Properties

Label 1890.2.i.i.991.3
Level $1890$
Weight $2$
Character 1890.991
Analytic conductor $15.092$
Analytic rank $0$
Dimension $16$
Inner twists $2$

Related objects

Downloads

Learn more

Show commands: Magma / PariGP / SageMath

Newspace parameters

comment: Compute space of new eigenforms
 
[N,k,chi] = [1890,2,Mod(991,1890)]
 
mf = mfinit([N,k,chi],0)
 
lf = mfeigenbasis(mf)
 
from sage.modular.dirichlet import DirichletCharacter
 
H = DirichletGroup(1890, base_ring=CyclotomicField(6))
 
chi = DirichletCharacter(H, H._module([4, 0, 4]))
 
N = Newforms(chi, 2, names="a")
 
//Please install CHIMP (https://github.com/edgarcosta/CHIMP) if you want to run this code
 
chi := DirichletCharacter("1890.991");
 
S:= CuspForms(chi, 2);
 
N := Newforms(S);
 
Level: \( N \) \(=\) \( 1890 = 2 \cdot 3^{3} \cdot 5 \cdot 7 \)
Weight: \( k \) \(=\) \( 2 \)
Character orbit: \([\chi]\) \(=\) 1890.i (of order \(3\), degree \(2\), not minimal)

Newform invariants

comment: select newform
 
sage: f = N[0] # Warning: the index may be different
 
gp: f = lf[1] \\ Warning: the index may be different
 
Self dual: no
Analytic conductor: \(15.0917259820\)
Analytic rank: \(0\)
Dimension: \(16\)
Relative dimension: \(8\) over \(\Q(\zeta_{3})\)
Coefficient field: \(\mathbb{Q}[x]/(x^{16} - \cdots)\)
comment: defining polynomial
 
gp: f.mod \\ as an extension of the character field
 
Defining polynomial: \( x^{16} - x^{15} + 2 x^{14} - 4 x^{13} + 5 x^{12} + 2 x^{11} - 35 x^{10} + 81 x^{9} - 66 x^{8} + \cdots + 6561 \) Copy content Toggle raw display
Coefficient ring: \(\Z[a_1, \ldots, a_{13}]\)
Coefficient ring index: \( 3^{5} \)
Twist minimal: no (minimal twist has level 630)
Sato-Tate group: $\mathrm{SU}(2)[C_{3}]$

Embedding invariants

Embedding label 991.3
Root \(1.67659 - 0.434811i\) of defining polynomial
Character \(\chi\) \(=\) 1890.991
Dual form 1890.2.i.i.1171.3

$q$-expansion

comment: q-expansion
 
sage: f.q_expansion() # note that sage often uses an isomorphic number field
 
gp: mfcoefs(f, 20)
 
\(f(q)\) \(=\) \(q+1.00000 q^{2} +1.00000 q^{4} +(-0.500000 + 0.866025i) q^{5} +(-1.09594 + 2.40809i) q^{7} +1.00000 q^{8} +(-0.500000 + 0.866025i) q^{10} +(0.554785 + 0.960915i) q^{11} +(-1.64072 - 2.84181i) q^{13} +(-1.09594 + 2.40809i) q^{14} +1.00000 q^{16} +(-2.19747 + 3.80613i) q^{17} +(-0.622647 - 1.07846i) q^{19} +(-0.500000 + 0.866025i) q^{20} +(0.554785 + 0.960915i) q^{22} +(-3.14773 + 5.45204i) q^{23} +(-0.500000 - 0.866025i) q^{25} +(-1.64072 - 2.84181i) q^{26} +(-1.09594 + 2.40809i) q^{28} +(-3.26879 + 5.66171i) q^{29} +3.10957 q^{31} +1.00000 q^{32} +(-2.19747 + 3.80613i) q^{34} +(-1.53750 - 2.15316i) q^{35} +(0.659906 + 1.14299i) q^{37} +(-0.622647 - 1.07846i) q^{38} +(-0.500000 + 0.866025i) q^{40} +(-3.60559 - 6.24507i) q^{41} +(-4.88416 + 8.45961i) q^{43} +(0.554785 + 0.960915i) q^{44} +(-3.14773 + 5.45204i) q^{46} +11.4617 q^{47} +(-4.59781 - 5.27827i) q^{49} +(-0.500000 - 0.866025i) q^{50} +(-1.64072 - 2.84181i) q^{52} +(-2.73283 + 4.73340i) q^{53} -1.10957 q^{55} +(-1.09594 + 2.40809i) q^{56} +(-3.26879 + 5.66171i) q^{58} -6.46993 q^{59} +4.40470 q^{61} +3.10957 q^{62} +1.00000 q^{64} +3.28143 q^{65} -5.23241 q^{67} +(-2.19747 + 3.80613i) q^{68} +(-1.53750 - 2.15316i) q^{70} -16.3046 q^{71} +(-0.731993 + 1.26785i) q^{73} +(0.659906 + 1.14299i) q^{74} +(-0.622647 - 1.07846i) q^{76} +(-2.92199 + 0.282863i) q^{77} +3.41668 q^{79} +(-0.500000 + 0.866025i) q^{80} +(-3.60559 - 6.24507i) q^{82} +(4.06648 - 7.04336i) q^{83} +(-2.19747 - 3.80613i) q^{85} +(-4.88416 + 8.45961i) q^{86} +(0.554785 + 0.960915i) q^{88} +(1.42132 + 2.46180i) q^{89} +(8.64146 - 0.836537i) q^{91} +(-3.14773 + 5.45204i) q^{92} +11.4617 q^{94} +1.24529 q^{95} +(-8.54592 + 14.8020i) q^{97} +(-4.59781 - 5.27827i) q^{98} +O(q^{100})\)
\(\operatorname{Tr}(f)(q)\) \(=\) \( 16 q + 16 q^{2} + 16 q^{4} - 8 q^{5} + 4 q^{7} + 16 q^{8} - 8 q^{10} - q^{11} + 2 q^{13} + 4 q^{14} + 16 q^{16} - 11 q^{17} - 2 q^{19} - 8 q^{20} - q^{22} - 11 q^{23} - 8 q^{25} + 2 q^{26} + 4 q^{28}+ \cdots - 14 q^{98}+O(q^{100}) \) Copy content Toggle raw display

Character values

We give the values of \(\chi\) on generators for \(\left(\mathbb{Z}/1890\mathbb{Z}\right)^\times\).

\(n\) \(757\) \(1081\) \(1541\)
\(\chi(n)\) \(1\) \(e\left(\frac{2}{3}\right)\) \(e\left(\frac{2}{3}\right)\)

Coefficient data

For each \(n\) we display the coefficients of the \(q\)-expansion \(a_n\), the Satake parameters \(\alpha_p\), and the Satake angles \(\theta_p = \textrm{Arg}(\alpha_p)\).



Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))
Significant digits:
\(n\) \(a_n\) \(a_n / n^{(k-1)/2}\) \( \alpha_n \) \( \theta_n \)
\(p\) \(a_p\) \(a_p / p^{(k-1)/2}\) \( \alpha_p\) \( \theta_p \)
\(2\) 1.00000 0.707107
\(3\) 0 0
\(4\) 1.00000 0.500000
\(5\) −0.500000 + 0.866025i −0.223607 + 0.387298i
\(6\) 0 0
\(7\) −1.09594 + 2.40809i −0.414228 + 0.910173i
\(8\) 1.00000 0.353553
\(9\) 0 0
\(10\) −0.500000 + 0.866025i −0.158114 + 0.273861i
\(11\) 0.554785 + 0.960915i 0.167274 + 0.289727i 0.937460 0.348092i \(-0.113170\pi\)
−0.770187 + 0.637819i \(0.779837\pi\)
\(12\) 0 0
\(13\) −1.64072 2.84181i −0.455053 0.788175i 0.543638 0.839320i \(-0.317046\pi\)
−0.998691 + 0.0511446i \(0.983713\pi\)
\(14\) −1.09594 + 2.40809i −0.292903 + 0.643590i
\(15\) 0 0
\(16\) 1.00000 0.250000
\(17\) −2.19747 + 3.80613i −0.532964 + 0.923121i 0.466294 + 0.884630i \(0.345589\pi\)
−0.999259 + 0.0384919i \(0.987745\pi\)
\(18\) 0 0
\(19\) −0.622647 1.07846i −0.142845 0.247415i 0.785722 0.618580i \(-0.212292\pi\)
−0.928567 + 0.371165i \(0.878958\pi\)
\(20\) −0.500000 + 0.866025i −0.111803 + 0.193649i
\(21\) 0 0
\(22\) 0.554785 + 0.960915i 0.118281 + 0.204868i
\(23\) −3.14773 + 5.45204i −0.656348 + 1.13683i 0.325206 + 0.945643i \(0.394566\pi\)
−0.981554 + 0.191185i \(0.938767\pi\)
\(24\) 0 0
\(25\) −0.500000 0.866025i −0.100000 0.173205i
\(26\) −1.64072 2.84181i −0.321771 0.557324i
\(27\) 0 0
\(28\) −1.09594 + 2.40809i −0.207114 + 0.455087i
\(29\) −3.26879 + 5.66171i −0.606999 + 1.05135i 0.384733 + 0.923028i \(0.374293\pi\)
−0.991732 + 0.128325i \(0.959040\pi\)
\(30\) 0 0
\(31\) 3.10957 0.558495 0.279248 0.960219i \(-0.409915\pi\)
0.279248 + 0.960219i \(0.409915\pi\)
\(32\) 1.00000 0.176777
\(33\) 0 0
\(34\) −2.19747 + 3.80613i −0.376863 + 0.652745i
\(35\) −1.53750 2.15316i −0.259884 0.363951i
\(36\) 0 0
\(37\) 0.659906 + 1.14299i 0.108488 + 0.187907i 0.915158 0.403096i \(-0.132066\pi\)
−0.806670 + 0.591002i \(0.798732\pi\)
\(38\) −0.622647 1.07846i −0.101007 0.174949i
\(39\) 0 0
\(40\) −0.500000 + 0.866025i −0.0790569 + 0.136931i
\(41\) −3.60559 6.24507i −0.563099 0.975317i −0.997224 0.0744637i \(-0.976276\pi\)
0.434124 0.900853i \(-0.357058\pi\)
\(42\) 0 0
\(43\) −4.88416 + 8.45961i −0.744827 + 1.29008i 0.205448 + 0.978668i \(0.434135\pi\)
−0.950275 + 0.311411i \(0.899198\pi\)
\(44\) 0.554785 + 0.960915i 0.0836370 + 0.144863i
\(45\) 0 0
\(46\) −3.14773 + 5.45204i −0.464108 + 0.803859i
\(47\) 11.4617 1.67186 0.835929 0.548838i \(-0.184930\pi\)
0.835929 + 0.548838i \(0.184930\pi\)
\(48\) 0 0
\(49\) −4.59781 5.27827i −0.656830 0.754038i
\(50\) −0.500000 0.866025i −0.0707107 0.122474i
\(51\) 0 0
\(52\) −1.64072 2.84181i −0.227527 0.394088i
\(53\) −2.73283 + 4.73340i −0.375383 + 0.650182i −0.990384 0.138344i \(-0.955822\pi\)
0.615002 + 0.788526i \(0.289155\pi\)
\(54\) 0 0
\(55\) −1.10957 −0.149614
\(56\) −1.09594 + 2.40809i −0.146452 + 0.321795i
\(57\) 0 0
\(58\) −3.26879 + 5.66171i −0.429213 + 0.743419i
\(59\) −6.46993 −0.842313 −0.421157 0.906988i \(-0.638376\pi\)
−0.421157 + 0.906988i \(0.638376\pi\)
\(60\) 0 0
\(61\) 4.40470 0.563964 0.281982 0.959420i \(-0.409008\pi\)
0.281982 + 0.959420i \(0.409008\pi\)
\(62\) 3.10957 0.394916
\(63\) 0 0
\(64\) 1.00000 0.125000
\(65\) 3.28143 0.407012
\(66\) 0 0
\(67\) −5.23241 −0.639241 −0.319620 0.947546i \(-0.603555\pi\)
−0.319620 + 0.947546i \(0.603555\pi\)
\(68\) −2.19747 + 3.80613i −0.266482 + 0.461561i
\(69\) 0 0
\(70\) −1.53750 2.15316i −0.183766 0.257352i
\(71\) −16.3046 −1.93501 −0.967503 0.252860i \(-0.918629\pi\)
−0.967503 + 0.252860i \(0.918629\pi\)
\(72\) 0 0
\(73\) −0.731993 + 1.26785i −0.0856733 + 0.148391i −0.905678 0.423966i \(-0.860637\pi\)
0.820005 + 0.572357i \(0.193971\pi\)
\(74\) 0.659906 + 1.14299i 0.0767126 + 0.132870i
\(75\) 0 0
\(76\) −0.622647 1.07846i −0.0714225 0.123707i
\(77\) −2.92199 + 0.282863i −0.332991 + 0.0322352i
\(78\) 0 0
\(79\) 3.41668 0.384407 0.192204 0.981355i \(-0.438437\pi\)
0.192204 + 0.981355i \(0.438437\pi\)
\(80\) −0.500000 + 0.866025i −0.0559017 + 0.0968246i
\(81\) 0 0
\(82\) −3.60559 6.24507i −0.398171 0.689653i
\(83\) 4.06648 7.04336i 0.446355 0.773109i −0.551791 0.833983i \(-0.686055\pi\)
0.998145 + 0.0608736i \(0.0193887\pi\)
\(84\) 0 0
\(85\) −2.19747 3.80613i −0.238349 0.412832i
\(86\) −4.88416 + 8.45961i −0.526672 + 0.912223i
\(87\) 0 0
\(88\) 0.554785 + 0.960915i 0.0591403 + 0.102434i
\(89\) 1.42132 + 2.46180i 0.150660 + 0.260950i 0.931470 0.363818i \(-0.118527\pi\)
−0.780810 + 0.624768i \(0.785194\pi\)
\(90\) 0 0
\(91\) 8.64146 0.836537i 0.905872 0.0876929i
