2775 + 325.301i 0.0175484 + 0.555442i
\(71\) −40.4250 −0.0675713 −0.0337856 0.999429i \(-0.510756\pi\)
−0.0337856 + 0.999429i \(0.510756\pi\)
\(72\) 0 0
\(73\) −241.120 417.632i −0.386588 0.669590i 0.605400 0.795921i \(-0.293013\pi\)
−0.991988 + 0.126331i \(0.959680\pi\)
\(74\) 86.9818 + 150.657i 0.136641 + 0.236669i
\(75\) 0 0
\(76\) 398.095 0.600850
\(77\) 11.7740 + 372.670i 0.0174256 + 0.551555i
\(78\) 0 0
\(79\) 537.485 930.952i 0.765466 1.32583i −0.174533 0.984651i \(-0.555842\pi\)
0.940000 0.341175i \(-0.110825\pi\)
\(80\) 190.327 + 329.656i 0.265990 + 0.460708i
\(81\) 0 0
\(82\) 6.20574 10.7487i 0.00835743 0.0144755i
\(83\) −811.700 −1.07344 −0.536721 0.843760i \(-0.680337\pi\)
−0.536721 + 0.843760i \(0.680337\pi\)
\(84\) 0 0
\(85\) 640.851 0.817766
\(86\) −305.539 + 529.209i −0.383106 + 0.663559i
\(87\) 0 0
\(88\) 103.241 + 178.819i 0.125063 + 0.216616i
\(89\) −498.519 + 863.461i −0.593741 + 1.02839i 0.399982 + 0.916523i \(0.369016\pi\)
−0.993723 + 0.111867i \(0.964317\pi\)
\(90\) 0 0
\(91\) 1179.48 + 632.180i 1.35872 + 0.728247i
\(92\) −116.276 −0.131767
\(93\) 0 0
\(94\) 296.139 + 512.928i 0.324941 + 0.562814i
\(95\) −186.250 322.594i −0.201146 0.348395i
\(96\) 0 0
\(97\) −1452.82 −1.52074 −0.760369 0.649491i \(-0.774982\pi\)
−0.760369 + 0.649491i \(0.774982\pi\)
\(98\) 1242.48 78.5877i 1.28071 0.0810057i
\(99\) 0 0
\(100\) 262.748 455.092i 0.262748 0.455092i
\(101\) 111.862 + 193.751i 0.110205 + 0.190881i 0.915853 0.401514i \(-0.131516\pi\)
−0.805648 + 0.592395i \(0.798183\pi\)
\(102\) 0 0
\(103\) 269.234 466.326i 0.257557 0.446102i −0.708030 0.706182i \(-0.750416\pi\)
0.965587 + 0.260081i \(0.0837492\pi\)
\(104\) 741.089 0.698748
\(105\) 0 0
\(106\) −1224.55 −1.12206
\(107\) −949.026 + 1643.76i −0.857438 + 1.48513i 0.0169271 + 0.999857i \(0.494612\pi\)
−0.874365 + 0.485269i \(0.838722\pi\)
\(108\) 0 0
\(109\) 427.252 + 740.022i 0.375443 + 0.650286i 0.990393 0.138280i \(-0.0441573\pi\)
−0.614950 + 0.788566i \(0.710824\pi\)
\(110\) −176.897 + 306.394i −0.153331 + 0.265577i
\(111\) 0 0
\(112\) 1237.38 767.498i 1.04395 0.647515i
\(113\) −802.087 −0.667734 −0.333867 0.942620i \(-0.608354\pi\)
−0.333867 + 0.942620i \(0.608354\pi\)
\(114\) 0 0
\(115\) 54.3999 + 94.2234i 0.0441115 + 0.0764033i
\(116\) −500.429 866.768i −0.400549 0.693771i
\(117\) 0 0
\(118\) −1879.39 −1.46620
\(119\) −77.4098 2450.17i −0.0596315 1.88745i
\(120\) 0 0
\(121\) 462.845 801.670i 0.347742 0.602307i
\(122\) 770.986 + 1335.39i 0.572146 + 0.990986i
\(123\) 0 0
\(124\) −232.250 + 402.269i −0.168199 + 0.291329i
\(125\) −1096.91 −0.784887
\(126\) 0 0
\(127\) −1723.69 −1.20435 −0.602176 0.798364i \(-0.705699\pi\)
−0.602176 + 0.798364i \(0.705699\pi\)
\(128\) 615.456 1066.00i 0.424993 0.736109i
\(129\) 0 0
\(130\) 634.901 + 1099.68i 0.428342 + 0.741911i
\(131\) −509.472 + 882.432i −0.339792 + 0.588538i −0.984394 0.175981i \(-0.943690\pi\)
0.644601 + 0.764519i \(0.277024\pi\)
\(132\) 0 0
\(133\) −1210.88 + 751.058i −0.789448 + 0.489661i
\(134\) 3551.02 2.28926
\(135\) 0 0
\(136\) −678.775 1175.67i −0.427974 0.741272i
\(137\) −919.109 1591.94i −0.573173 0.992765i −0.996237 0.0866656i \(-0.972379\pi\)
0.423064 0.906100i \(-0.360955\pi\)
\(138\) 0 0
\(139\) −1467.29 −0.895352 −0.447676 0.894196i \(-0.647748\pi\)
−0.447676 + 0.894196i \(0.647748\pi\)
\(140\) 408.935 + 219.181i 0.246867 + 0.132316i
\(141\) 0 0
\(142\) −73.3641 + 127.070i −0.0433562 + 0.0750951i
\(143\) 727.352 + 1259.81i 0.425344 + 0.736718i
\(144\) 0 0
\(145\) −468.255 + 811.041i −0.268182 + 0.464505i
\(146\) −1750.36 −0.992196
\(147\) 0 0
\(148\) 247.997 0.137738
\(149\) 1755.07 3039.86i 0.964971 1.67138i 0.255277 0.966868i \(-0.417833\pi\)
0.709693 0.704511i \(-0.248833\pi\)
\(150\) 0 0
\(151\) −1618.79 2803.83i −0.872421 1.51108i −0.859485 0.511161i \(-0.829216\pi\)
−0.0129353 0.999916i \(-0.504118\pi\)
\(152\) −394.543 + 683.369i −0.210537 + 0.364661i
\(153\) 0 0
\(154\) 1192.80 + 639.320i 0.624149 + 0.334531i
\(155\) 434.635 0.225231
\(156\) 0 0
\(157\) −1432.65 2481.42i −0.728265 1.26139i −0.957616 0.288048i \(-0.906994\pi\)
0.229351 0.973344i \(-0.426340\pi\)
\(158\) −1950.88 3379.02i −0.982302 1.70140i
\(159\) 0 0
\(160\) 984.380 0.486388
\(161\) 353.674 219.369i 0.173127 0.107383i
\(162\) 0 0
\(163\) 306.357 530.626i 0.147213 0.254980i −0.782983 0.622043i \(-0.786303\pi\)
0.930196 + 0.367062i \(0.119636\pi\)
\(164\) −8.84671 15.3229i −0.00421227 0.00729586i
\(165\) 0 0
\(166\) −1473.09 + 2551.47i −0.688759 + 1.19297i
\(167\) 1633.90 0.757096 0.378548 0.925582i \(-0.376423\pi\)
0.378548 + 0.925582i \(0.376423\pi\)
\(168\) 0 0
\(169\) 3024.09 1.37647
\(170\) 1163.03 2014.43i 0.524708 0.908821i
\(171\) 0 0
\(172\) 435.566 + 754.423i 0.193091 + 0.334443i
\(173\) 518.386 897.871i 0.227816 0.394589i −0.729345 0.684147i \(-0.760175\pi\)
0.957161 + 0.289558i \(0.0935082\pi\)
\(174\) 0 0
\(175\) 59.3946 + 1879.95i 0.0256561 + 0.812064i
\(176\) 1582.82 0.677897
\(177\) 0 0
\(178\) 1809.45 + 3134.05i 0.761931 + 1.31970i
\(179\) 261.129 + 452.289i 0.109037 + 0.188858i 0.915381 0.402590i \(-0.131890\pi\)
−0.806343 + 0.591448i \(0.798556\pi\)
\(180\) 0 0
\(181\) 2657.83 1.09147 0.545733 0.837959i \(-0.316251\pi\)
