Properties

Label 189.4.e.h
Level 189189
Weight 44
Character orbit 189.e
Analytic conductor 11.15111.151
Analytic rank 00
Dimension 1616
Inner twists 44

Related objects

Downloads

Learn more

Show commands: Magma / PariGP / SageMath

Newspace parameters

comment: Compute space of new eigenforms
 
[N,k,chi] = [189,4,Mod(109,189)]
 
mf = mfinit([N,k,chi],0)
 
lf = mfeigenbasis(mf)
 
from sage.modular.dirichlet import DirichletCharacter
 
H = DirichletGroup(189, base_ring=CyclotomicField(6))
 
chi = DirichletCharacter(H, H._module([0, 4]))
 
N = Newforms(chi, 4, names="a")
 
//Please install CHIMP (https://github.com/edgarcosta/CHIMP) if you want to run this code
 
chi := DirichletCharacter("189.109");
 
S:= CuspForms(chi, 4);
 
N := Newforms(S);
 
Level: N N == 189=337 189 = 3^{3} \cdot 7
Weight: k k == 4 4
Character orbit: [χ][\chi] == 189.e (of order 33, degree 22, minimal)

Newform invariants

comment: select newform
 
sage: f = N[0] # Warning: the index may be different
 
gp: f = lf[1] \\ Warning: the index may be different
 
Self dual: no
Analytic conductor: 11.151360991111.1513609911
Analytic rank: 00
Dimension: 1616
Relative dimension: 88 over Q(ζ3)\Q(\zeta_{3})
Coefficient field: Q[x]/(x16+)\mathbb{Q}[x]/(x^{16} + \cdots)
comment: defining polynomial
 
gp: f.mod \\ as an extension of the character field
 
Defining polynomial: x16+54x1412x13+2361x12966x11+29570x1065952x9+300096x8++81 x^{16} + 54 x^{14} - 12 x^{13} + 2361 x^{12} - 966 x^{11} + 29570 x^{10} - 65952 x^{9} + 300096 x^{8} + \cdots + 81 Copy content Toggle raw display
Coefficient ring: Z[a1,,a7]\Z[a_1, \ldots, a_{7}]
Coefficient ring index: 2103973 2^{10}\cdot 3^{9}\cdot 7^{3}
Twist minimal: yes
Sato-Tate group: SU(2)[C3]\mathrm{SU}(2)[C_{3}]

qq-expansion

comment: q-expansion
 
sage: f.q_expansion() # note that sage often uses an isomorphic number field
 
gp: mfcoefs(f, 20)
 

Coefficients of the qq-expansion are expressed in terms of a basis 1,β1,,β151,\beta_1,\ldots,\beta_{15} for the coefficient ring described below. We also show the integral qq-expansion of the trace form.

f(q)f(q) == q+(β5β2)q2+(β4β3+6β1)q4+(β12β11)q5+(β7+β4β3+5)q7+(β9+5β2)q8++(62β12+64β11+251β2)q98+O(q100) q + ( - \beta_{5} - \beta_{2}) q^{2} + (\beta_{4} - \beta_{3} + 6 \beta_1) q^{4} + ( - \beta_{12} - \beta_{11}) q^{5} + (\beta_{7} + \beta_{4} - \beta_{3} + \cdots - 5) q^{7} + ( - \beta_{9} + 5 \beta_{2}) q^{8}+ \cdots + (62 \beta_{12} + 64 \beta_{11} + \cdots - 251 \beta_{2}) q^{98}+O(q^{100}) Copy content Toggle raw display
Tr(f)(q)\operatorname{Tr}(f)(q) == 16q48q460q744q10168q13156q1612q19+448q22408q25152q28800q311896q34692q3796q40+2912q431524q46+2020q49++1168q97+O(q100) 16 q - 48 q^{4} - 60 q^{7} - 44 q^{10} - 168 q^{13} - 156 q^{16} - 12 q^{19} + 448 q^{22} - 408 q^{25} - 152 q^{28} - 800 q^{31} - 1896 q^{34} - 692 q^{37} - 96 q^{40} + 2912 q^{43} - 1524 q^{46} + 2020 q^{49}+ \cdots + 1168 q^{97}+O(q^{100}) Copy content Toggle raw display

