Newspace parameters
comment: Compute space of new eigenforms
[N,k,chi] = [189,4,Mod(109,189)]
mf = mfinit([N,k,chi],0)
lf = mfeigenbasis(mf)
from sage.modular.dirichlet import DirichletCharacter
H = DirichletGroup(189, base_ring=CyclotomicField(6))
chi = DirichletCharacter(H, H._module([0, 4]))
N = Newforms(chi, 4, names="a")
//Please install CHIMP (https://github.com/edgarcosta/CHIMP) if you want to run this code
chi := DirichletCharacter("189.109");
S:= CuspForms(chi, 4);
N := Newforms(S);
Level: | |||
Weight: | |||
Character orbit: | 189.e (of order , degree , minimal) |
Newform invariants
comment: select newform
sage: f = N[0] # Warning: the index may be different
gp: f = lf[1] \\ Warning: the index may be different
Self dual: | no |
Analytic conductor: | |
Analytic rank: | |
Dimension: | |
Relative dimension: | over |
Coefficient field: | |
comment: defining polynomial
gp: f.mod \\ as an extension of the character field
|
|
Defining polynomial: |
|
Coefficient ring: | |
Coefficient ring index: | |
Twist minimal: | yes |
Sato-Tate group: |
-expansion
comment: q-expansion
sage: f.q_expansion() # note that sage often uses an isomorphic number field
gp: mfcoefs(f, 20)
Coefficients of the -expansion are expressed in terms of a basis for the coefficient ring described below. We also show the integral -expansion of the trace form.
Basis of coefficient ring in terms of a root of
:
Character values
We give the values of on generators for .
Embeddings
For each embedding of the coefficient field, the values are shown below.
For more information on an embedded modular form you can click on its label.
comment: embeddings in the coefficient field
gp: mfembed(f)
Label | ||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||
---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
109.1 |
|
−2.73089 | − | 4.73004i | 0 | −10.9155 | + | 18.9063i | −0.0995681 | − | 0.172457i | 0 | −16.0061 | + | 9.31685i | 75.5424 | 0 | −0.543819 | + | 0.941923i | ||||||||||||||||||||||||||||||||||||||||||||||||||||||||
109.2 | −1.74618 | − | 3.02447i | 0 | −2.09829 | + | 3.63435i | 3.93765 | + | 6.82022i | 0 | 18.4135 | − | 1.98614i | −13.2829 | 0 | 13.7517 | − | 23.8187i | |||||||||||||||||||||||||||||||||||||||||||||||||||||||||
109.3 | −1.64637 | − | 2.85159i | 0 | −1.42105 | + | 2.46133i | −10.8582 | − | 18.8070i | 0 | 1.08769 | − | 18.4883i | −16.9836 | 0 | −35.7533 | + | 61.9265i | |||||||||||||||||||||||||||||||||||||||||||||||||||||||||
109.4 | −0.884622 | − | 1.53221i | 0 | 2.43489 | − | 4.21735i | 6.52561 | + | 11.3027i | 0 | −18.4950 | − | 0.966772i | −22.7698 | 0 | 11.5454 | − | 19.9972i | |||||||||||||||||||||||||||||||||||||||||||||||||||||||||
109.5 | 0.884622 | + | 1.53221i | 0 | 2.43489 | − | 4.21735i | −6.52561 | − | 11.3027i | 0 | −18.4950 | − | 0.966772i | 22.7698 | 0 | 11.5454 | − | 19.9972i | |||||||||||||||||||||||||||||||||||||||||||||||||||||||||
109.6 | 1.64637 | + | 2.85159i | 0 | −1.42105 | + | 2.46133i | 10.8582 | + | 18.8070i | 0 | 1.08769 | − | 18.4883i | 16.9836 | 0 | −35.7533 | + | 61.9265i | |||||||||||||||||||||||||||||||||||||||||||||||||||||||||
109.7 | 1.74618 | + | 3.02447i | 0 | −2.09829 | + | 3.63435i | −3.93765 | − | 6.82022i | 0 | 18.4135 | − | 1.98614i | 13.2829 | 0 | 13.7517 | − | 23.8187i | |||||||||||||||||||||||||||||||||||||||||||||||||||||||||