0.545733 + 0.837959i \(0.316251\pi\)
\(182\) 4127.72 2560.25i 1.68114 1.04274i
\(183\) 0 0
\(184\) 115.238 199.598i 0.0461710 0.0799706i
\(185\) −116.026 200.963i −0.0461104 0.0798655i
\(186\) 0 0
\(187\) 1332.39 2307.76i 0.521036 0.902461i
\(188\) 844.334 0.327550
\(189\) 0 0
\(190\) −1352.04 −0.516249
\(191\) −1457.71 + 2524.82i −0.552231 + 0.956492i 0.445883 + 0.895091i \(0.352890\pi\)
−0.998113 + 0.0614001i \(0.980443\pi\)
\(192\) 0 0
\(193\) −926.189 1604.21i −0.345433 0.598307i 0.639999 0.768375i \(-0.278935\pi\)
−0.985432 + 0.170068i \(0.945601\pi\)
\(194\) −2636.61 + 4566.74i −0.975760 + 1.69007i
\(195\) 0 0
\(196\) 788.600 1589.96i 0.287391 0.579431i
\(197\) −2926.04 −1.05823 −0.529116 0.848549i \(-0.677477\pi\)
−0.529116 + 0.848549i \(0.677477\pi\)
\(198\) 0 0
\(199\) 814.659 + 1411.03i 0.290199 + 0.502640i 0.973857 0.227163i \(-0.0729451\pi\)
−0.683658 + 0.729803i \(0.739612\pi\)
\(200\) 520.807 + 902.064i 0.184133 + 0.318928i
\(201\) 0 0
\(202\) 812.041 0.282847
\(203\) 3157.42 + 1692.31i 1.09166 + 0.585109i
\(204\) 0 0
\(205\) −8.27792 + 14.3378i −0.00282027 + 0.00488485i
\(206\) −977.221 1692.60i −0.330516 0.572470i
\(207\) 0 0
\(208\) 2840.46 4919.83i 0.946879 1.64004i
\(209\) −1548.92 −0.512637
\(210\) 0 0
\(211\) 1691.47 0.551874 0.275937 0.961176i \(-0.411012\pi\)
0.275937 + 0.961176i \(0.411012\pi\)
\(212\) −872.839 + 1511.80i −0.282768 + 0.489769i
\(213\) 0 0
\(214\) 3444.63 + 5966.27i 1.10033 + 1.90582i
\(215\) 407.562 705.919i 0.129281 0.223922i
\(216\) 0 0
\(217\) −52.5006 1661.74i −0.0164238 0.519846i
\(218\) 3101.54 0.963591
\(219\) 0 0
\(220\) 252.178 + 436.785i 0.0772811 + 0.133855i
\(221\) −4782.08 8282.80i −1.45555 2.52109i
\(222\) 0 0
\(223\) −749.266 −0.224998 −0.112499 0.993652i \(-0.535886\pi\)
−0.112499 + 0.993652i \(0.535886\pi\)
\(224\) −118.905 3763.59i −0.0354674 1.12261i
\(225\) 0 0
\(226\) −1455.64 + 2521.25i −0.428443 + 0.742084i
\(227\) 2353.64 + 4076.62i 0.688179 + 1.19196i 0.972427 + 0.233209i \(0.0749228\pi\)
−0.284248 + 0.958751i \(0.591744\pi\)
\(228\) 0 0
\(229\) −1215.05 + 2104.54i −0.350625 + 0.607300i −0.986359 0.164608i \(-0.947364\pi\)
0.635734 + 0.771908i \(0.280697\pi\)
\(230\) 394.904 0.113214
\(231\) 0 0
\(232\) 1983.86 0.561408
\(233\) −894.594 + 1549.48i −0.251531 + 0.435665i −0.963948 0.266092i \(-0.914268\pi\)
0.712416 + 0.701757i \(0.247601\pi\)
\(234\) 0 0
\(235\) −395.024 684.202i −0.109653 0.189925i
\(236\) −1339.60 + 2320.25i −0.369493 + 0.639980i
\(237\) 0 0
\(238\) −7842.26 4203.29i −2.13587 1.14479i
\(239\) 2506.96 0.678500 0.339250 0.940696i \(-0.389827\pi\)
0.339250 + 0.940696i \(0.389827\pi\)
\(240\) 0 0
\(241\) −1989.15 3445.31i −0.531669 0.920878i −0.999317 0.0369632i \(-0.988232\pi\)
0.467647 0.883915i \(-0.345102\pi\)
\(242\) −1679.96 2909.78i −0.446248 0.772924i
\(243\) 0 0
\(244\) 2198.19 0.576739
\(245\) −1657.37 + 104.829i −0.432185 + 0.0273359i
\(246\) 0 0
\(247\) −2779.62 + 4814.45i −0.716045 + 1.24023i
\(248\) −460.356 797.359i −0.117873 0.204163i
\(249\) 0 0
\(250\) −1990.70 + 3447.99i −0.503612 + 0.872281i
\(251\) −2907.80 −0.731231 −0.365615 0.930766i \(-0.619141\pi\)
−0.365615 + 0.930766i \(0.619141\pi\)
\(252\) 0 0
\(253\) 452.409 0.112422
\(254\) −3128.19 + 5418.18i −0.772755 + 1.33845i
\(255\) 0 0
\(256\) −2669.87 4624.35i −0.651823 1.12899i
\(257\) −1910.28 + 3308.69i −0.463657 + 0.803077i −0.999140 0.0414692i \(-0.986796\pi\)
0.535483 + 0.844546i \(0.320129\pi\)
\(258\) 0 0
\(259\) −754.329 + 467.878i −0.180972 + 0.112249i
\(260\) 1810.19 0.431781
\(261\) 0 0
\(262\) 1849.20 + 3202.91i 0.436046 + 0.755254i
\(263\) 3210.22 + 5560.27i 0.752665 + 1.30365i 0.946527 + 0.322625i \(0.104565\pi\)
−0.193862 + 0.981029i \(0.562101\pi\)
\(264\) 0 0
\(265\) 1633.44 0.378647
\(266\) 163.316 + 5169.27i 0.0376449 + 1.19153i
\(267\) 0 0
\(268\) 2531.11 4384.01i 0.576911 0.999238i
\(269\) −560.208 970.309i −0.126976 0.219929i 0.795528 0.605917i \(-0.207194\pi\)
−0.922504 + 0.385989i \(0.873860\pi\)
\(270\) 0 0
\(271\) 1119.08 1938.31i 0.250847 0.434480i −0.712912 0.701253i \(-0.752624\pi\)
0.963759 + 0.266774i \(0.0859576\pi\)
\(272\) −10406.5 −2.31980
\(273\) 0 0
\(274\) −6672.07 −1.47107
\(275\) −1022.31 + 1770.69i −0.224172 + 0.388278i
\(276\) 0 0
\(277\) −947.637 1641.35i −0.205552 0.356027i 0.744756 0.667337i \(-0.232566\pi\)
−0.950309 + 0.311310i \(0.899232\pi\)
\(278\) −2662.87 + 4612.23i −0.574490 + 0.995046i
\(279\) 0 0
\(280\) −781.533 + 484.752i −0.166805 + 0.103462i
\(281\) 8622.88 1.83060 0.915298 0.402777i \(-0.131955\pi\)
0.915298 + 0.402777i \(0.131955\pi\)
\(282\) 0 0
\(283\) −1523.63 2639.01i −0.320037 0.554320i 0.660458 0.750863i \(-0.270362\pi\)
−0.980495 + 0.196542i \(0.937029\pi\)
\(284\) 104.586 + 181.147i 0.0218521 + 0.0378490i
\(285\) 0 0
\(286\) 5280.06 1.09167
\(287\) 55.8176 + 29.9171i 0.0114802 + 0.00615315i
\(288\) 0 0
\(289\) −6303.45 + 10917.9i −1.28302 + 2.22225i
\(290\) 1699.60 + 2943.79i 0.344151 + 0.596087i
\(291\) 0 0
\(292\) −1247.63 + 2160.95i −0.250040 + 0.433083i
\(293\) 8032.29 1.60154 0.800770 0.598972i \(-0.204424\pi\)
0.800770 + 0.598972i \(0.204424\pi\)
\(294\) 0 0