Basis of coefficient ring in terms of a root ν\nu of x16+54x1412x13+2361x12966x11+29570x1065952x9+300096x8++81 x^{16} + 54 x^{14} - 12 x^{13} + 2361 x^{12} - 966 x^{11} + 29570 x^{10} - 65952 x^{9} + 300096 x^{8} + \cdots + 81 : Copy content Toggle raw display

β1\beta_{1}== (51 ⁣ ⁣86ν15+15 ⁣ ⁣87)/34 ⁣ ⁣04 ( 51\!\cdots\!86 \nu^{15} + \cdots - 15\!\cdots\!87 ) / 34\!\cdots\!04 Copy content Toggle raw display
β2\beta_{2}== (44 ⁣ ⁣71ν15++10 ⁣ ⁣79)/29 ⁣ ⁣40 ( 44\!\cdots\!71 \nu^{15} + \cdots + 10\!\cdots\!79 ) / 29\!\cdots\!40 Copy content Toggle raw display
β3\beta_{3}== (95 ⁣ ⁣24ν15++13 ⁣ ⁣43)/29 ⁣ ⁣84 ( 95\!\cdots\!24 \nu^{15} + \cdots + 13\!\cdots\!43 ) / 29\!\cdots\!84 Copy content Toggle raw display
β4\beta_{4}== (78 ⁣ ⁣07ν15++45 ⁣ ⁣11)/17 ⁣ ⁣08 ( - 78\!\cdots\!07 \nu^{15} + \cdots + 45\!\cdots\!11 ) / 17\!\cdots\!08 Copy content Toggle raw display
β5\beta_{5}== (66 ⁣ ⁣74ν15+22 ⁣ ⁣33)/14 ⁣ ⁣20 ( 66\!\cdots\!74 \nu^{15} + \cdots - 22\!\cdots\!33 ) / 14\!\cdots\!20 Copy content Toggle raw display
β6\beta_{6}== (73 ⁣ ⁣09ν15++89 ⁣ ⁣53)/11 ⁣ ⁣32 ( - 73\!\cdots\!09 \nu^{15} + \cdots + 89\!\cdots\!53 ) / 11\!\cdots\!32 Copy content Toggle raw display
β7\beta_{7}== (18 ⁣ ⁣03ν15++17 ⁣ ⁣42)/29 ⁣ ⁣84 ( - 18\!\cdots\!03 \nu^{15} + \cdots + 17\!\cdots\!42 ) / 29\!\cdots\!84 Copy content Toggle raw display
β8\beta_{8}== (46 ⁣ ⁣69ν15+84 ⁣ ⁣78)/41 ⁣ ⁣12 ( - 46\!\cdots\!69 \nu^{15} + \cdots - 84\!\cdots\!78 ) / 41\!\cdots\!12 Copy content Toggle raw display
β9\beta_{9}== (35 ⁣ ⁣57ν15++10 ⁣ ⁣43)/29 ⁣ ⁣40 ( 35\!\cdots\!57 \nu^{15} + \cdots + 10\!\cdots\!43 ) / 29\!\cdots\!40 Copy content Toggle raw display
β10\beta_{10}== (37 ⁣ ⁣34ν15+45 ⁣ ⁣93)/29 ⁣ ⁣84 ( - 37\!\cdots\!34 \nu^{15} + \cdots - 45\!\cdots\!93 ) / 29\!\cdots\!84 Copy content Toggle raw display
β11\beta_{11}== (22 ⁣ ⁣31ν15++33 ⁣ ⁣79)/14 ⁣ ⁣20 ( 22\!\cdots\!31 \nu^{15} + \cdots + 33\!\cdots\!79 ) / 14\!\cdots\!20 Copy content Toggle raw display