\(92\) −3.14773 + 5.45204i −0.328174 + 0.568414i
\(93\) 0 0
\(94\) 11.4617 1.18218
\(95\) 1.24529 0.127764
\(96\) 0 0
\(97\) −8.54592 + 14.8020i −0.867707 + 1.50291i −0.00337237 + 0.999994i \(0.501073\pi\)
−0.864334 + 0.502918i \(0.832260\pi\)
\(98\) −4.59781 5.27827i −0.464449 0.533186i
\(99\) 0 0
\(100\) −0.500000 0.866025i −0.0500000 0.0866025i
\(101\) 3.73642 + 6.47167i 0.371788 + 0.643955i 0.989841 0.142181i \(-0.0454117\pi\)
−0.618053 + 0.786136i \(0.712078\pi\)
\(102\) 0 0
\(103\) 2.48518 4.30445i 0.244872 0.424130i −0.717224 0.696843i \(-0.754587\pi\)
0.962096 + 0.272713i \(0.0879208\pi\)
\(104\) −1.64072 2.84181i −0.160886 0.278662i
\(105\) 0 0
\(106\) −2.73283 + 4.73340i −0.265436 + 0.459748i
\(107\) 3.51531 + 6.08870i 0.339838 + 0.588617i 0.984402 0.175934i \(-0.0562944\pi\)
−0.644564 + 0.764550i \(0.722961\pi\)
\(108\) 0 0
\(109\) −5.12829 + 8.88245i −0.491201 + 0.850785i −0.999949 0.0101309i \(-0.996775\pi\)
0.508748 + 0.860916i \(0.330109\pi\)
\(110\) −1.10957 −0.105793
\(111\) 0 0
\(112\) −1.09594 + 2.40809i −0.103557 + 0.227543i
\(113\) −3.64304 6.30993i −0.342708 0.593588i 0.642226 0.766515i \(-0.278011\pi\)
−0.984935 + 0.172927i \(0.944678\pi\)
\(114\) 0 0
\(115\) −3.14773 5.45204i −0.293528 0.508405i
\(116\) −3.26879 + 5.66171i −0.303499 + 0.525677i
\(117\) 0 0
\(118\) −6.46993 −0.595605
\(119\) −6.75720 9.46301i −0.619432 0.867473i
\(120\) 0 0
\(121\) 4.88443 8.46008i 0.444039 0.769098i
\(122\) 4.40470 0.398783
\(123\) 0 0
\(124\) 3.10957 0.279248
\(125\) 1.00000 0.0894427
\(126\) 0 0
\(127\) 20.9242 1.85673 0.928363 0.371674i \(-0.121216\pi\)
0.928363 + 0.371674i \(0.121216\pi\)
\(128\) 1.00000 0.0883883
\(129\) 0 0
\(130\) 3.28143 0.287801
\(131\) 7.41195 12.8379i 0.647585 1.12165i −0.336113 0.941822i \(-0.609112\pi\)
0.983698 0.179828i \(-0.0575542\pi\)
\(132\) 0 0
\(133\) 3.27941 0.317463i 0.284361 0.0275275i
\(134\) −5.23241 −0.452011
\(135\) 0 0
\(136\) −2.19747 + 3.80613i −0.188431 + 0.326373i
\(137\) 6.20268 + 10.7434i 0.529931 + 0.917867i 0.999390 + 0.0349133i \(0.0111155\pi\)
−0.469459 + 0.882954i \(0.655551\pi\)
\(138\) 0 0
\(139\) 11.5310 + 19.9723i 0.978047 + 1.69403i 0.669491 + 0.742820i \(0.266512\pi\)
0.308555 + 0.951206i \(0.400155\pi\)
\(140\) −1.53750 2.15316i −0.129942 0.181975i
\(141\) 0 0
\(142\) −16.3046 −1.36826
\(143\) 1.82049 3.15318i 0.152237 0.263682i
\(144\) 0 0
\(145\) −3.26879 5.66171i −0.271458 0.470179i
\(146\) −0.731993 + 1.26785i −0.0605802 + 0.104928i
\(147\) 0 0
\(148\) 0.659906 + 1.14299i 0.0542440 + 0.0939533i
\(149\) 1.37460 2.38087i 0.112611 0.195048i −0.804211 0.594344i \(-0.797412\pi\)
0.916822 + 0.399295i \(0.130745\pi\)
\(150\) 0 0
\(151\) 9.23849 + 16.0015i 0.751818 + 1.30219i 0.946941 + 0.321408i \(0.104156\pi\)
−0.195123 + 0.980779i \(0.562511\pi\)
\(152\) −0.622647 1.07846i −0.0505033 0.0874743i
\(153\) 0 0
\(154\) −2.92199 + 0.282863i −0.235460 + 0.0227937i
\(155\) −1.55478 + 2.69297i −0.124883 + 0.216304i
\(156\) 0 0
\(157\) −4.29934 −0.343124 −0.171562 0.985173i \(-0.554881\pi\)
−0.171562 + 0.985173i \(0.554881\pi\)
\(158\) 3.41668 0.271817
\(159\) 0 0
\(160\) −0.500000 + 0.866025i −0.0395285 + 0.0684653i
\(161\) −9.67926 13.5552i −0.762833 1.06830i
\(162\) 0 0
\(163\) 6.23750 + 10.8037i 0.488558 + 0.846208i 0.999913 0.0131616i \(-0.00418959\pi\)
−0.511355 + 0.859370i \(0.670856\pi\)
\(164\) −3.60559 6.24507i −0.281550 0.487658i
\(165\) 0 0
\(166\) 4.06648 7.04336i 0.315620 0.546671i
\(167\) −3.40584 5.89909i −0.263552 0.456486i 0.703631 0.710565i \(-0.251561\pi\)
−0.967183 + 0.254080i \(0.918227\pi\)
\(168\) 0 0
\(169\) 1.11609 1.93313i 0.0858534 0.148702i
\(170\) −2.19747 3.80613i −0.168538 0.291917i
\(171\) 0 0
\(172\) −4.88416 + 8.45961i −0.372414 + 0.645039i
\(173\) 8.41334 0.639655 0.319827 0.947476i \(-0.396375\pi\)
0.319827 + 0.947476i \(0.396375\pi\)
\(174\) 0 0
\(175\) 2.63344 0.254930i 0.199069 0.0192709i
\(176\) 0.554785 + 0.960915i 0.0418185 + 0.0724317i
\(177\) 0 0
\(178\) 1.42132 + 2.46180i 0.106533 + 0.184520i
\(179\) 11.0539 19.1459i 0.826205 1.43103i −0.0747893 0.997199i \(-0.523828\pi\)
0.900995 0.433830i \(-0.142838\pi\)
\(180\) 0 0
\(181\) 6.82038 0.506955 0.253477 0.967341i \(-0.418426\pi\)
0.253477 + 0.967341i \(0.418426\pi\)
\(182\) 8.64146 0.836537i 0.640548 0.0620082i
\(183\) 0 0
\(184\) −3.14773 + 5.45204i −0.232054 + 0.401929i
\(185\) −1.31981 −0.0970346
\(186\) 0 0
\(187\) −4.87649 −0.356604
\(188\) 11.4617 0.835929
\(189\) 0 0
\(190\) 1.24529 0.0903431
\(191\) −3.93174 −0.284491 −0.142245 0.989831i \(-0.545432\pi\)