\(295\) 2506.94 0.494778
\(296\) −245.784 + 425.711i −0.0482633 + 0.0835944i
\(297\) 0 0
\(298\) −6370.26 11033.6i −1.23832 2.14483i
\(299\) 811.872 1406.20i 0.157029 0.271983i
\(300\) 0 0
\(301\) −2748.17 1472.97i −0.526253 0.282061i
\(302\) −11751.3 −2.23911
\(303\) 0 0
\(304\) 3024.43 + 5238.47i 0.570602 + 0.988311i
\(305\) −1028.43 1781.29i −0.193074 0.334414i
\(306\) 0 0
\(307\) 1367.50 0.254226 0.127113 0.991888i \(-0.459429\pi\)
0.127113 + 0.991888i \(0.459429\pi\)
\(308\) 1639.50 1016.91i 0.303309 0.188130i
\(309\) 0 0
\(310\) 788.785 1366.22i 0.144516 0.250309i
\(311\) 609.791 + 1056.19i 0.111184 + 0.192575i 0.916248 0.400612i \(-0.131203\pi\)
−0.805064 + 0.593188i \(0.797869\pi\)
\(312\) 0 0
\(313\) 2362.11 4091.30i 0.426564 0.738830i −0.570001 0.821644i \(-0.693057\pi\)
0.996565 + 0.0828139i \(0.0263907\pi\)
\(314\) −10400.0 −1.86912
\(315\) 0 0
\(316\) −5562.22 −0.990188
\(317\) 658.244 1140.11i 0.116627 0.202003i −0.801802 0.597590i \(-0.796125\pi\)
0.918429 + 0.395586i \(0.129459\pi\)
\(318\) 0 0
\(319\) 1947.08 + 3372.45i 0.341742 + 0.591915i
\(320\) 263.859 457.017i 0.0460943 0.0798376i
\(321\) 0 0
\(322\) −47.7014 1509.84i −0.00825557 0.261305i
\(323\) 10183.6 1.75427
\(324\) 0 0
\(325\) 3669.17 + 6355.19i 0.626243 + 1.08468i
\(326\) −1111.97 1925.98i −0.188914 0.327209i
\(327\) 0 0
\(328\) 35.0711 0.00590390
\(329\) −2568.20 + 1592.94i −0.430363 + 0.266936i
\(330\) 0 0
\(331\) −3818.07 + 6613.09i −0.634019 + 1.09815i 0.352703 + 0.935735i \(0.385262\pi\)
−0.986722 + 0.162417i \(0.948071\pi\)
\(332\) 2099.99 + 3637.29i 0.347144 + 0.601272i
\(333\) 0 0
\(334\) 2965.24 5135.94i 0.485780 0.841396i
\(335\) −4736.75 −0.772526
\(336\) 0 0
\(337\) 9852.08 1.59251 0.796257 0.604959i \(-0.206810\pi\)
0.796257 + 0.604959i \(0.206810\pi\)
\(338\) 5488.19 9505.82i 0.883190 1.52973i
\(339\) 0 0
\(340\) −1657.98 2871.70i −0.264460 0.458059i
\(341\) 903.645 1565.16i 0.143505 0.248557i
\(342\) 0 0
\(343\) 600.991 + 6323.96i 0.0946077 + 0.995515i
\(344\) −1726.72 −0.270635
\(345\) 0 0
\(346\) −1881.56 3258.95i −0.292350 0.506365i
\(347\) −1791.93 3103.71i −0.277221 0.480161i 0.693472 0.720484i \(-0.256080\pi\)
−0.970693 + 0.240322i \(0.922747\pi\)
\(348\) 0 0
\(349\) 9485.94 1.45493 0.727465 0.686145i \(-0.240698\pi\)
0.727465 + 0.686145i \(0.240698\pi\)
\(350\) 6017.17 + 3225.08i 0.918946 + 0.492537i
\(351\) 0 0
\(352\) 2046.61 3544.84i 0.309900 0.536763i
\(353\) −3253.87 5635.86i −0.490612 0.849764i 0.509330 0.860571i \(-0.329893\pi\)
−0.999942 + 0.0108070i \(0.996560\pi\)
\(354\) 0 0
\(355\) 97.8613 169.501i 0.0146308 0.0253413i
\(356\) 5158.98 0.768049
\(357\) 0 0
\(358\) 1895.61 0.279849
\(359\) −2066.87 + 3579.93i −0.303859 + 0.526299i −0.977007 0.213209i \(-0.931608\pi\)
0.673148 + 0.739508i \(0.264942\pi\)
\(360\) 0 0
\(361\) 469.854 + 813.812i 0.0685019 + 0.118649i
\(362\) 4823.49 8354.54i 0.700324 1.21300i
\(363\) 0 0
\(364\) −218.657 6920.91i −0.0314855 0.996577i
\(365\) 2334.82 0.334823
\(366\) 0 0
\(367\) −1647.43 2853.44i −0.234320 0.405854i 0.724755 0.689007i \(-0.241953\pi\)
−0.959075 + 0.283153i \(0.908620\pi\)
\(368\) −883.376 1530.05i −0.125134 0.216738i
\(369\) 0 0
\(370\) −842.267 −0.118344
\(371\) −197.307 6245.15i −0.0276110 0.873941i
\(372\) 0 0
\(373\) −1181.65 + 2046.68i −0.164031 + 0.284110i −0.936311 0.351173i \(-0.885783\pi\)
0.772280 + 0.635283i \(0.219116\pi\)
\(374\) −4836.08 8376.34i −0.668631 1.15810i
\(375\) 0 0
\(376\) −836.801 + 1449.38i −0.114773 + 0.198793i
\(377\) 13976.6 1.90937
\(378\) 0 0
\(379\) 11071.4 1.50053 0.750266 0.661136i \(-0.229925\pi\)
0.750266 + 0.661136i \(0.229925\pi\)
\(380\) −963.714 + 1669.20i −0.130099 + 0.225337i
\(381\) 0 0
\(382\) 5290.96 + 9164.21i 0.708662 + 1.22744i
\(383\) −3561.20 + 6168.18i −0.475114 + 0.822922i −0.999594 0.0285012i \(-0.990927\pi\)
0.524480 + 0.851423i \(0.324260\pi\)
\(384\) 0 0
\(385\) −1591.10 852.797i −0.210623 0.112890i
\(386\) −6723.47 −0.886569
\(387\) 0 0
\(388\) 3758.67 + 6510.20i 0.491797 + 0.851818i
\(389\) 129.535 + 224.361i 0.0168835 + 0.0292431i 0.874344 0.485307i \(-0.161292\pi\)
−0.857460 + 0.514550i \(0.827959\pi\)
\(390\) 0 0
\(391\) −2974.42 −0.384714
\(392\) 1947.76 + 2929.48i 0.250961 + 0.377452i
\(393\) 0 0
\(394\) −5310.24 + 9197.61i −0.679000 + 1.17606i
\(395\) 2602.30 + 4507.32i 0.331484 + 0.574147i
\(396\) 0 0
\(397\) 5111.40 8853.20i 0.646181 1.11922i −0.337847 0.941201i \(-0.609699\pi\)
0.984028 0.178016i \(-0.0569680\pi\)
\(398\) 5913.84 0.744809
\(399\) 0 0
\(400\) 7984.64 0.998080
\(401\) −2582.18 + 4472.46i −0.321566 + 0.556968i −0.980811 0.194960i \(-0.937542\pi\)
0.659246 + 0.751928i \(0.270876\pi\)
\(402\) 0 0
\(403\) −3243.28 5617.53i −0.400892 0.694365i
\(404\) 578.810 1002.53i 0.0712794 0.123460i
\(405\) 0 0
\(406\) 11049.7 6853.67i 1.35071 0.837787i
\(407\) −964.914 −0.117516
\(408\) 0 0
\(409\) 2132.05 + 3692.81i 0.257758 + 0.446450i 0.965641 0.259880i \(-0.0836830\pi\)
−0.707883 + 0.706330i \(0.750350\pi\)
\(410\) 30.0459 + 52.0410i 0.00361917 + 0.00626859i
\(411\) 0 0
\(412\) −2786.19 −0.333169
\(413\) −302.819 9584.79i −0.0360793 1.14198i
\(414\) 0 0
\(415\) 1964.97 3403.44i 0.232426 0.402574i
