gp: [N,k,chi] = [189,6,Mod(1,189)]
mf = mfinit([N,k,chi],0)
lf = mfeigenbasis(mf)
sage: from sage.modular.dirichlet import DirichletCharacter
H = DirichletGroup(189, base_ring=CyclotomicField(2))
chi = DirichletCharacter(H, H._module([0, 0]))
N = Newforms(chi, 6, names="a")
magma: //Please install CHIMP (https://github.com/edgarcosta/CHIMP) if you want to run this code
chi := DirichletCharacter("189.1");
S:= CuspForms(chi, 6);
N := Newforms(S);
Newform invariants
sage: traces = [2,0,0,104]
f = next(g for g in N if [g.coefficient(i+1).trace() for i in range(4)] == traces)
gp: f = lf[1] \\ Warning: the index may be different
sage: f.q_expansion() # note that sage often uses an isomorphic number field
gp: mfcoefs(f, 20)
Coefficients of the q q q -expansion are expressed in terms of β = 21 \beta = \sqrt{21} β = 2 1 .
We also show the integral q q q -expansion of the trace form .
For each embedding ι m \iota_m ι m of the coefficient field, the values ι m ( a n ) \iota_m(a_n) ι m ( a n ) are shown below.
For more information on an embedded modular form you can click on its label.
gp: mfembed(f)
Refresh table
p p p
Sign
3 3 3
− 1 -1 − 1
7 7 7
− 1 -1 − 1
This newform subspace can be constructed as the kernel of the linear operator
T 2 2 − 84 T_{2}^{2} - 84 T 2 2 − 8 4
T2^2 - 84
acting on S 6 n e w ( Γ 0 ( 189 ) ) S_{6}^{\mathrm{new}}(\Gamma_0(189)) S 6 n e w ( Γ 0 ( 1 8 9 ) ) .
p p p
F p ( T ) F_p(T) F p ( T )
2 2 2
T 2 − 84 T^{2} - 84 T 2 − 8 4
T^2 - 84
3 3 3
T 2 T^{2} T 2
T^2
5 5 5
T 2 − 7581 T^{2} - 7581 T 2 − 7 5 8 1
T^2 - 7581
7 7 7
( T − 49 ) 2 (T - 49)^{2} ( T − 4 9 ) 2
(T - 49)^2
11 11 1 1
T 2 − 1029 T^{2} - 1029 T 2 − 1 0 2 9
T^2 - 1029
13 13 1 3
( T + 940 ) 2 (T + 940)^{2} ( T + 9 4 0 ) 2
(T + 940)^2
17 17 1 7
T 2 − 84 T^{2} - 84 T 2 − 8 4
T^2 - 84
19 19 1 9
( T + 1939 ) 2 (T + 1939)^{2} ( T + 1 9 3 9 ) 2
(T + 1939)^2
23 23 2 3
T 2 − 4233621 T^{2} - 4233621 T 2 − 4 2 3 3 6 2 1
T^2 - 4233621
29 29 2 9
T 2 − 33977664 T^{2} - 33977664 T 2 − 3 3 9 7 7 6 6 4
T^2 - 33977664
31 31 3 1
( T + 8695 ) 2 (T + 8695)^{2} ( T + 8 6 9 5 ) 2
(T + 8695)^2
37 37 3 7
( T + 2455 ) 2 (T + 2455)^{2} ( T + 2 4 5 5 ) 2
(T + 2455)^2
41 41 4 1
T 2 − 134950725 T^{2} - 134950725 T 2 − 1 3 4 9 5 0 7 2 5
T^2 - 134950725
43 43 4 3
( T − 6014 ) 2 (T - 6014)^{2} ( T − 6 0 1 4 ) 2
(T - 6014)^2
47 47 4 7
T 2 − 659971956 T^{2} - 659971956 T 2 − 6 5 9 9 7 1 9 5 6
T^2 - 659971956
53 53 5 3
T 2 − 340720464 T^{2} - 340720464 T 2 − 3 4 0 7 2 0 4 6 4
T^2 - 340720464
59 59 5 9
T 2 − 281000244 T^{2} - 281000244 T 2 − 2 8 1 0 0 0 2 4 4
T^2 - 281000244
61 61 6 1
( T − 5792 ) 2 (T - 5792)^{2} ( T − 5 7 9 2 ) 2
(T - 5792)^2
67 67 6 7
( T − 20996 ) 2 (T - 20996)^{2} ( T − 2 0 9 9 6 ) 2
(T - 20996)^2
71 71 7 1
T 2 − 3948973749 T^{2} - 3948973749 T 2 − 3 9 4 8 9 7 3 7 4 9
T^2 - 3948973749
73 73 7 3
( T + 79870 ) 2 (T + 79870)^{2} ( T + 7 9 8 7 0 ) 2
(T + 79870)^2
79 79 7 9
( T − 70502 ) 2 (T - 70502)^{2} ( T − 7 0 5 0 2 ) 2
(T - 70502)^2
83 83 8 3
T 2 − 1691940096 T^{2} - 1691940096 T 2 − 1 6 9 1 9 4 0 0 9 6
T^2 - 1691940096
89 89 8 9
T 2 − 6499786629 T^{2} - 6499786629 T 2 − 6 4 9 9 7 8 6 6 2 9
T^2 - 6499786629
97 97 9 7
( T + 140488 ) 2 (T + 140488)^{2} ( T + 1 4 0 4 8 8 ) 2
(T + 140488)^2
show more
show less