β12\beta_{12}== (49 ⁣ ⁣31ν15+16 ⁣ ⁣07)/29 ⁣ ⁣40 ( 49\!\cdots\!31 \nu^{15} + \cdots - 16\!\cdots\!07 ) / 29\!\cdots\!40 Copy content Toggle raw display
β13\beta_{13}== (25 ⁣ ⁣02ν15+33 ⁣ ⁣25)/58 ⁣ ⁣68 ( - 25\!\cdots\!02 \nu^{15} + \cdots - 33\!\cdots\!25 ) / 58\!\cdots\!68 Copy content Toggle raw display
β14\beta_{14}== (39 ⁣ ⁣04ν15+12 ⁣ ⁣68)/72 ⁣ ⁣60 ( 39\!\cdots\!04 \nu^{15} + \cdots - 12\!\cdots\!68 ) / 72\!\cdots\!60 Copy content Toggle raw display
β15\beta_{15}== (10 ⁣ ⁣87ν15++86 ⁣ ⁣95)/14 ⁣ ⁣92 ( - 10\!\cdots\!87 \nu^{15} + \cdots + 86\!\cdots\!95 ) / 14\!\cdots\!92 Copy content Toggle raw display
ν\nu== (3β152β14β135β12+6β10+β8+5β7++2)/42 ( - 3 \beta_{15} - 2 \beta_{14} - \beta_{13} - 5 \beta_{12} + 6 \beta_{10} + \beta_{8} + 5 \beta_{7} + \cdots + 2 ) / 42 Copy content Toggle raw display
ν2\nu^{2}== (4β15+9β14β13+12β12+12β11+20β10+9β9+565)/42 ( 4 \beta_{15} + 9 \beta_{14} - \beta_{13} + 12 \beta_{12} + 12 \beta_{11} + 20 \beta_{10} + 9 \beta_{9} + \cdots - 565 ) / 42 Copy content Toggle raw display
ν3\nu^{3}== (65β15144β13449β11144β1083β9115β8+13)/84 ( 65 \beta_{15} - 144 \beta_{13} - 449 \beta_{11} - 144 \beta_{10} - 83 \beta_{9} - 115 \beta_{8} + \cdots - 13 ) / 84 Copy content Toggle raw display
ν4\nu^{4}== (52β15312β14+218β13339β12706β10285β8+436)/42 ( 52 \beta_{15} - 312 \beta_{14} + 218 \beta_{13} - 339 \beta_{12} - 706 \beta_{10} - 285 \beta_{8} + \cdots - 436 ) / 42 Copy content Toggle raw display
ν5\nu^{5}== (5672β15+2377β14+8249β13+17713β12+17713β11++19531)/84 ( 5672 \beta_{15} + 2377 \beta_{14} + 8249 \beta_{13} + 17713 \beta_{12} + 17713 \beta_{11} + \cdots + 19531 ) / 84 Copy content Toggle raw display
ν6\nu^{6}== (1577β15983β131614β11983β101823β9+2046β8++122121)/7 ( - 1577 \beta_{15} - 983 \beta_{13} - 1614 \beta_{11} - 983 \beta_{10} - 1823 \beta_{9} + 2046 \beta_{8} + \cdots + 122121 ) / 7 Copy content Toggle raw display
ν7\nu^{7}== (165693β1537672β1453663β13349141β12+326682β10++107326)/42 ( - 165693 \beta_{15} - 37672 \beta_{14} - 53663 \beta_{13} - 349141 \beta_{12} + 326682 \beta_{10} + \cdots + 107326 ) / 42 Copy content Toggle raw display