\(416\) −7345.51 12722.8i −0.865729 1.49949i
\(417\) 0 0
\(418\) −2811.01 + 4868.82i −0.328926 + 0.569717i
\(419\) 16613.9 1.93710 0.968548 0.248829i \(-0.0800456\pi\)
0.968548 + 0.248829i \(0.0800456\pi\)
\(420\) 0 0
\(421\) −11821.1 −1.36847 −0.684235 0.729262i \(-0.739864\pi\)
−0.684235 + 0.729262i \(0.739864\pi\)
\(422\) 3069.71 5316.90i 0.354103 0.613324i
\(423\) 0 0
\(424\) −1730.10 2996.63i −0.198163 0.343229i
\(425\) 6721.29 11641.6i 0.767131 1.32871i
\(426\) 0 0
\(427\) −6686.19 + 4147.16i −0.757769 + 0.470012i
\(428\) 9821.10 1.10916
\(429\) 0 0
\(430\) −1479.31 2562.23i −0.165903 0.287353i
\(431\) 6562.26 + 11366.2i 0.733395 + 1.27028i 0.955424 + 0.295237i \(0.0953986\pi\)
−0.222029 + 0.975040i \(0.571268\pi\)
\(432\) 0 0
\(433\) −12962.7 −1.43868 −0.719341 0.694657i \(-0.755556\pi\)
−0.719341 + 0.694657i \(0.755556\pi\)
\(434\) −5318.74 2850.74i −0.588267 0.315299i
\(435\) 0 0
\(436\) 2210.73 3829.09i 0.242832 0.420597i
\(437\) 864.453 + 1497.28i 0.0946280 + 0.163900i
\(438\) 0 0
\(439\) −1921.29 + 3327.77i −0.208880 + 0.361790i −0.951362 0.308076i \(-0.900315\pi\)
0.742482 + 0.669866i \(0.233648\pi\)
\(440\) −999.713 −0.108317
\(441\) 0 0
\(442\) −34714.5 −3.73574
\(443\) 2571.94 4454.73i 0.275839 0.477766i −0.694508 0.719485i \(-0.744378\pi\)
0.970346 + 0.241719i \(0.0777111\pi\)
\(444\) 0 0
\(445\) −2413.64 4180.56i −0.257119 0.445342i
\(446\) −1359.78 + 2355.21i −0.144367 + 0.250051i
\(447\) 0 0
\(448\) −1779.19 953.609i −0.187631 0.100567i
\(449\) −14627.7 −1.53747 −0.768733 0.639570i \(-0.779113\pi\)
−0.768733 + 0.639570i \(0.779113\pi\)
\(450\) 0 0
\(451\) 34.4210 + 59.6190i 0.00359384 + 0.00622472i
\(452\) 2075.12 + 3594.21i 0.215941 + 0.374021i
\(453\) 0 0
\(454\) 17085.7 1.76624
\(455\) −5506.03 + 3415.16i −0.567311 + 0.351879i
\(456\) 0 0
\(457\) 1552.00 2688.14i 0.158861 0.275155i −0.775597 0.631228i \(-0.782551\pi\)
0.934458 + 0.356073i \(0.115885\pi\)
\(458\) 4410.21 + 7638.71i 0.449947 + 0.779331i
\(459\) 0 0
\(460\) 281.482 487.540i 0.0285307 0.0494167i
\(461\) −13751.8 −1.38934 −0.694671 0.719327i \(-0.744450\pi\)
−0.694671 + 0.719327i \(0.744450\pi\)
\(462\) 0 0
\(463\) 5910.83 0.593303 0.296652 0.954986i \(-0.404130\pi\)
0.296652 + 0.954986i \(0.404130\pi\)
\(464\) 7603.78 13170.1i 0.760768 1.31769i
\(465\) 0 0
\(466\) 3247.06 + 5624.07i 0.322783 + 0.559077i
\(467\) 4665.73 8081.28i 0.462322 0.800764i −0.536755 0.843738i \(-0.680350\pi\)
0.999076 + 0.0429740i \(0.0136833\pi\)
\(468\) 0 0
\(469\) 572.162 + 18110.0i 0.0563326 + 1.78304i
\(470\) −2867.59 −0.281430
\(471\) 0 0
\(472\) −2655.29 4599.10i −0.258940 0.448497i
\(473\) −1694.72 2935.33i −0.164742 0.285342i
\(474\) 0 0
\(475\) −7813.61 −0.754764
\(476\) −10779.1 + 6685.84i −1.03794 + 0.643792i
\(477\) 0 0
\(478\) 4549.68 7880.27i 0.435350 0.754049i
\(479\) 9828.25 + 17023.0i 0.937504 + 1.62380i 0.770107 + 0.637914i \(0.220203\pi\)
0.167396 + 0.985890i \(0.446464\pi\)
\(480\) 0 0
\(481\) −1731.59 + 2999.20i −0.164145 + 0.284308i
\(482\) −14439.8 −1.36455
\(483\) 0 0
\(484\) −4789.79 −0.449830
\(485\) 3517.01 6091.64i 0.329277 0.570324i
\(486\) 0 0
\(487\) −1136.03 1967.66i −0.105705 0.183087i 0.808321 0.588742i \(-0.200377\pi\)
−0.914026 + 0.405655i \(0.867043\pi\)
\(488\) −2178.57 + 3773.40i −0.202089 + 0.350028i
\(489\) 0 0
\(490\) −2678.31 + 5399.95i −0.246926 + 0.497847i
\(491\) −14877.7 −1.36746 −0.683730 0.729735i \(-0.739643\pi\)
−0.683730 + 0.729735i \(0.739643\pi\)
\(492\) 0 0
\(493\) −12801.4 22172.6i −1.16946 2.02557i
\(494\) 10089.0 + 17474.7i 0.918880 + 1.59155i
\(495\) 0 0
\(496\) −7057.85 −0.638925
\(497\) −659.874 353.679i −0.0595562 0.0319209i
\(498\) 0 0
\(499\) 8268.39 14321.3i 0.741771 1.28479i −0.209917 0.977719i \(-0.567319\pi\)
0.951688 0.307067i \(-0.0993474\pi\)
\(500\) 2837.88 + 4915.35i 0.253828 + 0.439642i
\(501\) 0 0
\(502\) −5277.14 + 9140.28i −0.469184 + 0.812650i
\(503\) 7642.71 0.677478 0.338739 0.940880i \(-0.390000\pi\)
0.338739 + 0.940880i \(0.390000\pi\)
\(504\) 0 0
\(505\) −1083.19 −0.0954484
\(506\) 821.041 1422.08i 0.0721338 0.124939i
\(507\) 0 0
\(508\) 4459.44 + 7723.98i 0.389480 + 0.674599i
\(509\) 2353.24 4075.92i 0.204922 0.354935i −0.745186 0.666857i \(-0.767639\pi\)
0.950108 + 0.311921i \(0.100973\pi\)
\(510\) 0 0
\(511\) −282.029 8926.75i −0.0244153 0.772791i
\(512\) −9534.04 −0.822947
\(513\) 0 0
\(514\) 6933.62 + 12009.4i 0.594998 + 1.03057i
\(515\) 1303.53 + 2257.78i 0.111535 + 0.193184i
\(516\) 0 0
\(517\) −3285.16 −0.279461
\(518\) 101.739 + 3220.25i 0.00862967 + 0.273146i
\(519\) 0 0
\(520\) −1794.04 + 3107.37i −0.151296 + 0.262052i
\(521\) −9260.35 16039.4i −0.778701 1.34875i −0.932691 0.360677i \(-0.882546\pi\)
0.153990 0.988072i \(-0.450788\pi\)
\(522\) 0 0
\(523\) 3496.85 6056.72i 0.292364 0.506390i −0.682004 0.731348i \(-0.738891\pi\)
0.974368 + 0.224959i \(0.0722247\pi\)
\(524\) 5272.33 0.439547
\(525\) 0 0
\(526\) 23303.9 1.93175
\(527\) −5941.14 + 10290.4i −0.491082 + 0.850578i
\(528\) 0 0
\(529\) 5831.01 + 10099.6i 0.479248 + 0.830082i
\(530\) 2964.41 5134.50i 0.242954 0.420808i
\(531\) 0 0
\(532\) 6498.27 + 3482.95i 0.529579 + 0.283844i
\(533\) 247.082 0.0200794
\(534\) 0 0