−0.142245 + 0.989831i \(0.545432\pi\)
\(192\) 0 0
\(193\) 5.85359 0.421351 0.210675 0.977556i \(-0.432434\pi\)
0.210675 + 0.977556i \(0.432434\pi\)
\(194\) −8.54592 + 14.8020i −0.613561 + 1.06272i
\(195\) 0 0
\(196\) −4.59781 5.27827i −0.328415 0.377019i
\(197\) −1.71845 −0.122435 −0.0612174 0.998124i \(-0.519498\pi\)
−0.0612174 + 0.998124i \(0.519498\pi\)
\(198\) 0 0
\(199\) 2.00694 3.47612i 0.142268 0.246415i −0.786082 0.618122i \(-0.787894\pi\)
0.928350 + 0.371706i \(0.121227\pi\)
\(200\) −0.500000 0.866025i −0.0353553 0.0612372i
\(201\) 0 0
\(202\) 3.73642 + 6.47167i 0.262893 + 0.455345i
\(203\) −10.0515 14.0765i −0.705477 0.987974i
\(204\) 0 0
\(205\) 7.21119 0.503651
\(206\) 2.48518 4.30445i 0.173150 0.299905i
\(207\) 0 0
\(208\) −1.64072 2.84181i −0.113763 0.197044i
\(209\) 0.690870 1.19662i 0.0477885 0.0827720i
\(210\) 0 0
\(211\) −2.32892 4.03380i −0.160329 0.277698i 0.774657 0.632381i \(-0.217922\pi\)
−0.934987 + 0.354683i \(0.884589\pi\)
\(212\) −2.73283 + 4.73340i −0.187691 + 0.325091i
\(213\) 0 0
\(214\) 3.51531 + 6.08870i 0.240302 + 0.416215i
\(215\) −4.88416 8.45961i −0.333097 0.576941i
\(216\) 0 0
\(217\) −3.40792 + 7.48813i −0.231344 + 0.508327i
\(218\) −5.12829 + 8.88245i −0.347331 + 0.601596i
\(219\) 0 0
\(220\) −1.10957 −0.0748072
\(221\) 14.4217 0.970108
\(222\) 0 0
\(223\) 13.3981 23.2061i 0.897201 1.55400i 0.0661434 0.997810i \(-0.478931\pi\)
0.831057 0.556187i \(-0.187736\pi\)
\(224\) −1.09594 + 2.40809i −0.0732259 + 0.160897i
\(225\) 0 0
\(226\) −3.64304 6.30993i −0.242331 0.419730i
\(227\) 6.05706 + 10.4911i 0.402021 + 0.696322i 0.993970 0.109654i \(-0.0349744\pi\)
−0.591948 + 0.805976i \(0.701641\pi\)
\(228\) 0 0
\(229\) 8.07886 13.9930i 0.533866 0.924683i −0.465351 0.885126i \(-0.654072\pi\)
0.999217 0.0395568i \(-0.0125946\pi\)
\(230\) −3.14773 5.45204i −0.207555 0.359497i
\(231\) 0 0
\(232\) −3.26879 + 5.66171i −0.214607 + 0.371709i
\(233\) −8.65151 14.9849i −0.566779 0.981691i −0.996882 0.0789105i \(-0.974856\pi\)
0.430102 0.902780i \(-0.358477\pi\)
\(234\) 0 0
\(235\) −5.73084 + 9.92610i −0.373839 + 0.647508i
\(236\) −6.46993 −0.421157
\(237\) 0 0
\(238\) −6.75720 9.46301i −0.438004 0.613396i
\(239\) −0.644644 1.11656i −0.0416985 0.0722240i 0.844423 0.535677i \(-0.179944\pi\)
−0.886121 + 0.463453i \(0.846610\pi\)
\(240\) 0 0
\(241\) 0.200516 + 0.347304i 0.0129164 + 0.0223718i 0.872411 0.488772i \(-0.162555\pi\)
−0.859495 + 0.511144i \(0.829222\pi\)
\(242\) 4.88443 8.46008i 0.313983 0.543834i
\(243\) 0 0
\(244\) 4.40470 0.281982
\(245\) 6.87002 1.34269i 0.438910 0.0857811i
\(246\) 0 0
\(247\) −2.04317 + 3.53888i −0.130004 + 0.225174i
\(248\) 3.10957 0.197458
\(249\) 0 0
\(250\) 1.00000 0.0632456
\(251\) −6.00739 −0.379183 −0.189592 0.981863i \(-0.560716\pi\)
−0.189592 + 0.981863i \(0.560716\pi\)
\(252\) 0 0
\(253\) −6.98526 −0.439160
\(254\) 20.9242 1.31290
\(255\) 0 0
\(256\) 1.00000 0.0625000
\(257\) −12.2294 + 21.1819i −0.762848 + 1.32129i 0.178528 + 0.983935i \(0.442866\pi\)
−0.941377 + 0.337357i \(0.890467\pi\)
\(258\) 0 0
\(259\) −3.47565 + 0.336460i −0.215966 + 0.0209066i
\(260\) 3.28143 0.203506
\(261\) 0 0
\(262\) 7.41195 12.8379i 0.457912 0.793126i
\(263\) −12.0119 20.8052i −0.740684 1.28290i −0.952184 0.305524i \(-0.901168\pi\)
0.211500 0.977378i \(-0.432165\pi\)
\(264\) 0 0
\(265\) −2.73283 4.73340i −0.167876 0.290770i
\(266\) 3.27941 0.317463i 0.201073 0.0194649i
\(267\) 0 0
\(268\) −5.23241 −0.319620
\(269\) 8.24890 14.2875i 0.502944 0.871125i −0.497050 0.867722i \(-0.665583\pi\)
0.999994 0.00340330i \(-0.00108331\pi\)
\(270\) 0 0
\(271\) −14.6982 25.4580i −0.892852 1.54646i −0.836441 0.548057i \(-0.815368\pi\)
−0.0564111 0.998408i \(-0.517966\pi\)
\(272\) −2.19747 + 3.80613i −0.133241 + 0.230780i
\(273\) 0 0
\(274\) 6.20268 + 10.7434i 0.374718 + 0.649030i
\(275\) 0.554785 0.960915i 0.0334548 0.0579454i
\(276\) 0 0
\(277\) 4.86992 + 8.43495i 0.292605 + 0.506807i 0.974425 0.224713i \(-0.0721445\pi\)
−0.681820 + 0.731520i \(0.738811\pi\)
\(278\) 11.5310 + 19.9723i 0.691583 + 1.19786i
\(279\) 0 0
\(280\) −1.53750 2.15316i −0.0918830 0.128676i
\(281\) −11.2140 + 19.4232i −0.668970 + 1.15869i 0.309223 + 0.950990i \(0.399931\pi\)
−0.978193 + 0.207700i \(0.933402\pi\)
\(282\) 0 0
\(283\) −18.4120 −1.09448 −0.547240 0.836976i \(-0.684322\pi\)
−0.547240 + 0.836976i \(0.684322\pi\)
\(284\) −16.3046 −0.967503
\(285\) 0 0
\(286\) 1.82049 3.15318i 0.107648 0.186452i
\(287\) 18.9902 1.83835i 1.12096 0.108514i
\(288\) 0 0
\(289\) −1.15774 2.00526i −0.0681021 0.117956i
\(290\) −3.26879 5.66171i −0.191950 0.332467i