ν8\nu^{8}== (198134β15+400050β14205994β13+246687β12+246687β11+28093496)/42 ( 198134 \beta_{15} + 400050 \beta_{14} - 205994 \beta_{13} + 246687 \beta_{12} + 246687 \beta_{11} + \cdots - 28093496 ) / 42 Copy content Toggle raw display
ν9\nu^{9}== (4545349β158840700β1327656533β118840700β102499019β9+101048477)/84 ( 4545349 \beta_{15} - 8840700 \beta_{13} - 27656533 \beta_{11} - 8840700 \beta_{10} - 2499019 \beta_{9} + \cdots - 101048477 ) / 84 Copy content Toggle raw display
ν10\nu^{10}== (10805111β1515065301β14+17122465β134441368β1262172506β10+34244930)/42 ( 10805111 \beta_{15} - 15065301 \beta_{14} + 17122465 \beta_{13} - 4441368 \beta_{12} - 62172506 \beta_{10} + \cdots - 34244930 ) / 42 Copy content Toggle raw display
ν11\nu^{11}== (349102204β15+84438449β14+542822449β13+1100326265β12++4651037963)/84 ( 349102204 \beta_{15} + 84438449 \beta_{14} + 542822449 \beta_{13} + 1100326265 \beta_{12} + \cdots + 4651037963 ) / 84 Copy content Toggle raw display
ν12\nu^{12}== (120521474β1531201500β13+5945004β1131201500β10++7846479013)/7 ( - 120521474 \beta_{15} - 31201500 \beta_{13} + 5945004 \beta_{11} - 31201500 \beta_{10} + \cdots + 7846479013 ) / 7 Copy content Toggle raw display
ν13\nu^{13}== (11044886505β151428712508β144137003643β1321978952367β12++8274007286)/42 ( - 11044886505 \beta_{15} - 1428712508 \beta_{14} - 4137003643 \beta_{13} - 21978952367 \beta_{12} + \cdots + 8274007286 ) / 42 Copy content Toggle raw display
ν14\nu^{14}== (4861786192β15+22350858507β1425647216547β139895364610β12+1860633895699)/42 ( 4861786192 \beta_{15} + 22350858507 \beta_{14} - 25647216547 \beta_{13} - 9895364610 \beta_{12} + \cdots - 1860633895699 ) / 42 Copy content Toggle raw display
ν15\nu^{15}== (353535630725β15548381305872β131762964503613β11548381305872β10+11080741238257)/84 ( 353535630725 \beta_{15} - 548381305872 \beta_{13} - 1762964503613 \beta_{11} - 548381305872 \beta_{10} + \cdots - 11080741238257 ) / 84 Copy content Toggle raw display

