[N,k,chi] = [189,6,Mod(1,189)]
mf = mfinit([N,k,chi],0)
lf = mfeigenbasis(mf)
from sage.modular.dirichlet import DirichletCharacter
H = DirichletGroup(189, base_ring=CyclotomicField(2))
chi = DirichletCharacter(H, H._module([0, 0]))
N = Newforms(chi, 6, names="a")
//Please install CHIMP (https://github.com/edgarcosta/CHIMP) if you want to run this code
chi := DirichletCharacter("189.1");
S:= CuspForms(chi, 6);
N := Newforms(S);
Newform invariants
sage: f = N[0] # Warning: the index may be different
gp: f = lf[1] \\ Warning: the index may be different
sage: f.q_expansion() # note that sage often uses an isomorphic number field
Coefficients of the q q q -expansion are expressed in terms of a basis 1 , β 1 , β 2 , β 3 , β 4 1,\beta_1,\beta_2,\beta_3,\beta_4 1 , β 1 , β 2 , β 3 , β 4 for the coefficient ring described below.
We also show the integral q q q -expansion of the trace form .
Basis of coefficient ring in terms of a root ν \nu ν of
x 5 − x 4 − 121 x 3 + 265 x 2 + 3580 x − 11620 x^{5} - x^{4} - 121x^{3} + 265x^{2} + 3580x - 11620 x 5 − x 4 − 1 2 1 x 3 + 2 6 5 x 2 + 3 5 8 0 x − 1 1 6 2 0
x^5 - x^4 - 121*x^3 + 265*x^2 + 3580*x - 11620
:
β 1 \beta_{1} β 1 = = =
( ν 4 + 2 ν 3 − 95 ν 2 − 100 ν + 1940 ) / 40 ( \nu^{4} + 2\nu^{3} - 95\nu^{2} - 100\nu + 1940 ) / 40 ( ν 4 + 2 ν 3 − 9 5 ν 2 − 1 0 0 ν + 1 9 4 0 ) / 4 0
(v^4 + 2*v^3 - 95*v^2 - 100*v + 1940) / 40
β 2 \beta_{2} β 2 = = =
( 3 ν 2 + 9 ν − 148 ) / 2 ( 3\nu^{2} + 9\nu - 148 ) / 2 ( 3 ν 2 + 9 ν − 1 4 8 ) / 2
(3*v^2 + 9*v - 148) / 2
β 3 \beta_{3} β 3 = = =
− 3 ν 2 + 9 ν + 144 -3\nu^{2} + 9\nu + 144 − 3 ν 2 + 9 ν + 1 4 4
-3*v^2 + 9*v + 144
β 4 \beta_{4} β 4 = = =
( 7 ν 4 + 44 ν 3 − 665 ν 2 − 2470 ν + 16480 ) / 40 ( 7\nu^{4} + 44\nu^{3} - 665\nu^{2} - 2470\nu + 16480 ) / 40 ( 7 ν 4 + 4 4 ν 3 − 6 6 5 ν 2 − 2 4 7 0 ν + 1 6 4 8 0 ) / 4 0
(7*v^4 + 44*v^3 - 665*v^2 - 2470*v + 16480) / 40
ν \nu ν = = =
( β 3 + 2 β 2 + 4 ) / 18 ( \beta_{3} + 2\beta_{2} + 4 ) / 18 ( β 3 + 2 β 2 + 4 ) / 1 8
(b3 + 2*b2 + 4) / 18
ν 2 \nu^{2} ν 2 = = =
( − β 3 + 2 β 2 + 292 ) / 6 ( -\beta_{3} + 2\beta_{2} + 292 ) / 6 ( − β 3 + 2 β 2 + 2 9 2 ) / 6
(-b3 + 2*b2 + 292) / 6
ν 3 \nu^{3} ν 3 = = =
( 24 β 4 + 59 β 3 + 118 β 2 − 168 β 1 − 1504 ) / 18 ( 24\beta_{4} + 59\beta_{3} + 118\beta_{2} - 168\beta _1 - 1504 ) / 18 ( 2 4 β 4 + 5 9 β 3 + 1 1 8 β 2 − 1 6 8 β 1 − 1 5 0 4 ) / 1 8
(24*b4 + 59*b3 + 118*b2 - 168*b1 - 1504) / 18
ν 4 \nu^{4} ν 4 = = =
( − 16 β 4 − 101 β 3 + 178 β 2 + 352 β 1 + 17236 ) / 6 ( -16\beta_{4} - 101\beta_{3} + 178\beta_{2} + 352\beta _1 + 17236 ) / 6 ( − 1 6 β 4 − 1 0 1 β 3 + 1 7 8 β 2 + 3 5 2 β 1 + 1 7 2 3 6 ) / 6
(-16*b4 - 101*b3 + 178*b2 + 352*b1 + 17236) / 6
For each embedding ι m \iota_m ι m of the coefficient field, the values ι m ( a n ) \iota_m(a_n) ι m ( a n ) are shown below.