\(535\) −4594.83 7958.48i −0.371312 0.643131i
\(536\) 5017.05 + 8689.79i 0.404298 + 0.700264i
\(537\) 0 0
\(538\) −4066.71 −0.325889
\(539\) −3068.31 + 6186.27i −0.245198 + 0.494362i
\(540\) 0 0
\(541\) −689.423 + 1194.12i −0.0547886 + 0.0948966i −0.892119 0.451801i \(-0.850782\pi\)
0.837330 + 0.546697i \(0.184115\pi\)
\(542\) −4061.87 7035.37i −0.321905 0.557556i
\(543\) 0 0
\(544\) −13455.7 + 23306.0i −1.06050 + 1.83683i
\(545\) −4137.19 −0.325170
\(546\) 0 0
\(547\) 10336.8 0.807985 0.403992 0.914762i \(-0.367622\pi\)
0.403992 + 0.914762i \(0.367622\pi\)
\(548\) −4755.75 + 8237.19i −0.370721 + 0.642108i
\(549\) 0 0
\(550\) 3710.61 + 6426.96i 0.287674 + 0.498266i
\(551\) −7440.90 + 12888.0i −0.575305 + 0.996458i
\(552\) 0 0
\(553\) 16918.5 10493.9i 1.30099 0.806951i
\(554\) −6879.16 −0.527559
\(555\) 0 0
\(556\) 3796.10 + 6575.04i 0.289551 + 0.501518i
\(557\) −5074.80 8789.81i −0.386043 0.668647i 0.605870 0.795564i \(-0.292825\pi\)
−0.991913 + 0.126917i \(0.959492\pi\)
\(558\) 0 0
\(559\) −12165.0 −0.920440
\(560\) 222.618 + 7046.29i 0.0167988 + 0.531714i
\(561\) 0 0
\(562\) 15649.0 27104.8i 1.17458 2.03443i
\(563\) 5584.15 + 9672.02i 0.418017 + 0.724027i 0.995740 0.0922061i \(-0.0293919\pi\)
−0.577723 + 0.816233i \(0.696059\pi\)
\(564\) 0 0
\(565\) 1941.70 3363.13i 0.144581 0.250421i
\(566\) −11060.5 −0.821389
\(567\) 0 0
\(568\) −414.610 −0.0306279
\(569\) −9388.28 + 16261.0i −0.691700 + 1.19806i 0.279581 + 0.960122i \(0.409805\pi\)
−0.971281 + 0.237937i \(0.923529\pi\)
\(570\) 0 0
\(571\) 11749.6 + 20351.0i 0.861133 + 1.49153i 0.870836 + 0.491573i \(0.163578\pi\)
−0.00970363 + 0.999953i \(0.503089\pi\)
\(572\) 3763.54 6518.64i 0.275108 0.476500i
\(573\) 0 0
\(574\) 195.339 121.161i 0.0142044 0.00881037i
\(575\) 2282.20 0.165521
\(576\) 0 0
\(577\) −1306.41 2262.78i −0.0942578 0.163259i 0.815041 0.579404i \(-0.196714\pi\)
−0.909299 + 0.416144i \(0.863381\pi\)
\(578\) 22879.3 + 39628.1i 1.64646 + 2.85175i
\(579\) 0 0
\(580\) 4845.78 0.346914
\(581\) −13249.7 7101.59i −0.946113 0.507097i
\(582\) 0 0
\(583\) 3396.07 5882.16i 0.241254 0.417863i
\(584\) −2472.99 4283.35i −0.175228 0.303504i
\(585\) 0 0
\(586\) 14577.2 25248.4i 1.02761 1.77987i
\(587\) 18759.2 1.31904 0.659520 0.751687i \(-0.270759\pi\)
0.659520 + 0.751687i \(0.270759\pi\)
\(588\) 0 0
\(589\) 6906.67 0.483165
\(590\) 4549.65 7880.22i 0.317468 0.549870i
\(591\) 0 0
\(592\) 1884.10 + 3263.35i 0.130804 + 0.226559i
\(593\) 4051.57 7017.52i 0.280570 0.485961i −0.690955 0.722897i \(-0.742810\pi\)
0.971525 + 0.236936i \(0.0761433\pi\)
\(594\) 0 0
\(595\) 10460.9 + 5606.83i 0.720764 + 0.386315i
\(596\) −18162.5 −1.24826
\(597\) 0 0
\(598\) −2946.80 5104.01i −0.201511 0.349028i
\(599\) 2776.43 + 4808.91i 0.189385 + 0.328025i 0.945045 0.326939i \(-0.106017\pi\)
−0.755660 + 0.654964i \(0.772684\pi\)
\(600\) 0 0
\(601\) −21357.1 −1.44954 −0.724771 0.688990i \(-0.758054\pi\)
−0.724771 + 0.688990i \(0.758054\pi\)
\(602\) −9617.51 + 5965.33i −0.651130 + 0.403868i
\(603\) 0 0
\(604\) −8376.12 + 14507.9i −0.564271 + 0.977346i
\(605\) 2240.92 + 3881.39i 0.150589 + 0.260828i
\(606\) 0 0
\(607\) −2549.12 + 4415.20i −0.170454 + 0.295235i −0.938579 0.345065i \(-0.887857\pi\)
0.768125 + 0.640300i \(0.221190\pi\)
\(608\) 15642.5 1.04340
\(609\) 0 0
\(610\) −7465.65 −0.495534
\(611\) −5895.40 + 10211.1i −0.390347 + 0.676102i
\(612\) 0 0
\(613\) −1623.83 2812.56i −0.106992 0.185315i 0.807558 0.589788i \(-0.200789\pi\)
−0.914550 + 0.404472i \(0.867455\pi\)
\(614\) 2481.77 4298.55i 0.163121 0.282533i
\(615\) 0 0
\(616\) 120.757 + 3822.21i 0.00789847 + 0.250002i
\(617\) −8366.93 −0.545932 −0.272966 0.962024i \(-0.588005\pi\)
−0.272966 + 0.962024i \(0.588005\pi\)
\(618\) 0 0
\(619\) −3698.14 6405.36i −0.240130 0.415918i 0.720621 0.693329i \(-0.243857\pi\)
−0.960751 + 0.277411i \(0.910524\pi\)
\(620\) −1124.47 1947.63i −0.0728382 0.126159i
\(621\) 0 0
\(622\) 4426.65 0.285357
\(623\) −15692.0 + 9733.08i −1.00913 + 0.625919i
\(624\) 0 0
\(625\) −3691.99 + 6394.72i −0.236288 + 0.409262i
\(626\) −8573.62 14849.9i −0.547397 0.948120i
\(627\) 0 0
\(628\) −7412.94 + 12839.6i −0.471033 + 0.815853i
\(629\) 6343.96 0.402147
\(630\) 0 0
\(631\) −8786.48 −0.554333 −0.277167 0.960822i \(-0.589395\pi\)
−0.277167 + 0.960822i \(0.589395\pi\)
\(632\) 5512.60 9548.10i 0.346961 0.600954i
\(633\) 0 0
\(634\) −2389.19 4138.20i −0.149664 0.259225i
\(635\) 4172.73 7227.38i 0.260771 0.451669i
\(636\) 0 0
\(637\) 13722.3 + 20638.7i 0.853526 + 1.28373i
\(638\) 14134.4 0.877097
\(639\) 0 0
\(640\) 2979.81 + 5161.18i 0.184043 + 0.318771i
\(641\) −9785.72 16949.4i −0.602984 1.04440i −0.992367 0.123322i \(-0.960645\pi\)
0.389383 0.921076i \(-0.372688\pi\)
\(642\) 0 0
\(643\) −4317.58 −0.264804 −0.132402 0.991196i \(-0.542269\pi\)
−0.132402 + 0.991196i \(0.542269\pi\)
\(644\) −1898.02 1017.30i −0.116137 0.0622472i
\(645\) 0 0
\(646\) 18481.4 32010.7i 1.12560 1.94960i
\(647\) −10892.7 18866.8i −0.661882 1.14641i −0.980121 0.198402i \(-0.936425\pi\)
0.318239 0.948010i \(-0.396908\pi\)
\(648\) 0 0
\(649\) 5212.14 9027.70i 0.315246 0.546022i
\(650\) 26635.5 1.60728
\(651\) 0 0
\(652\) −3170.37 −0.190431