\(291\) 0 0
\(292\) −0.731993 + 1.26785i −0.0428366 + 0.0741953i
\(293\) 9.32830 + 16.1571i 0.544965 + 0.943907i 0.998609 + 0.0527239i \(0.0167903\pi\)
−0.453644 + 0.891183i \(0.649876\pi\)
\(294\) 0 0
\(295\) 3.23497 5.60312i 0.188347 0.326226i
\(296\) 0.659906 + 1.14299i 0.0383563 + 0.0664350i
\(297\) 0 0
\(298\) 1.37460 2.38087i 0.0796282 0.137920i
\(299\) 20.6582 1.19469
\(300\) 0 0
\(301\) −15.0188 21.0328i −0.865667 1.21231i
\(302\) 9.23849 + 16.0015i 0.531616 + 0.920785i
\(303\) 0 0
\(304\) −0.622647 1.07846i −0.0357112 0.0618537i
\(305\) −2.20235 + 3.81458i −0.126106 + 0.218422i
\(306\) 0 0
\(307\) 25.9429 1.48064 0.740320 0.672255i \(-0.234674\pi\)
0.740320 + 0.672255i \(0.234674\pi\)
\(308\) −2.92199 + 0.282863i −0.166496 + 0.0161176i
\(309\) 0 0
\(310\) −1.55478 + 2.69297i −0.0883058 + 0.152950i
\(311\) −9.38608 −0.532236 −0.266118 0.963940i \(-0.585741\pi\)
−0.266118 + 0.963940i \(0.585741\pi\)
\(312\) 0 0
\(313\) 0.317071 0.0179219 0.00896097 0.999960i \(-0.497148\pi\)
0.00896097 + 0.999960i \(0.497148\pi\)
\(314\) −4.29934 −0.242626
\(315\) 0 0
\(316\) 3.41668 0.192204
\(317\) −4.25665 −0.239077 −0.119539 0.992830i \(-0.538141\pi\)
−0.119539 + 0.992830i \(0.538141\pi\)
\(318\) 0 0
\(319\) −7.25390 −0.406140
\(320\) −0.500000 + 0.866025i −0.0279508 + 0.0484123i
\(321\) 0 0
\(322\) −9.67926 13.5552i −0.539404 0.755400i
\(323\) 5.47299 0.304525
\(324\) 0 0
\(325\) −1.64072 + 2.84181i −0.0910106 + 0.157635i
\(326\) 6.23750 + 10.8037i 0.345463 + 0.598359i
\(327\) 0 0
\(328\) −3.60559 6.24507i −0.199086 0.344827i
\(329\) −12.5614 + 27.6008i −0.692530 + 1.52168i
\(330\) 0 0
\(331\) 6.77455 0.372363 0.186181 0.982515i \(-0.440389\pi\)
0.186181 + 0.982515i \(0.440389\pi\)
\(332\) 4.06648 7.04336i 0.223177 0.386554i
\(333\) 0 0
\(334\) −3.40584 5.89909i −0.186359 0.322784i
\(335\) 2.61620 4.53140i 0.142939 0.247577i
\(336\) 0 0
\(337\) 7.69796 + 13.3333i 0.419335 + 0.726309i 0.995873 0.0907613i \(-0.0289300\pi\)
−0.576538 + 0.817070i \(0.695597\pi\)
\(338\) 1.11609 1.93313i 0.0607075 0.105148i
\(339\) 0 0
\(340\) −2.19747 3.80613i −0.119174 0.206416i
\(341\) 1.72514 + 2.98803i 0.0934217 + 0.161811i
\(342\) 0 0
\(343\) 17.7495 5.28726i 0.958383 0.285485i
\(344\) −4.88416 + 8.45961i −0.263336 + 0.456112i
\(345\) 0 0
\(346\) 8.41334 0.452304
\(347\) 4.27257 0.229363 0.114682 0.993402i \(-0.463415\pi\)
0.114682 + 0.993402i \(0.463415\pi\)
\(348\) 0 0
\(349\) 3.08538 5.34404i 0.165157 0.286060i −0.771554 0.636164i \(-0.780520\pi\)
0.936711 + 0.350104i \(0.113854\pi\)
\(350\) 2.63344 0.254930i 0.140763 0.0136266i
\(351\) 0 0
\(352\) 0.554785 + 0.960915i 0.0295701 + 0.0512170i
\(353\) −6.21075 10.7573i −0.330565 0.572555i 0.652058 0.758169i \(-0.273906\pi\)
−0.982623 + 0.185614i \(0.940573\pi\)
\(354\) 0 0
\(355\) 8.15232 14.1202i 0.432680 0.749424i
\(356\) 1.42132 + 2.46180i 0.0753299 + 0.130475i
\(357\) 0 0
\(358\) 11.0539 19.1459i 0.584215 1.01189i
\(359\) −11.9318 20.6665i −0.629738 1.09074i −0.987604 0.156965i \(-0.949829\pi\)
0.357867 0.933773i \(-0.383504\pi\)
\(360\) 0 0
\(361\) 8.72462 15.1115i 0.459191 0.795342i
\(362\) 6.82038 0.358471
\(363\) 0 0
\(364\) 8.64146 0.836537i 0.452936 0.0438464i
\(365\) −0.731993 1.26785i −0.0383143 0.0663622i
\(366\) 0 0
\(367\) −3.98627 6.90443i −0.208082 0.360408i 0.743028 0.669260i \(-0.233389\pi\)
−0.951110 + 0.308852i \(0.900055\pi\)
\(368\) −3.14773 + 5.45204i −0.164087 + 0.284207i
\(369\) 0 0
\(370\) −1.31981 −0.0686138
\(371\) −8.40343 11.7684i −0.436284 0.610987i
\(372\) 0 0
\(373\) 2.25724 3.90965i 0.116875 0.202434i −0.801653 0.597790i \(-0.796046\pi\)
0.918528 + 0.395356i \(0.129379\pi\)
\(374\) −4.87649 −0.252157
\(375\) 0 0
\(376\) 11.4617 0.591091
\(377\) 21.4526 1.10487
\(378\) 0 0
\(379\) −7.52115 −0.386336 −0.193168 0.981166i \(-0.561876\pi\)
−0.193168 + 0.981166i \(0.561876\pi\)
\(380\) 1.24529 0.0638822
\(381\) 0 0
\(382\) −3.93174 −0.201165
\(383\) 8.53489 14.7829i 0.436113 0.755369i −0.561273 0.827631i \(-0.689688\pi\)
0.997386 + 0.0722614i \(0.0230216\pi\)
\(384\) 0 0
\(385\) 1.21603 2.67195i 0.0619744 0.136175i
\(386\) 5.85359 0.297940
\(387\) 0 0
\(388\) −8.54592 + 14.8020i −0.433853 + 0.751456i
\(389\) 18.3046 + 31.7044i 0.928078 + 1.60748i 0.786535 + 0.617545i \(0.211873\pi\)
0.141542 + 0.989932i \(0.454794\pi\)
\(390\) 0 0
\(391\) −13.8341 23.9614i −0.699620 1.21178i
\(392\) −4.59781 5.27827i −0.232225 0.266593i
\(393\) 0 0
\(394\) −1.71845 −0.0865745
\(395\) −1.70834 + 2.95894i −0.0859560 + 0.148880i
\(396\) 0 0