For more information on an embedded modular form you can click on its label.
Refresh table
p p p
Sign
3 3 3
− 1 -1 − 1
7 7 7
− 1 -1 − 1
This newform does not admit any (nontrivial ) inner twists .
This newform subspace can be constructed as the kernel of the linear operator
T 2 5 + 9 T 2 4 − 96 T 2 3 − 702 T 2 2 + 2412 T 2 + 9072 T_{2}^{5} + 9T_{2}^{4} - 96T_{2}^{3} - 702T_{2}^{2} + 2412T_{2} + 9072 T 2 5 + 9 T 2 4 − 9 6 T 2 3 − 7 0 2 T 2 2 + 2 4 1 2 T 2 + 9 0 7 2
T2^5 + 9*T2^4 - 96*T2^3 - 702*T2^2 + 2412*T2 + 9072
acting on S 6 n e w ( Γ 0 ( 189 ) ) S_{6}^{\mathrm{new}}(\Gamma_0(189)) S 6 n e w ( Γ 0 ( 1 8 9 ) ) .
p p p
F p ( T ) F_p(T) F p ( T )
2 2 2
T 5 + 9 T 4 + ⋯ + 9072 T^{5} + 9 T^{4} + \cdots + 9072 T 5 + 9 T 4 + ⋯ + 9 0 7 2
T^5 + 9*T^4 - 96*T^3 - 702*T^2 + 2412*T + 9072
3 3 3
T 5 T^{5} T 5
T^5
5 5 5
T 5 + 111 T 4 + ⋯ + 370097856 T^{5} + 111 T^{4} + \cdots + 370097856 T 5 + 1 1 1 T 4 + ⋯ + 3 7 0 0 9 7 8 5 6
T^5 + 111*T^4 - 3597*T^3 - 439767*T^2 + 1730196*T + 370097856
7 7 7
( T − 49 ) 5 (T - 49)^{5} ( T − 4 9 ) 5
(T - 49)^5
11 11 1 1
T 5 + ⋯ + 212686718976 T^{5} + \cdots + 212686718976 T 5 + ⋯ + 2 1 2 6 8 6 7 1 8 9 7 6
T^5 + 744*T^4 + 45876*T^3 - 26716752*T^2 - 739025280*T + 212686718976
13 13 1 3
T 5 + ⋯ − 20384169483488 T^{5} + \cdots - 20384169483488 T 5 + ⋯ − 2 0 3 8 4 1 6 9 4 8 3 4 8 8
T^5 - 406*T^4 - 1269581*T^3 + 630754858*T^2 + 5052915872*T - 20384169483488
17 17 1 7
T 5 + ⋯ − 19 ⋯ 57 T^{5} + \cdots - 19\!\cdots\!57 T 5 + ⋯ − 1 9 ⋯ 5 7
T^5 + 1587*T^4 - 4059186*T^3 - 2790411894*T^2 + 5909499623025*T - 1945891203605757
19 19 1 9
T 5 + ⋯ − 35990315233856 T^{5} + \cdots - 35990315233856 T 5 + ⋯ − 3 5 9 9 0 3 1 5 2 3 3 8 5 6
T^5 + 1688*T^4 - 7820000*T^3 - 7048219472*T^2 + 17915286546032*T - 35990315233856
23 23 2 3
T 5 + ⋯ + 57 ⋯ 36 T^{5} + \cdots + 57\!\cdots\!36 T 5 + ⋯ + 5 7 ⋯ 3 6
T^5 + 1074*T^4 - 9864753*T^3 - 6888148758*T^2 + 23892400597284*T + 5764069634714136
29 29 2 9
T 5 + ⋯ − 93 ⋯ 56 T^{5} + \cdots - 93\!\cdots\!56 T 5 + ⋯ − 9 3 ⋯ 5 6
T^5 + 5430*T^4 - 27883575*T^3 - 50756519700*T^2 + 199031092226100*T - 93649625798792256
31 31 3 1
T 5 + ⋯ − 23 ⋯ 56 T^{5} + \cdots - 23\!\cdots\!56 T 5 + ⋯ − 2 3 ⋯ 5 6
T^5 - 10660*T^4 - 39590495*T^3 + 478412292610*T^2 + 155147935582400*T - 2373474113685493856
37 37 3 7
T 5 + ⋯ − 39 ⋯ 24 T^{5} + \cdots - 39\!\cdots\!24 T 5 + ⋯ − 3 9 ⋯ 2 4
T^5 + 19169*T^4 - 27882365*T^3 - 2706086346641*T^2 - 19064624044800304*T - 39537272093477468324