\(653\) −7514.18 + 13014.9i −0.450310 + 0.779960i −0.998405 0.0564563i \(-0.982020\pi\)
0.548095 + 0.836416i \(0.315353\pi\)
\(654\) 0 0
\(655\) −2466.68 4272.41i −0.147147 0.254865i
\(656\) 134.421 232.825i 0.00800042 0.0138571i
\(657\) 0 0
\(658\) 346.383 + 10963.7i 0.0205219 + 0.649558i
\(659\) −12160.9 −0.718851 −0.359426 0.933174i \(-0.617027\pi\)
−0.359426 + 0.933174i \(0.617027\pi\)
\(660\) 0 0
\(661\) −4580.42 7933.52i −0.269527 0.466835i 0.699212 0.714914i \(-0.253534\pi\)
−0.968740 + 0.248079i \(0.920201\pi\)
\(662\) 13858.2 + 24003.2i 0.813619 + 1.40923i
\(663\) 0 0
\(664\) −8325.02 −0.486556
\(665\) −217.849 6895.36i −0.0127035 0.402091i
\(666\) 0 0
\(667\) 2173.34 3764.33i 0.126165 0.218524i
\(668\) −4227.15 7321.64i −0.244840 0.424076i
\(669\) 0 0
\(670\) −8596.35 + 14889.3i −0.495681 + 0.858544i
\(671\) −8552.77 −0.492066
\(672\) 0 0
\(673\) 3430.71 0.196499 0.0982496 0.995162i \(-0.468676\pi\)
0.0982496 + 0.995162i \(0.468676\pi\)
\(674\) 17879.8 30968.7i 1.02181 1.76983i
\(675\) 0 0
\(676\) −7823.79 13551.2i −0.445140 0.771006i
\(677\) 8500.73 14723.7i 0.482585 0.835861i −0.517216 0.855855i \(-0.673031\pi\)
0.999800 + 0.0199942i \(0.00636478\pi\)
\(678\) 0 0
\(679\) −23715.0 12710.8i −1.34035 0.718402i
\(680\) 6572.75 0.370667
\(681\) 0 0
\(682\) −3279.91 5680.97i −0.184156 0.318967i
\(683\) −6722.23 11643.2i −0.376602 0.652293i 0.613964 0.789334i \(-0.289574\pi\)
−0.990565 + 0.137041i \(0.956241\pi\)
\(684\) 0 0
\(685\) 8899.96 0.496424
\(686\) 20969.2 + 9587.72i 1.16707 + 0.533616i
\(687\) 0 0
\(688\) −6618.22 + 11463.1i −0.366740 + 0.635213i
\(689\) −12188.9 21111.7i −0.673960 1.16733i
\(690\) 0 0
\(691\) −15528.7 + 26896.6i −0.854908 + 1.48074i 0.0218229 + 0.999762i \(0.493053\pi\)
−0.876731 + 0.480982i \(0.840280\pi\)
\(692\) −5364.57 −0.294697
\(693\) 0 0
\(694\) −13008.1 −0.711500
\(695\) 3552.04 6152.31i 0.193865 0.335785i
\(696\) 0 0
\(697\) −226.306 391.973i −0.0122983 0.0213014i
\(698\) 17215.3 29817.7i 0.933536 1.61693i
\(699\) 0 0
\(700\) 8270.56 5129.88i 0.446568 0.276987i
\(701\) −2445.90 −0.131784 −0.0658919 0.997827i \(-0.520989\pi\)
−0.0658919 + 0.997827i \(0.520989\pi\)
\(702\) 0 0
\(703\) −1843.74 3193.45i −0.0989160 0.171328i
\(704\) −1097.17 1900.36i −0.0587375 0.101736i
\(705\) 0 0
\(706\) −23620.8 −1.25918
\(707\) 130.841 + 4141.38i 0.00696010 + 0.220301i
\(708\) 0 0
\(709\) 4830.33 8366.38i 0.255863 0.443168i −0.709266 0.704940i \(-0.750974\pi\)
0.965130 + 0.261773i \(0.0843070\pi\)
\(710\) −355.202 615.227i −0.0187753 0.0325198i
\(711\) 0 0
\(712\) −5112.95 + 8855.89i −0.269124 + 0.466136i
\(713\) −2017.30 −0.105959
\(714\) 0 0
\(715\) −7043.14 −0.368389
\(716\) 1351.16 2340.28i 0.0705241 0.122151i
\(717\) 0 0
\(718\) 7502.01 + 12993.9i 0.389934 + 0.675385i
\(719\) 759.679 1315.80i 0.0394037 0.0682492i −0.845651 0.533736i \(-0.820787\pi\)
0.885055 + 0.465487i \(0.154121\pi\)
\(720\) 0 0
\(721\) 8474.72 5256.51i 0.437746 0.271515i
\(722\) 3410.81 0.175813
\(723\) 0 0
\(724\) −6876.22 11910.0i −0.352973 0.611368i
\(725\) 9822.17 + 17012.5i 0.503154 + 0.871488i
\(726\) 0 0
\(727\) 19126.9 0.975760 0.487880 0.872911i \(-0.337770\pi\)
0.487880 + 0.872911i \(0.337770\pi\)
\(728\) 12097.1 + 6483.81i 0.615864 + 0.330091i
\(729\) 0 0
\(730\) 4237.29 7339.20i 0.214834 0.372104i
\(731\) 11142.1 + 19298.7i 0.563758 + 0.976457i
\(732\) 0 0
\(733\) −3615.75 + 6262.67i −0.182198 + 0.315576i −0.942629 0.333843i \(-0.891654\pi\)
0.760431 + 0.649419i \(0.224988\pi\)
\(734\) −11959.2 −0.601392
\(735\) 0 0
\(736\) −4568.86 −0.228819
\(737\) −9848.11 + 17057.4i −0.492212 + 0.852536i
\(738\) 0 0
\(739\) −8923.71 15456.3i −0.444200 0.769377i 0.553796 0.832652i \(-0.313179\pi\)
−0.997996 + 0.0632753i \(0.979845\pi\)
\(740\) −600.355 + 1039.84i −0.0298236 + 0.0516560i
\(741\) 0 0
\(742\) −19988.8 10713.6i −0.988967 0.530067i
\(743\) 26545.3 1.31070 0.655352 0.755323i \(-0.272520\pi\)
0.655352 + 0.755323i \(0.272520\pi\)
\(744\) 0 0
\(745\) 8497.38 + 14717.9i 0.417879 + 0.723788i
\(746\) 4288.97 + 7428.71i 0.210496 + 0.364591i
\(747\) 0 0
\(748\) −13788.3 −0.673999
\(749\) −29872.7 + 18528.8i −1.45731 + 0.903907i
\(750\) 0 0
\(751\) −4780.06 + 8279.31i −0.232260 + 0.402286i −0.958473 0.285184i \(-0.907945\pi\)
0.726213 + 0.687470i \(0.241279\pi\)
\(752\) 6414.62 + 11110.4i 0.311060 + 0.538772i
\(753\) 0 0
\(754\) 25365.0 43933.5i 1.22512 2.12197i
\(755\) 15675.2 0.755601
\(756\) 0 0
\(757\) −23995.4 −1.15209 −0.576043 0.817420i \(-0.695404\pi\)
−0.576043 + 0.817420i \(0.695404\pi\)
\(758\) 20092.7 34801.6i 0.962796 1.66761i
\(759\) 0 0
\(760\) −1910.23 3308.62i −0.0911728 0.157916i
\(761\) 16854.1 29192.2i 0.802840 1.39056i −0.114900 0.993377i \(-0.536655\pi\)
0.917740 0.397182i \(-0.130012\pi\)
\(762\) 0 0
\(763\) 499.740 + 15817.7i 0.0237114 + 0.750511i
\(764\) 15085.2 0.714352
\(765\) 0 0
\(766\) 12925.9 + 22388.3i 0.609701 + 1.05603i
\(767\) −18707.0 32401.4i −0.880664 1.52535i
\(768\) 0 0
\(769\) −1030.27 −0.0483127 −0.0241563 0.999708i \(-0.507690\pi\)
−0.0241563 + 0.999708i \(0.507690\pi\)
\(770\) −5568.21 + 3453.72i −0.260603 + 0.161641i
\(771\) 0 0
\(772\) −4792.38 + 8300.65i −0.223422 + 0.386978i