\(397\) 3.55157 + 6.15150i 0.178248 + 0.308735i 0.941281 0.337625i \(-0.109624\pi\)
−0.763032 + 0.646360i \(0.776290\pi\)
\(398\) 2.00694 3.47612i 0.100599 0.174242i
\(399\) 0 0
\(400\) −0.500000 0.866025i −0.0250000 0.0433013i
\(401\) −14.8674 + 25.7511i −0.742442 + 1.28595i 0.208939 + 0.977929i \(0.432999\pi\)
−0.951381 + 0.308018i \(0.900334\pi\)
\(402\) 0 0
\(403\) −5.10192 8.83679i −0.254145 0.440192i
\(404\) 3.73642 + 6.47167i 0.185894 + 0.321977i
\(405\) 0 0
\(406\) −10.0515 14.0765i −0.498848 0.698603i
\(407\) −0.732212 + 1.26823i −0.0362944 + 0.0628638i
\(408\) 0 0
\(409\) −34.4783 −1.70484 −0.852422 0.522855i \(-0.824867\pi\)
−0.852422 + 0.522855i \(0.824867\pi\)
\(410\) 7.21119 0.356135
\(411\) 0 0
\(412\) 2.48518 4.30445i 0.122436 0.212065i
\(413\) 7.09068 15.5802i 0.348910 0.766651i
\(414\) 0 0
\(415\) 4.06648 + 7.04336i 0.199616 + 0.345745i
\(416\) −1.64072 2.84181i −0.0804428 0.139331i
\(417\) 0 0
\(418\) 0.690870 1.19662i 0.0337915 0.0585287i
\(419\) 6.08528 + 10.5400i 0.297285 + 0.514913i 0.975514 0.219938i \(-0.0705855\pi\)
−0.678229 + 0.734851i \(0.737252\pi\)
\(420\) 0 0
\(421\) −4.27799 + 7.40969i −0.208496 + 0.361126i −0.951241 0.308449i \(-0.900190\pi\)
0.742745 + 0.669575i \(0.233524\pi\)
\(422\) −2.32892 4.03380i −0.113370 0.196362i
\(423\) 0 0
\(424\) −2.73283 + 4.73340i −0.132718 + 0.229874i
\(425\) 4.39494 0.213186
\(426\) 0 0
\(427\) −4.82730 + 10.6069i −0.233610 + 0.513305i
\(428\) 3.51531 + 6.08870i 0.169919 + 0.294308i
\(429\) 0 0
\(430\) −4.88416 8.45961i −0.235535 0.407959i
\(431\) 12.6727 21.9497i 0.610422 1.05728i −0.380747 0.924679i \(-0.624333\pi\)
0.991169 0.132603i \(-0.0423334\pi\)
\(432\) 0 0
\(433\) −17.9795 −0.864041 −0.432020 0.901864i \(-0.642199\pi\)
−0.432020 + 0.901864i \(0.642199\pi\)
\(434\) −3.40792 + 7.48813i −0.163585 + 0.359442i
\(435\) 0 0
\(436\) −5.12829 + 8.88245i −0.245600 + 0.425392i
\(437\) 7.83971 0.375024
\(438\) 0 0
\(439\) −4.23398 −0.202077 −0.101038 0.994883i \(-0.532217\pi\)
−0.101038 + 0.994883i \(0.532217\pi\)
\(440\) −1.10957 −0.0528967
\(441\) 0 0
\(442\) 14.4217 0.685970
\(443\) 21.7581 1.03376 0.516879 0.856059i \(-0.327094\pi\)
0.516879 + 0.856059i \(0.327094\pi\)
\(444\) 0 0
\(445\) −2.84264 −0.134754
\(446\) 13.3981 23.2061i 0.634417 1.09884i
\(447\) 0 0
\(448\) −1.09594 + 2.40809i −0.0517785 + 0.113772i
\(449\) 29.3888 1.38694 0.693471 0.720485i \(-0.256081\pi\)
0.693471 + 0.720485i \(0.256081\pi\)
\(450\) 0 0
\(451\) 4.00066 6.92934i 0.188384 0.326290i
\(452\) −3.64304 6.30993i −0.171354 0.296794i
\(453\) 0 0
\(454\) 6.05706 + 10.4911i 0.284272 + 0.492374i
\(455\) −3.59627 + 7.90200i −0.168596 + 0.370451i
\(456\) 0 0
\(457\) 27.7640 1.29875 0.649373 0.760470i \(-0.275032\pi\)
0.649373 + 0.760470i \(0.275032\pi\)
\(458\) 8.07886 13.9930i 0.377500 0.653850i
\(459\) 0 0
\(460\) −3.14773 5.45204i −0.146764 0.254202i
\(461\) 4.36929 7.56783i 0.203498 0.352469i −0.746155 0.665772i \(-0.768102\pi\)
0.949653 + 0.313303i \(0.101436\pi\)
\(462\) 0 0
\(463\) 17.2947 + 29.9553i 0.803753 + 1.39214i 0.917129 + 0.398590i \(0.130500\pi\)
−0.113376 + 0.993552i \(0.536166\pi\)
\(464\) −3.26879 + 5.66171i −0.151750 + 0.262838i
\(465\) 0 0
\(466\) −8.65151 14.9849i −0.400774 0.694160i
\(467\) 17.2500 + 29.8779i 0.798236 + 1.38259i 0.920764 + 0.390121i \(0.127567\pi\)
−0.122527 + 0.992465i \(0.539100\pi\)
\(468\) 0 0
\(469\) 5.73443 12.6001i 0.264791 0.581820i
\(470\) −5.73084 + 9.92610i −0.264344 + 0.457857i
\(471\) 0 0
\(472\) −6.46993 −0.297803
\(473\) −10.8386 −0.498361
\(474\) 0 0
\(475\) −0.622647 + 1.07846i −0.0285690 + 0.0494829i
\(476\) −6.75720 9.46301i −0.309716 0.433736i
\(477\) 0 0
\(478\) −0.644644 1.11656i −0.0294853 0.0510701i
\(479\) 1.60798 + 2.78510i 0.0734703 + 0.127254i 0.900420 0.435022i \(-0.143259\pi\)
−0.826950 + 0.562276i \(0.809926\pi\)
\(480\) 0 0
\(481\) 2.16544 3.75065i 0.0987356 0.171015i
\(482\) 0.200516 + 0.347304i 0.00913326 + 0.0158193i
\(483\) 0 0
\(484\) 4.88443 8.46008i 0.222019 0.384549i
\(485\) −8.54592 14.8020i −0.388050 0.672123i
\(486\) 0 0
\(487\) −7.44719 + 12.8989i −0.337465 + 0.584506i −0.983955 0.178416i \(-0.942903\pi\)
0.646491 + 0.762922i \(0.276236\pi\)
\(488\) 4.40470 0.199391
\(489\) 0 0
\(490\) 6.87002 1.34269i 0.310356 0.0606564i
\(491\) −21.6718 37.5367i −0.978035 1.69401i −0.669532 0.742783i \(-0.733505\pi\)
−0.308503 0.951223i \(-0.599828\pi\)
\(492\) 0 0
\(493\) −14.3661 24.8829i −0.647018 1.12067i
\(494\) −2.04317 + 3.53888i −0.0919268 + 0.159222i
\(495\) 0 0
\(496\) 3.10957 0.139624
\(497\) 17.8690 39.2631i 0.801534 1.76119i
\(498\) 0 0
