Properties

Label 189.6.a.g
Level 189189
Weight 66
Character orbit 189.a
Self dual yes
Analytic conductor 30.31330.313
Analytic rank 11
Dimension 22
Inner twists 22

Related objects

Downloads

Learn more

Show commands: Magma / Pari/GP / SageMath

Newspace parameters

Copy content comment:Compute space of new eigenforms
 
Copy content gp:[N,k,chi] = [189,6,Mod(1,189)] mf = mfinit([N,k,chi],0) lf = mfeigenbasis(mf)
 
Copy content sage:from sage.modular.dirichlet import DirichletCharacter H = DirichletGroup(189, base_ring=CyclotomicField(2)) chi = DirichletCharacter(H, H._module([0, 0])) N = Newforms(chi, 6, names="a")
 
Copy content magma://Please install CHIMP (https://github.com/edgarcosta/CHIMP) if you want to run this code chi := DirichletCharacter("189.1"); S:= CuspForms(chi, 6); N := Newforms(S);
 
Level: N N == 189=337 189 = 3^{3} \cdot 7
Weight: k k == 6 6
Character orbit: [χ][\chi] == 189.a (trivial)

Newform invariants

Copy content comment:select newform
 
Copy content sage:traces = [2,0,0,104] f = next(g for g in N if [g.coefficient(i+1).trace() for i in range(4)] == traces)
 
Copy content gp:f = lf[1] \\ Warning: the index may be different
 
Self dual: yes
Analytic conductor: 30.312541944730.3125419447
Analytic rank: 11
Dimension: 22
Coefficient field: Q(21)\Q(\sqrt{21})
Copy content comment:defining polynomial
 
Copy content gp:f.mod \\ as an extension of the character field
 
Defining polynomial: x2x5 x^{2} - x - 5 Copy content Toggle raw display
Coefficient ring: Z[a1,,a5]\Z[a_1, \ldots, a_{5}]
Coefficient ring index: 2 2
Twist minimal: yes
Fricke sign: +1+1
Sato-Tate group: SU(2)\mathrm{SU}(2)

qq-expansion

Copy content comment:q-expansion
 
Copy content sage:f.q_expansion() # note that sage often uses an isomorphic number field
 
Copy content gp:mfcoefs(f, 20)
 

Coefficients of the qq-expansion are expressed in terms of β=21\beta = \sqrt{21}. We also show the integral qq-expansion of the trace form.

f(q)f(q) == q2βq2+52q4+19βq5+49q740βq8798q107βq11940q1398βq14+16q16+2βq171939q19+988βq20+294q22+4802βq98+O(q100) q - 2 \beta q^{2} + 52 q^{4} + 19 \beta q^{5} + 49 q^{7} - 40 \beta q^{8} - 798 q^{10} - 7 \beta q^{11} - 940 q^{13} - 98 \beta q^{14} + 16 q^{16} + 2 \beta q^{17} - 1939 q^{19} + 988 \beta q^{20} + 294 q^{22} + \cdots - 4802 \beta q^{98} +O(q^{100}) Copy content Toggle raw display
Tr(f)(q)\operatorname{Tr}(f)(q) == 2q+104q4+98q71596q101880q13+32q163878q19+588q22+8912q25+5096q2817390q31168q344910q3731920q40+12028q43+37716q46+280976q97+O(q100) 2 q + 104 q^{4} + 98 q^{7} - 1596 q^{10} - 1880 q^{13} + 32 q^{16} - 3878 q^{19} + 588 q^{22} + 8912 q^{25} + 5096 q^{28} - 17390 q^{31} - 168 q^{34} - 4910 q^{37} - 31920 q^{40} + 12028 q^{43} + 37716 q^{46}+ \cdots - 280976 q^{97}+O(q^{100}) Copy content Toggle raw display

Embeddings

For each embedding ιm\iota_m of the coefficient field, the values ιm(an)\iota_m(a_n) are shown below.

For more information on an embedded modular form you can click on its label.

Copy content comment:embeddings in the coefficient field
 
Copy content gp:mfembed(f)
 
Label   ιm(ν)\iota_m(\nu) a2 a_{2} a3 a_{3} a4 a_{4} a5 a_{5} a6 a_{6} a7 a_{7} a8 a_{8} a9 a_{9} a10 a_{10}
1.1
2.79129
−1.79129
−9.16515 0 52.0000 87.0689 0 49.0000 −183.303 0 −798.000
1.2 9.16515 0 52.0000 −87.0689 0 49.0000 183.303 0 −798.000
nn: e.g. 2-40 or 990-1000
Significant digits:
Format:

Atkin-Lehner signs

p p Sign
33 1 -1
77 1 -1

Inner twists

Char Parity Ord Mult Type
1.a even 1 1 trivial
3.b odd 2 1 inner

Twists

       By twisting character orbit
Char Parity Ord Mult Type Twist Min Dim
1.a even 1 1 trivial 189.6.a.g 2
3.b odd 2 1 inner 189.6.a.g 2
    
        By twisted newform orbit
Twist Min Dim Char Parity Ord Mult Type
189.6.a.g 2 1.a even 1 1 trivial
189.6.a.g 2 3.b odd 2 1 inner

Hecke kernels

This newform subspace can be constructed as the kernel of the linear operator T2284 T_{2}^{2} - 84 acting on S6new(Γ0(189))S_{6}^{\mathrm{new}}(\Gamma_0(189)). Copy content Toggle raw display

Hecke characteristic polynomials

pp Fp(T)F_p(T)
22 T284 T^{2} - 84 Copy content Toggle raw display
33 T2 T^{2} Copy content Toggle raw display
55 T27581 T^{2} - 7581 Copy content Toggle raw display
77 (T49)2 (T - 49)^{2} Copy content Toggle raw display
1111 T21029 T^{2} - 1029 Copy content Toggle raw display
1313 (T+940)2 (T + 940)^{2} Copy content Toggle raw display
1717 T284 T^{2} - 84 Copy content Toggle raw display
1919 (T+1939)2 (T + 1939)^{2} Copy content Toggle raw display
2323 T24233621 T^{2} - 4233621 Copy content Toggle raw display
2929 T233977664 T^{2} - 33977664 Copy content Toggle raw display
3131 (T+8695)2 (T + 8695)^{2} Copy content Toggle raw display
3737 (T+2455)2 (T + 2455)^{2} Copy content Toggle raw display
4141 T2134950725 T^{2} - 134950725 Copy content Toggle raw display
4343 (T6014)2 (T - 6014)^{2} Copy content Toggle raw display
4747 T2659971956 T^{2} - 659971956 Copy content Toggle raw display
5353 T2340720464 T^{2} - 340720464 Copy content Toggle raw display
5959 T2281000244 T^{2} - 281000244 Copy content Toggle raw display
6161 (T5792)2 (T - 5792)^{2} Copy content Toggle raw display
6767 (T20996)2 (T - 20996)^{2} Copy content Toggle raw display
7171 T23948973749 T^{2} - 3948973749 Copy content Toggle raw display
7373 (T+79870)2 (T + 79870)^{2} Copy content Toggle raw display
7979 (T70502)2 (T - 70502)^{2} Copy content Toggle raw display
8383 T21691940096 T^{2} - 1691940096 Copy content Toggle raw display
8989 T26499786629 T^{2} - 6499786629 Copy content Toggle raw display
9797 (T+140488)2 (T + 140488)^{2} Copy content Toggle raw display
show more
show less