\(773\) 11232.1 + 19454.6i 0.522629 + 0.905220i 0.999653 + 0.0263297i \(0.00838199\pi\)
−0.477024 + 0.878890i \(0.658285\pi\)
\(774\) 0 0
\(775\) 4558.49 7895.53i 0.211285 0.365956i
\(776\) −14900.5 −0.689301
\(777\) 0 0
\(778\) 940.331 0.0433322
\(779\) −131.542 + 227.838i −0.00605005 + 0.0104790i
\(780\) 0 0
\(781\) −406.925 704.814i −0.0186439 0.0322922i
\(782\) −5398.04 + 9349.69i −0.246846 + 0.427550i
\(783\) 0 0
\(784\) 26913.2 1702.27i 1.22600 0.0775453i
\(785\) 13872.7 0.630748
\(786\) 0 0
\(787\) 7074.69 + 12253.7i 0.320439 + 0.555017i 0.980579 0.196126i \(-0.0628362\pi\)
−0.660140 + 0.751143i \(0.729503\pi\)
\(788\) 7570.11 + 13111.8i 0.342226 + 0.592753i
\(789\) 0 0
\(790\) 18890.9 0.850768
\(791\) −13092.8 7017.49i −0.588529 0.315440i
\(792\) 0 0
\(793\) −15348.4 + 26584.2i −0.687312 + 1.19046i
\(794\) −18552.5 32133.9i −0.829226 1.43626i
\(795\) 0 0
\(796\) 4215.29 7301.10i 0.187697 0.325101i
\(797\) −38562.7 −1.71388 −0.856939 0.515418i \(-0.827637\pi\)
−0.856939 + 0.515418i \(0.827637\pi\)
\(798\) 0 0
\(799\) 21598.7 0.956331
\(800\) 10324.2 17882.1i 0.456272 0.790285i
\(801\) 0 0
\(802\) 9372.38 + 16233.4i 0.412656 + 0.714742i
\(803\) 4854.30 8407.90i 0.213331 0.369500i
\(804\) 0 0
\(805\) 63.6295 + 2014.00i 0.00278589 + 0.0881789i
\(806\) −23543.9 −1.02891
\(807\) 0 0
\(808\) 1147.29 + 1987.17i 0.0499525 + 0.0865202i
\(809\) 13567.3 + 23499.3i 0.589618 + 1.02125i 0.994282 + 0.106783i \(0.0340550\pi\)
−0.404664 + 0.914465i \(0.632612\pi\)
\(810\) 0 0
\(811\) 23383.8 1.01247 0.506237 0.862394i \(-0.331036\pi\)
0.506237 + 0.862394i \(0.331036\pi\)
\(812\) −585.333 18526.9i −0.0252970 0.800698i
\(813\) 0 0
\(814\) −1751.15 + 3033.08i −0.0754025 + 0.130601i
\(815\) 1483.27 + 2569.09i 0.0637504 + 0.110419i
\(816\) 0 0
\(817\) 6476.46 11217.6i 0.277335 0.480358i
\(818\) 15477.1 0.661547
\(819\) 0 0
\(820\) 85.6649 0.00364823
\(821\) 10122.0 17531.8i 0.430279 0.745265i −0.566618 0.823980i \(-0.691749\pi\)
0.996897 + 0.0787155i \(0.0250819\pi\)
\(822\) 0 0
\(823\) 10598.1 + 18356.5i 0.448878 + 0.777480i 0.998313 0.0580563i \(-0.0184903\pi\)
−0.549435 + 0.835537i \(0.685157\pi\)
\(824\) 2761.33 4782.77i 0.116742 0.202203i
\(825\) 0 0
\(826\) −30678.0 16442.8i −1.29228 0.692638i
\(827\) −10826.0 −0.455207 −0.227604 0.973754i \(-0.573089\pi\)
−0.227604 + 0.973754i \(0.573089\pi\)
\(828\) 0 0
\(829\) 4516.73 + 7823.21i 0.189231 + 0.327758i 0.944994 0.327087i \(-0.106067\pi\)
−0.755763 + 0.654845i \(0.772734\pi\)
\(830\) −7132.15 12353.3i −0.298266 0.516612i
\(831\) 0 0
\(832\) −7875.74 −0.328176
\(833\) 20173.0 40672.5i 0.839081 1.69174i
\(834\) 0 0
\(835\) −3955.37 + 6850.90i −0.163930 + 0.283934i
\(836\) 4007.29 + 6940.83i 0.165783 + 0.287145i
\(837\) 0 0
\(838\) 30151.3 52223.6i 1.24291 2.15278i
\(839\) 43749.5 1.80024 0.900120 0.435642i \(-0.143478\pi\)
0.900120 + 0.435642i \(0.143478\pi\)
\(840\) 0 0
\(841\) 13025.6 0.534078
\(842\) −21453.2 + 37158.0i −0.878059 + 1.52084i
\(843\) 0 0
\(844\) −4376.08 7579.60i −0.178473 0.309124i
\(845\) −7320.77 + 12679.9i −0.298038 + 0.516217i
\(846\) 0 0
\(847\) 14569.1 9036.57i 0.591025 0.366588i
\(848\) −26524.7 −1.07413
\(849\) 0 0
\(850\) −24395.9 42254.9i −0.984438 1.70510i
\(851\) 538.520 + 932.743i 0.0216924 + 0.0375723i
\(852\) 0 0
\(853\) 39350.1 1.57951 0.789754 0.613423i \(-0.210208\pi\)
0.789754 + 0.613423i \(0.210208\pi\)
\(854\) 901.793 + 28543.5i 0.0361343 + 1.14372i
\(855\) 0 0
\(856\) −9733.48 + 16858.9i −0.388649 + 0.673159i
\(857\) −7642.75 13237.6i −0.304634 0.527641i 0.672546 0.740055i \(-0.265201\pi\)
−0.977180 + 0.212414i \(0.931867\pi\)
\(858\) 0 0
\(859\) 4083.34 7072.56i 0.162191 0.280923i −0.773463 0.633841i \(-0.781477\pi\)
0.935654 + 0.352918i \(0.114811\pi\)
\(860\) −4217.70 −0.167235
\(861\) 0 0
\(862\) 47637.3 1.88229
\(863\) −24602.0 + 42612.0i −0.970409 + 1.68080i −0.276088 + 0.961132i \(0.589038\pi\)
−0.694321 + 0.719666i \(0.744295\pi\)
\(864\) 0 0
\(865\) 2509.83 + 4347.16i 0.0986554 + 0.170876i
\(866\) −23525.0 + 40746.6i −0.923110 + 1.59887i
\(867\) 0 0
\(868\) −7310.57 + 4534.44i −0.285872 + 0.177314i
\(869\) 21641.7 0.844814
\(870\) 0 0
\(871\) 35346.0 + 61221.0i 1.37503 + 2.38162i
\(872\) 4382.01 + 7589.86i 0.170176 + 0.294754i
\(873\) 0 0
\(874\) 6275.31 0.242867
\(875\) −17905.4 9596.92i −0.691785 0.370783i
\(876\) 0 0
\(877\) 7910.70 13701.7i 0.304590 0.527565i −0.672580 0.740024i \(-0.734814\pi\)
0.977170 + 0.212459i \(0.0681472\pi\)
\(878\) 6973.60 + 12078.6i 0.268049 + 0.464275i
\(879\) 0 0
\(880\) −3831.72 + 6636.74i −0.146781 + 0.254232i
\(881\) 14538.7 0.555982 0.277991 0.960584i \(-0.410331\pi\)
0.277991 + 0.960584i \(0.410331\pi\)
\(882\) 0 0
\(883\) 3842.17 0.146432 0.0732160 0.997316i \(-0.476674\pi\)
0.0732160 + 0.997316i \(0.476674\pi\)
\(884\) −24743.9 + 42857.7i −0.941434 + 1.63061i
\(885\) 0 0
\(886\) −9335.22 16169.1i −0.353976 0.613104i
\(887\) −18885.8 + 32711.1i −0.714906 + 1.23825i 0.248090 + 0.968737i \(0.420197\pi\)
−0.962996 + 0.269516i \(0.913136\pi\)
\(888\) 0 0
\(889\) −28136.5 15080.6i −1.06149 0.568940i
\(890\) −17521.3 −0.659906
\(891\) 0 0
\(892\) 1938.46 + 3357.52i 0.0727630 + 0.126029i