\(499\) −21.8828 + 37.9022i −0.979611 + 1.69674i −0.315817 + 0.948820i \(0.602278\pi\)
−0.663794 + 0.747915i \(0.731055\pi\)
\(500\) 1.00000 0.0447214
\(501\) 0 0
\(502\) −6.00739 −0.268123
\(503\) 22.8379 1.01829 0.509147 0.860680i \(-0.329961\pi\)
0.509147 + 0.860680i \(0.329961\pi\)
\(504\) 0 0
\(505\) −7.47284 −0.332537
\(506\) −6.98526 −0.310533
\(507\) 0 0
\(508\) 20.9242 0.928363
\(509\) 8.35737 14.4754i 0.370434 0.641610i −0.619198 0.785235i \(-0.712542\pi\)
0.989632 + 0.143624i \(0.0458757\pi\)
\(510\) 0 0
\(511\) −2.25087 3.15220i −0.0995728 0.139445i
\(512\) 1.00000 0.0441942
\(513\) 0 0
\(514\) −12.2294 + 21.1819i −0.539415 + 0.934295i
\(515\) 2.48518 + 4.30445i 0.109510 + 0.189677i
\(516\) 0 0
\(517\) 6.35876 + 11.0137i 0.279658 + 0.484382i
\(518\) −3.47565 + 0.336460i −0.152711 + 0.0147832i
\(519\) 0 0
\(520\) 3.28143 0.143900
\(521\) −9.95880 + 17.2491i −0.436303 + 0.755699i −0.997401 0.0720506i \(-0.977046\pi\)
0.561098 + 0.827749i \(0.310379\pi\)
\(522\) 0 0
\(523\) −10.8121 18.7270i −0.472778 0.818876i 0.526736 0.850029i \(-0.323416\pi\)
−0.999515 + 0.0311527i \(0.990082\pi\)
\(524\) 7.41195 12.8379i 0.323792 0.560825i
\(525\) 0 0
\(526\) −12.0119 20.8052i −0.523743 0.907149i
\(527\) −6.83318 + 11.8354i −0.297658 + 0.515559i
\(528\) 0 0
\(529\) −8.31647 14.4045i −0.361585 0.626284i
\(530\) −2.73283 4.73340i −0.118706 0.205606i
\(531\) 0 0
\(532\) 3.27941 0.317463i 0.142180 0.0137638i
\(533\) −11.8315 + 20.4928i −0.512480 + 0.887642i
\(534\) 0 0
\(535\) −7.03063 −0.303960
\(536\) −5.23241 −0.226006
\(537\) 0 0
\(538\) 8.24890 14.2875i 0.355635 0.615979i
\(539\) 2.52117 7.34641i 0.108595 0.316432i
\(540\) 0 0
\(541\) 4.89248 + 8.47403i 0.210344 + 0.364327i 0.951822 0.306650i \(-0.0992082\pi\)
−0.741478 + 0.670977i \(0.765875\pi\)
\(542\) −14.6982 25.4580i −0.631342 1.09352i
\(543\) 0 0
\(544\) −2.19747 + 3.80613i −0.0942157 + 0.163186i
\(545\) −5.12829 8.88245i −0.219672 0.380482i
\(546\) 0 0
\(547\) −7.90117 + 13.6852i −0.337830 + 0.585138i −0.984024 0.178034i \(-0.943026\pi\)
0.646194 + 0.763173i \(0.276360\pi\)
\(548\) 6.20268 + 10.7434i 0.264965 + 0.458934i
\(549\) 0 0
\(550\) 0.554785 0.960915i 0.0236561 0.0409736i
\(551\) 8.14120 0.346827
\(552\) 0 0
\(553\) −3.74450 + 8.22769i −0.159232 + 0.349877i
\(554\) 4.86992 + 8.43495i 0.206903 + 0.358367i
\(555\) 0 0
\(556\) 11.5310 + 19.9723i 0.489023 + 0.847013i
\(557\) −22.5882 + 39.1239i −0.957093 + 1.65773i −0.227589 + 0.973757i \(0.573084\pi\)
−0.729504 + 0.683976i \(0.760249\pi\)
\(558\) 0 0
\(559\) 32.0541 1.35574
\(560\) −1.53750 2.15316i −0.0649711 0.0909877i
\(561\) 0 0
\(562\) −11.2140 + 19.4232i −0.473033 + 0.819318i
\(563\) −15.1412 −0.638128 −0.319064 0.947733i \(-0.603368\pi\)
−0.319064 + 0.947733i \(0.603368\pi\)
\(564\) 0 0
\(565\) 7.28608 0.306528
\(566\) −18.4120 −0.773914
\(567\) 0 0
\(568\) −16.3046 −0.684128
\(569\) 24.5423 1.02887 0.514434 0.857530i \(-0.328002\pi\)
0.514434 + 0.857530i \(0.328002\pi\)
\(570\) 0 0
\(571\) 9.54361 0.399387 0.199694 0.979858i \(-0.436005\pi\)
0.199694 + 0.979858i \(0.436005\pi\)
\(572\) 1.82049 3.15318i 0.0761185 0.131841i
\(573\) 0 0
\(574\) 18.9902 1.83835i 0.792637 0.0767313i
\(575\) 6.29547 0.262539
\(576\) 0 0
\(577\) −7.75559 + 13.4331i −0.322869 + 0.559226i −0.981079 0.193609i \(-0.937981\pi\)
0.658210 + 0.752835i \(0.271314\pi\)
\(578\) −1.15774 2.00526i −0.0481555 0.0834078i
\(579\) 0 0
\(580\) −3.26879 5.66171i −0.135729 0.235090i
\(581\) 12.5044 + 17.5116i 0.518770 + 0.726503i
\(582\) 0 0
\(583\) −6.06452 −0.251167
\(584\) −0.731993 + 1.26785i −0.0302901 + 0.0524640i
\(585\) 0 0
\(586\) 9.32830 + 16.1571i 0.385348 + 0.667443i
\(587\) −5.40254 + 9.35747i −0.222987 + 0.386224i −0.955713 0.294299i \(-0.904914\pi\)
0.732727 + 0.680523i \(0.238247\pi\)
\(588\) 0 0
\(589\) −1.93616 3.35353i −0.0797782 0.138180i
\(590\) 3.23497 5.60312i 0.133181 0.230677i
\(591\) 0 0
\(592\) 0.659906 + 1.14299i 0.0271220 + 0.0469767i
\(593\) −3.55908 6.16452i −0.146154 0.253146i 0.783649 0.621204i \(-0.213356\pi\)
−0.929803 + 0.368058i \(0.880023\pi\)
\(594\) 0 0
\(595\) 11.5738 1.12040i 0.474480 0.0459320i
\(596\) 1.37460 2.38087i 0.0563056 0.0975242i
\(597\) 0 0
\(598\) 20.6582 0.844775
\(599\) 22.4482 0.917208 0.458604 0.888641i \(-0.348350\pi\)
0.458604 + 0.888641i \(0.348350\pi\)
\(600\) 0 0
\(601\) −7.16754 + 12.4145i −0.292370 + 0.506400i −0.974370 0.224953i \(-0.927777\pi\)
0.682000 + 0.731353i \(0.261111\pi\)
\(602\) −15.0188 21.0328i −0.612119 0.857232i
\(603\) 0 0
\(604\) 9.23849 + 16.0015i 0.375909 + 0.651093i