41 41 4 1
T 5 + ⋯ + 98 ⋯ 68 T^{5} + \cdots + 98\!\cdots\!68 T 5 + ⋯ + 9 8 ⋯ 6 8
T^5 + 21417*T^4 - 56298645*T^3 - 2833756416477*T^2 - 1274206349962044*T + 98458239867720131268
43 43 4 3
T 5 + ⋯ − 27 ⋯ 19 T^{5} + \cdots - 27\!\cdots\!19 T 5 + ⋯ − 2 7 ⋯ 1 9
T^5 - 12091*T^4 - 390823514*T^3 + 3470036141278*T^2 + 34340792681579225*T - 278047656204947530019
47 47 4 7
T 5 + ⋯ − 60 ⋯ 16 T^{5} + \cdots - 60\!\cdots\!16 T 5 + ⋯ − 6 0 ⋯ 1 6
T^5 + 27855*T^4 - 345543297*T^3 - 17319833806671*T^2 - 181261657936468836*T - 604728878406845878116
53 53 5 3
T 5 + ⋯ − 59 ⋯ 68 T^{5} + \cdots - 59\!\cdots\!68 T 5 + ⋯ − 5 9 ⋯ 6 8
T^5 + 26364*T^4 - 975698835*T^3 - 35563218968394*T^2 - 282672201758187348*T - 592005033229328778168
59 59 5 9
T 5 + ⋯ − 26 ⋯ 55 T^{5} + \cdots - 26\!\cdots\!55 T 5 + ⋯ − 2 6 ⋯ 5 5
T^5 + 111321*T^4 + 4274027742*T^3 + 63817249740750*T^2 + 268093237589792865*T - 267729922876928030055
61 61 6 1
T 5 + ⋯ + 62 ⋯ 48 T^{5} + \cdots + 62\!\cdots\!48 T 5 + ⋯ + 6 2 ⋯ 4 8
T^5 - 58012*T^4 + 544464736*T^3 + 7751034359920*T^2 - 61726866019804816*T + 62556125301356328448
67 67 6 7
T 5 + ⋯ + 73 ⋯ 04 T^{5} + \cdots + 73\!\cdots\!04 T 5 + ⋯ + 7 3 ⋯ 0 4
T^5 + 19544*T^4 - 2824910801*T^3 - 18400991152400*T^2 + 1553779744544072624*T + 7384310454274438213504
71 71 7 1
T 5 + ⋯ − 56 ⋯ 88 T^{5} + \cdots - 56\!\cdots\!88 T 5 + ⋯ − 5 6 ⋯ 8 8
T^5 + 114912*T^4 + 2018714427*T^3 - 155173066502076*T^2 - 5997886804607889024*T - 56933865697569577049088
73 73 7 3
T 5 + ⋯ − 50 ⋯ 00 T^{5} + \cdots - 50\!\cdots\!00 T 5 + ⋯ − 5 0 ⋯ 0 0
T^5 + 23162*T^4 - 6040991672*T^3 - 69478536734576*T^2 + 9041011922676992720*T - 505318543608751186400
79 79 7 9
T 5 + ⋯ − 67 ⋯ 84 T^{5} + \cdots - 67\!\cdots\!84 T 5 + ⋯ − 6 7 ⋯ 8 4
T^5 - 29311*T^4 - 3419396273*T^3 + 109317398686507*T^2 + 2062507861334050184*T - 67093923702273296364884
83 83 8 3
T 5 + ⋯ + 36 ⋯ 16 T^{5} + \cdots + 36\!\cdots\!16 T 5 + ⋯ + 3 6 ⋯ 1 6
T^5 + 80445*T^4 - 1200950037*T^3 - 127797526450449*T^2 + 880176945514274424*T + 3622293690796755912816
89 89 8 9
T 5 + ⋯ − 17 ⋯ 96 T^{5} + \cdots - 17\!\cdots\!96 T 5 + ⋯ − 1 7 ⋯ 9 6
T^5 - 28470*T^4 - 13803361557*T^3 + 560977651165662*T^2 + 39230563538458550196*T - 1793080145078882312539896
97 97 9 7
T 5 + ⋯ − 19 ⋯ 00 T^{5} + \cdots - 19\!\cdots\!00 T 5 + ⋯ − 1 9 ⋯ 0 0
T^5 - 48676*T^4 - 10458119708*T^3 + 582636439901152*T^2 - 526135423323838720*T - 196787917440598353459200
show more
show less