\(893\) −6277.22 10872.5i −0.235229 0.407428i
\(894\) 0 0
\(895\) −2528.58 −0.0944370
\(896\) 19372.8 12016.1i 0.722322 0.448026i
\(897\) 0 0
\(898\) −26546.6 + 45980.1i −0.986494 + 1.70866i
\(899\) −8682.09 15037.8i −0.322096 0.557886i
\(900\) 0 0
\(901\) −22327.9 + 38673.1i −0.825584 + 1.42995i
\(902\) 249.872 0.00922376
\(903\) 0 0
\(904\) −8226.42 −0.302662
\(905\) −6434.12 + 11144.2i −0.236329 + 0.409333i
\(906\) 0 0
\(907\) −12637.8 21889.3i −0.462658 0.801348i 0.536434 0.843942i \(-0.319771\pi\)
−0.999092 + 0.0425946i \(0.986438\pi\)
\(908\) 12178.4 21093.7i 0.445105 0.770945i
\(909\) 0 0
\(910\) 742.619 + 23505.3i 0.0270523 + 0.856257i
\(911\) −33060.3 −1.20234 −0.601172 0.799120i \(-0.705299\pi\)
−0.601172 + 0.799120i \(0.705299\pi\)
\(912\) 0 0
\(913\) −8170.71 14152.1i −0.296178 0.512996i
\(914\) −5633.20 9756.99i −0.203862 0.353099i
\(915\) 0 0
\(916\) 12574.1 0.453559
\(917\) −16036.8 + 9946.93i −0.577514 + 0.358208i
\(918\) 0 0
\(919\) 8652.57 14986.7i 0.310579 0.537939i −0.667909 0.744243i \(-0.732810\pi\)
0.978488 + 0.206305i \(0.0661438\pi\)
\(920\) 557.940 + 966.381i 0.0199943 + 0.0346311i
\(921\) 0 0
\(922\) −24957.1 + 43227.0i −0.891452 + 1.54404i
\(923\) −2920.99 −0.104166
\(924\) 0 0
\(925\) −4867.56 −0.173021
\(926\) 10727.1 18579.9i 0.380685 0.659366i
\(927\) 0 0
\(928\) −19663.6 34058.3i −0.695569 1.20476i
\(929\) −13176.6 + 22822.6i −0.465352 + 0.806013i −0.999217 0.0395567i \(-0.987405\pi\)
0.533866 + 0.845569i \(0.320739\pi\)
\(930\) 0 0
\(931\) −26336.7 + 1665.81i −0.927123 + 0.0586410i
\(932\) 9257.80 0.325375
\(933\) 0 0
\(934\) −16934.9 29332.1i −0.593284 1.02760i
\(935\) 6450.92 + 11173.3i 0.225634 + 0.390809i
\(936\) 0 0
\(937\) −6967.42 −0.242920 −0.121460 0.992596i \(-0.538758\pi\)
−0.121460 + 0.992596i \(0.538758\pi\)
\(938\) 57964.8 + 31068.0i 2.01772 + 1.08146i
\(939\) 0 0
\(940\) −2043.97 + 3540.27i −0.0709224 + 0.122841i
\(941\) 22142.1 + 38351.2i 0.767069 + 1.32860i 0.939146 + 0.343518i \(0.111619\pi\)
−0.172077 + 0.985083i \(0.555048\pi\)
\(942\) 0 0
\(943\) 38.4208 66.5468i 0.00132678 0.00229805i
\(944\) −40709.1 −1.40357
\(945\) 0 0
\(946\) −12302.4 −0.422818
\(947\) 14886.4 25784.0i 0.510816 0.884759i −0.489106 0.872224i \(-0.662677\pi\)
0.999921 0.0125342i \(-0.00398985\pi\)
\(948\) 0 0
\(949\) −17422.6 30176.9i −0.595956 1.03223i
\(950\) −14180.3 + 24561.0i −0.484284 + 0.838804i
\(951\) 0 0
\(952\) −793.937 25129.6i −0.0270290 0.855521i
\(953\) 17971.9 0.610878 0.305439 0.952212i \(-0.401197\pi\)
0.305439 + 0.952212i \(0.401197\pi\)
\(954\) 0 0
\(955\) −7057.68 12224.3i −0.239143 0.414207i
\(956\) −6485.87 11233.9i −0.219423 0.380051i
\(957\) 0 0
\(958\) 71346.1 2.40614
\(959\) −1075.05 34027.3i −0.0361992 1.14578i
\(960\) 0 0
\(961\) 10866.1 18820.7i 0.364745 0.631757i
\(962\) 6285.06 + 10886.0i 0.210643 + 0.364844i
\(963\) 0 0
\(964\) −10292.5 + 17827.1i −0.343877 + 0.595613i
\(965\) 8968.53 0.299178
\(966\) 0 0
\(967\) −34100.9 −1.13403 −0.567017 0.823706i \(-0.691903\pi\)
−0.567017 + 0.823706i \(0.691903\pi\)
\(968\) 4747.06 8222.15i 0.157620 0.273006i
\(969\) 0 0
\(970\) −12765.5 22110.5i −0.422551 0.731881i
\(971\) −11303.1 + 19577.5i −0.373567 + 0.647037i −0.990111 0.140283i \(-0.955199\pi\)
0.616545 + 0.787320i \(0.288532\pi\)
\(972\) 0 0
\(973\) −23951.2 12837.4i −0.789148 0.422967i
\(974\) −8246.77 −0.271297
\(975\) 0 0
\(976\) 16700.2 + 28925.6i 0.547705 + 0.948653i
\(977\) 4370.31 + 7569.60i 0.143110 + 0.247874i 0.928666 0.370916i \(-0.120956\pi\)
−0.785556 + 0.618790i \(0.787623\pi\)
\(978\) 0 0
\(979\) −20072.7 −0.655288
\(980\) 4757.60 + 7155.58i 0.155078 + 0.233241i
\(981\) 0 0
\(982\) −27000.4 + 46766.1i −0.877411 + 1.51972i
\(983\) 22352.4 + 38715.5i 0.725260 + 1.25619i 0.958867 + 0.283857i \(0.0916140\pi\)
−0.233606 + 0.972331i \(0.575053\pi\)
\(984\) 0 0
\(985\) 7083.40 12268.8i 0.229133 0.396870i
\(986\) −92928.8 −3.00148
\(987\) 0 0
\(988\) 28765.2 0.926258
\(989\) −1891.64 + 3276.42i −0.0608198 + 0.105343i
\(990\) 0 0
\(991\) −8517.74 14753.2i −0.273032 0.472906i 0.696605 0.717455i \(-0.254693\pi\)
−0.969637 + 0.244550i \(0.921360\pi\)
\(992\) −9125.89 + 15806.5i −0.292084 + 0.505904i
\(993\) 0 0
\(994\) −2309.30 + 1432.36i −0.0736886 + 0.0457059i
\(995\) −7888.55 −0.251341
\(996\) 0 0
\(997\) 14535.8 + 25176.8i 0.461739 + 0.799755i 0.999048 0.0436303i \(-0.0138924\pi\)
−0.537309 + 0.843386i \(0.680559\pi\)
\(998\) −30011.3 51981.1i −0.951895 1.64873i
\(999\) 0 0
Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))

Twists

       By twisting character
Char Parity Ord Type Twist Min Dim
1.1 even 1 trivial 189.4.e.f.163.6 yes 14
3.2 odd 2 189.4.e.g.163.2 yes 14
7.2 even 3 1323.4.a.bj.1.2 7
7.4 even 3 inner 189.4.e.f.109.6 14
7.5 odd 6 1323.4.a.bk.1.2 7
21.2 odd 6 1323.4.a.bi.1.6 7
21.5 even 6 1323.4.a.bh.1.6 7
21.11 odd 6 189.4.e.g.109.2 yes 14
    
        By twisted newform
Twist Min Dim Char Parity Ord Type
189.4.e.f.109.6 14 7.4 even 3 inner
189.4.e.f.163.6 yes 14 1.1 even 1 trivial
189.4.e.g.109.2 yes 14 21.11 odd 6
189.4.e.g.163.2 yes 14 3.2 odd 2
1323.4.a.bh.1.6 7 21.5 even 6
1323.4.a.bi.1.6 7 21.2 odd 6
1323.4.a.bj.1.2 7 7.2 even 3
1323.4.a.bk.1.2 7 7.5 odd 6