109.8 | 2.73089 | + | 4.73004i | 0 | −10.9155 | + | 18.9063i | 0.0995681 | + | 0.172457i | 0 | −16.0061 | + | 9.31685i | −75.5424 | 0 | −0.543819 | + | 0.941923i | |||||||||||||||||||||||||||||||||||||||||||||||||||||||||
163.1 | −2.73089 | + | 4.73004i | 0 | −10.9155 | − | 18.9063i | −0.0995681 | + | 0.172457i | 0 | −16.0061 | − | 9.31685i | 75.5424 | 0 | −0.543819 | − | 0.941923i | |||||||||||||||||||||||||||||||||||||||||||||||||||||||||
163.2 | −1.74618 | + | 3.02447i | 0 | −2.09829 | − | 3.63435i | 3.93765 | − | 6.82022i | 0 | 18.4135 | + | 1.98614i | −13.2829 | 0 | 13.7517 | + | 23.8187i | |||||||||||||||||||||||||||||||||||||||||||||||||||||||||
163.3 | −1.64637 | + | 2.85159i | 0 | −1.42105 | − | 2.46133i | −10.8582 | + | 18.8070i | 0 | 1.08769 | + | 18.4883i | −16.9836 | 0 | −35.7533 | − | 61.9265i | |||||||||||||||||||||||||||||||||||||||||||||||||||||||||
163.4 | −0.884622 | + | 1.53221i | 0 | 2.43489 | + | 4.21735i | 6.52561 | − | 11.3027i | 0 | −18.4950 | + | 0.966772i | −22.7698 | 0 | 11.5454 | + | 19.9972i | |||||||||||||||||||||||||||||||||||||||||||||||||||||||||
163.5 | 0.884622 | − | 1.53221i | 0 | 2.43489 | + | 4.21735i | −6.52561 | + | 11.3027i | 0 | −18.4950 | + | 0.966772i | 22.7698 | 0 | 11.5454 | + | 19.9972i | |||||||||||||||||||||||||||||||||||||||||||||||||||||||||
163.6 | 1.64637 | − | 2.85159i | 0 | −1.42105 | − | 2.46133i | 10.8582 | − | 18.8070i | 0 | 1.08769 | + | 18.4883i | 16.9836 | 0 | −35.7533 | − | 61.9265i | |||||||||||||||||||||||||||||||||||||||||||||||||||||||||
163.7 | 1.74618 | − | 3.02447i | 0 | −2.09829 | − | 3.63435i | −3.93765 | + | 6.82022i | 0 | 18.4135 | + | 1.98614i | 13.2829 | 0 | 13.7517 | + | 23.8187i | |||||||||||||||||||||||||||||||||||||||||||||||||||||||||
163.8 | 2.73089 | − | 4.73004i | 0 | −10.9155 | − | 18.9063i | 0.0995681 | − | 0.172457i | 0 | −16.0061 | − | 9.31685i | −75.5424 | 0 | −0.543819 | − | 0.941923i | |||||||||||||||||||||||||||||||||||||||||||||||||||||||||
Inner twists
Char | Parity | Ord | Mult | Type |
---|---|---|---|---|
1.a | even | 1 | 1 | trivial |
3.b | odd | 2 | 1 | inner |
7.c | even | 3 | 1 | inner |
21.h | odd | 6 | 1 | inner |
Twists
By twisting character orbit | |||||||
---|---|---|---|---|---|---|---|
Char | Parity | Ord | Mult | Type | Twist | Min | Dim |
1.a | even | 1 | 1 | trivial | 189.4.e.h | ✓ | 16 |
3.b | odd | 2 | 1 | inner | 189.4.e.h | ✓ | 16 |
7.c | even | 3 | 1 | inner | 189.4.e.h | ✓ | 16 |
7.c | even | 3 | 1 | 1323.4.a.bo | 8 | ||
7.d | odd | 6 | 1 | 1323.4.a.bn | 8 | ||
21.g | even | 6 | 1 | 1323.4.a.bn | 8 | ||
21.h | odd | 6 | 1 | inner | 189.4.e.h | ✓ | 16 |
21.h | odd | 6 | 1 | 1323.4.a.bo | 8 |
By twisted newform orbit | |||||||
---|---|---|---|---|---|---|---|
Twist | Min | Dim | Char | Parity | Ord | Mult | Type |
189.4.e.h | ✓ | 16 | 1.a | even | 1 | 1 | trivial |
189.4.e.h | ✓ | 16 | 3.b | odd | 2 | 1 | inner |
189.4.e.h | ✓ | 16 | 7.c | even | 3 | 1 | inner |
189.4.e.h | ✓ | 16 | 21.h | odd | 6 | 1 | inner |
1323.4.a.bn | 8 | 7.d | odd | 6 | 1 | ||
1323.4.a.bn | 8 | 21.g | even | 6 | 1 | ||
1323.4.a.bo | 8 | 7.c | even | 3 | 1 | ||
1323.4.a.bo | 8 | 21.h | odd | 6 | 1 |
Hecke kernels
This newform subspace can be constructed as the intersection of the kernels of the following linear operators acting on :
|
|