Character values

We give the values of χ\chi on generators for (Z/189Z)×\left(\mathbb{Z}/189\mathbb{Z}\right)^\times.

nn 2929 136136
χ(n)\chi(n) 11 1β1-1 - \beta_{1}

Embeddings

For each embedding ιm\iota_m of the coefficient field, the values ιm(an)\iota_m(a_n) are shown below.

For more information on an embedded modular form you can click on its label.

comment: embeddings in the coefficient field
 
gp: mfembed(f)
 
Label   ιm(ν)\iota_m(\nu) a2 a_{2} a3 a_{3} a4 a_{4} a5 a_{5} a6 a_{6} a7 a_{7} a8 a_{8} a9 a_{9} a10 a_{10}
109.1
−2.17666 + 3.77009i
1.03883 1.79930i
−0.0640761 + 0.110983i
0.128480 0.222533i
−0.178435 + 0.309059i
−3.06544 + 5.30949i
3.25730 5.64181i
1.06000 1.83598i
−2.17666 3.77009i
1.03883 + 1.79930i
−0.0640761 0.110983i
0.128480 + 0.222533i
−0.178435 0.309059i
−3.06544 5.30949i
3.25730 + 5.64181i
1.06000 + 1.83598i
−2.73089 4.73004i 0 −10.9155 + 18.9063i −0.0995681 0.172457i 0 −16.0061 + 9.31685i 75.5424 0 −0.543819 + 0.941923i
109.2 −1.74618 3.02447i 0 −2.09829 + 3.63435i 3.93765 + 6.82022i 0 18.4135 1.98614i −13.2829 0 13.7517 23.8187i
109.3 −1.64637 2.85159i 0 −1.42105 + 2.46133i −10.8582 18.8070i 0 1.08769 18.4883i −16.9836 0 −35.7533 + 61.9265i
109.4 −0.884622 1.53221i 0 2.43489 4.21735i 6.52561 + 11.3027i 0 −18.4950 0.966772i −22.7698 0 11.5454 19.9972i
109.5 0.884622 + 1.53221i 0 2.43489 4.21735i −6.52561 11.3027i 0 −18.4950 0.966772i 22.7698 0 11.5454 19.9972i
109.6 1.64637 + 2.85159i 0 −1.42105 + 2.46133i 10.8582 + 18.8070i 0 1.08769 18.4883i 16.9836 0 −35.7533 + 61.9265i
109.7 1.74618 + 3.02447i 0 −2.09829 + 3.63435i −3.93765 6.82022i 0 18.4135 1.98614i 13.2829 0 13.7517 23.8187i
109.8 2.73089 + 4.73004i 0 −10.9155 + 18.9063i 0.0995681 + 0.172457i 0 −16.0061 + 9.31685i −75.5424 0 −0.543819 + 0.941923i
163.1 −2.73089 + 4.73004i 0 −10.9155 18.9063i −0.0995681 + 0.172457i 0 −16.0061 9.31685i 75.5424 0 −0.543819 0.941923i
163.2 −1.74618 + 3.02447i 0 −2.09829 3.63435i 3.93765 6.82022i 0 18.4135 + 1.98614i −13.2829 0 13.7517 + 23.8187i
163.3 −1.64637 + 2.85159i 0 −1.42105 2.46133i −10.8582 + 18.8070i 0 1.08769 + 18.4883i −16.9836 0 −35.7533 61.9265i
163.4 −0.884622 + 1.53221i 0 2.43489 + 4.21735i 6.52561 11.3027i 0 −18.4950 + 0.966772i −22.7698 0 11.5454 + 19.9972i
163.5 0.884622 1.53221i 0 2.43489 + 4.21735i −6.52561 + 11.3027i 0 −18.4950 + 0.966772i 22.7698 0 11.5454 + 19.9972i
163.6 1.64637 2.85159i 0 −1.42105 2.46133i 10.8582 18.8070i 0 1.08769 + 18.4883i 16.9836 0 −35.7533 61.9265i
163.7 1.74618 3.02447i 0 −2.09829 3.63435i −3.93765 + 6.82022i 0 18.4135 + 1.98614i 13.2829 0 13.7517 + 23.8187i
163.8 2.73089 4.73004i 0 −10.9155 18.9063i 0.0995681 0.172457i 0 −16.0061 9.31685i −75.5424 0 −0.543819 0.941923i
nn: e.g. 2-40 or 990-1000
Embeddings: e.g. 1-3 or 109.8
Significant digits:
Format:

Inner twists

Char Parity Ord Mult Type
1.a even 1 1 trivial
3.b odd 2 1 inner
7.c even 3 1 inner
21.h odd 6 1 inner

Twists

       By twisting character orbit
Char Parity Ord Mult Type Twist Min Dim
1.a even 1 1 trivial 189.4.e.h 16
3.b odd 2 1 inner 189.4.e.h 16
7.c even 3 1 inner 189.4.e.h 16
7.c even 3 1 1323.4.a.bo 8
7.d odd 6 1 1323.4.a.bn 8
21.g even 6 1 1323.4.a.bn 8
21.h odd 6 1 inner 189.4.e.h 16
21.h odd 6 1 1323.4.a.bo 8
    
        By twisted newform orbit
Twist Min Dim Char Parity Ord Mult Type
189.4.e.h 16 1.a even 1 1 trivial
189.4.e.h 16 3.b odd 2 1 inner
189.4.e.h 16 7.c even 3 1 inner
189.4.e.h 16 21.h odd 6 1 inner
1323.4.a.bn 8 7.d odd 6 1
1323.4.a.bn 8 21.g even 6 1
1323.4.a.bo 8 7.c even 3 1
1323.4.a.bo 8 21.h odd 6 1

Hecke kernels

This newform subspace can be constructed as the intersection of the kernels of the following linear operators acting on S4new(189,[χ])S_{4}^{\mathrm{new}}(189, [\chi]):

T216+56T214+2151T212+42140T210+593317T28+5029374T26++152473104 T_{2}^{16} + 56 T_{2}^{14} + 2151 T_{2}^{12} + 42140 T_{2}^{10} + 593317 T_{2}^{8} + 5029374 T_{2}^{6} + \cdots + 152473104 Copy content Toggle raw display
T134+42T1334475T13294812T13+5259952 T_{13}^{4} + 42T_{13}^{3} - 4475T_{13}^{2} - 94812T_{13} + 5259952 Copy content Toggle raw display

Hecke characteristic polynomials

pp Fp(T)F_p(T)
22 T16++152473104 T^{16} + \cdots + 152473104 Copy content Toggle raw display
33 T16 T^{16} Copy content Toggle raw display
55 T16++39033114624 T^{16} + \cdots + 39033114624 Copy content Toggle raw display
77 (T8+30T7++13841287201)2 (T^{8} + 30 T^{7} + \cdots + 13841287201)^{2} Copy content Toggle raw display
1111 T16++13 ⁣ ⁣44 T^{16} + \cdots + 13\!\cdots\!44 Copy content Toggle raw display
1313 (T4+42T3++5259952)4 (T^{4} + 42 T^{3} + \cdots + 5259952)^{4} Copy content Toggle raw display
1717 T16++33 ⁣ ⁣24 T^{16} + \cdots + 33\!\cdots\!24 Copy content Toggle raw display
1919 (T8++141394168701184)2 (T^{8} + \cdots + 141394168701184)^{2} Copy content Toggle raw display
2323 T16++37 ⁣ ⁣84 T^{16} + \cdots + 37\!\cdots\!84 Copy content Toggle raw display
2929 (T8++18 ⁣ ⁣32)2 (T^{8} + \cdots + 18\!\cdots\!32)^{2} Copy content Toggle raw display
3131 (T8++11 ⁣ ⁣81)2 (T^{8} + \cdots + 11\!\cdots\!81)^{2} Copy content Toggle raw display
3737 (T8++16 ⁣ ⁣76)2 (T^{8} + \cdots + 16\!\cdots\!76)^{2} Copy content Toggle raw display
4141 (T8++13 ⁣ ⁣88)2 (T^{8} + \cdots + 13\!\cdots\!88)^{2} Copy content Toggle raw display
4343 (T4728T3+12025459739)4 (T^{4} - 728 T^{3} + \cdots - 12025459739)^{4} Copy content Toggle raw display
4747 T16++47 ⁣ ⁣00 T^{16} + \cdots + 47\!\cdots\!00 Copy content Toggle raw display
5353 T16++20 ⁣ ⁣04 T^{16} + \cdots + 20\!\cdots\!04 Copy content Toggle raw display
5959 T16++37 ⁣ ⁣64 T^{16} + \cdots + 37\!\cdots\!64 Copy content Toggle raw display
6161 (T8++17 ⁣ ⁣25)2 (T^{8} + \cdots + 17\!\cdots\!25)^{2} Copy content Toggle raw display
6767 (T8++28 ⁣ ⁣36)2 (T^{8} + \cdots + 28\!\cdots\!36)^{2} Copy content Toggle raw display
7171 (T8++87 ⁣ ⁣00)2 (T^{8} + \cdots + 87\!\cdots\!00)^{2} Copy content Toggle raw display
7373 (T8++10 ⁣ ⁣44)2 (T^{8} + \cdots + 10\!\cdots\!44)^{2} Copy content Toggle raw display
7979 (T8++87 ⁣ ⁣96)2 (T^{8} + \cdots + 87\!\cdots\!96)^{2} Copy content Toggle raw display
8383 (T8++16 ⁣ ⁣72)2 (T^{8} + \cdots + 16\!\cdots\!72)^{2} Copy content Toggle raw display
8989 T16++48 ⁣ ⁣44 T^{16} + \cdots + 48\!\cdots\!44 Copy content Toggle raw display
9797 (T4292T3++100316149821)4 (T^{4} - 292 T^{3} + \cdots + 100316149821)^{4} Copy content Toggle raw display
show more
show less