\(605\) 4.88443 + 8.46008i 0.198580 + 0.343951i
\(606\) 0 0
\(607\) 16.8347 29.1586i 0.683300 1.18351i −0.290667 0.956824i \(-0.593877\pi\)
0.973968 0.226687i \(-0.0727893\pi\)
\(608\) −0.622647 1.07846i −0.0252517 0.0437371i
\(609\) 0 0
\(610\) −2.20235 + 3.81458i −0.0891705 + 0.154448i
\(611\) −18.8054 32.5719i −0.760784 1.31772i
\(612\) 0 0
\(613\) 2.64921 4.58857i 0.107001 0.185331i −0.807553 0.589795i \(-0.799209\pi\)
0.914554 + 0.404464i \(0.132542\pi\)
\(614\) 25.9429 1.04697
\(615\) 0 0
\(616\) −2.92199 + 0.282863i −0.117730 + 0.0113969i
\(617\) −2.92877 5.07278i −0.117908 0.204222i 0.801031 0.598623i \(-0.204285\pi\)
−0.918938 + 0.394401i \(0.870952\pi\)
\(618\) 0 0
\(619\) −13.9169 24.1049i −0.559369 0.968856i −0.997549 0.0699689i \(-0.977710\pi\)
0.438180 0.898887i \(-0.355623\pi\)
\(620\) −1.55478 + 2.69297i −0.0624417 + 0.108152i
\(621\) 0 0
\(622\) −9.38608 −0.376347
\(623\) −7.48593 + 0.724676i −0.299918 + 0.0290335i
\(624\) 0 0
\(625\) −0.500000 + 0.866025i −0.0200000 + 0.0346410i
\(626\) 0.317071 0.0126727
\(627\) 0 0
\(628\) −4.29934 −0.171562
\(629\) −5.80049 −0.231281
\(630\) 0 0
\(631\) 27.1850 1.08222 0.541109 0.840952i \(-0.318005\pi\)
0.541109 + 0.840952i \(0.318005\pi\)
\(632\) 3.41668 0.135908
\(633\) 0 0
\(634\) −4.25665 −0.169053
\(635\) −10.4621 + 18.1209i −0.415177 + 0.719107i
\(636\) 0 0
\(637\) −7.45611 + 21.7262i −0.295422 + 0.860825i
\(638\) −7.25390 −0.287185
\(639\) 0 0
\(640\) −0.500000 + 0.866025i −0.0197642 + 0.0342327i
\(641\) 6.21099 + 10.7578i 0.245319 + 0.424906i 0.962221 0.272268i \(-0.0877738\pi\)
−0.716902 + 0.697174i \(0.754440\pi\)
\(642\) 0 0
\(643\) 15.6754 + 27.1506i 0.618177 + 1.07071i 0.989818 + 0.142337i \(0.0454618\pi\)
−0.371641 + 0.928376i \(0.621205\pi\)
\(644\) −9.67926 13.5552i −0.381416 0.534148i
\(645\) 0 0
\(646\) 5.47299 0.215332
\(647\) −0.918400 + 1.59071i −0.0361060 + 0.0625374i −0.883514 0.468405i \(-0.844829\pi\)
0.847408 + 0.530943i \(0.178162\pi\)
\(648\) 0 0
\(649\) −3.58942 6.21706i −0.140897 0.244041i
\(650\) −1.64072 + 2.84181i −0.0643542 + 0.111465i
\(651\) 0 0
\(652\) 6.23750 + 10.8037i 0.244279 + 0.423104i
\(653\) 7.84443 13.5870i 0.306976 0.531699i −0.670723 0.741708i \(-0.734016\pi\)
0.977699 + 0.210009i \(0.0673494\pi\)
\(654\) 0 0
\(655\) 7.41195 + 12.8379i 0.289609 + 0.501617i
\(656\) −3.60559 6.24507i −0.140775 0.243829i
\(657\) 0 0
\(658\) −12.5614 + 27.6008i −0.489693 + 1.07599i
\(659\) −7.26080 + 12.5761i −0.282841 + 0.489894i −0.972083 0.234636i \(-0.924610\pi\)
0.689243 + 0.724531i \(0.257943\pi\)
\(660\) 0 0
\(661\) −48.7637 −1.89669 −0.948344 0.317244i \(-0.897242\pi\)
−0.948344 + 0.317244i \(0.897242\pi\)
\(662\) 6.77455 0.263300
\(663\) 0 0
\(664\) 4.06648 7.04336i 0.157810 0.273335i
\(665\) −1.36477 + 2.99878i −0.0529236 + 0.116288i
\(666\) 0 0
\(667\) −20.5786 35.6431i −0.796805 1.38011i
\(668\) −3.40584 5.89909i −0.131776 0.228243i
\(669\) 0 0
\(670\) 2.61620 4.53140i 0.101073 0.175063i
\(671\) 2.44366 + 4.23254i 0.0943364 + 0.163395i
\(672\) 0 0
\(673\) −19.7658 + 34.2354i −0.761915 + 1.31968i 0.179947 + 0.983676i \(0.442407\pi\)
−0.941862 + 0.335999i \(0.890926\pi\)
\(674\) 7.69796 + 13.3333i 0.296514 + 0.513578i
\(675\) 0 0
\(676\) 1.11609 1.93313i 0.0429267 0.0743512i
\(677\) −44.9411 −1.72723 −0.863614 0.504153i \(-0.831805\pi\)
−0.863614 + 0.504153i \(0.831805\pi\)
\(678\) 0 0
\(679\) −26.2786 36.8015i −1.00848 1.41231i
\(680\) −2.19747 3.80613i −0.0842691 0.145958i
\(681\) 0 0
\(682\) 1.72514 + 2.98803i 0.0660591 + 0.114418i
\(683\) −17.3244 + 30.0068i −0.662900 + 1.14818i 0.316950 + 0.948442i \(0.397341\pi\)
−0.979850 + 0.199734i \(0.935992\pi\)
\(684\) 0 0
\(685\) −12.4054 −0.473985
\(686\) 17.7495 5.28726i 0.677679 0.201869i
\(687\) 0 0
\(688\) −4.88416 + 8.45961i −0.186207 + 0.322520i
\(689\) 17.9352 0.683276
\(690\) 0 0
\(691\) 45.7430 1.74015 0.870073 0.492923i \(-0.164071\pi\)
0.870073 + 0.492923i \(0.164071\pi\)
\(692\) 8.41334 0.319827
\(693\) 0 0
\(694\) 4.27257 0.162184
\(695\) −23.0620 −0.874791
\(696\) 0 0
\(697\) 31.6927 1.20045
\(698\) 3.08538 5.34404i 0.116783 0.202275i
\(699\) 0 0
\(700\) 2.63344 0.254930i 0.0995347 0.00963546i
\(701\) −24.6901 −0.932533 −0.466267 0.884644i \(-0.654401\pi\)
−0.466267 + 0.884644i \(0.654401\pi\)
\(702\) 0 0
\(703\) 0.821777 1.42336i 0.0309939 0.0536830i
\(704\) 0.554785 + 0.960915i 0.0209092 + 0.0362159i
\(705\) 0 0
\(706\) −6.21075 10.7573i −0.233745 0.404857i
\(707\) −19.6793 + 1.90505i −0.740115 + 0.0716469i
\(708\) 0 0
\(709\) −36.8564 −1.38417 −0.692086 0.721815i \(-0.743308\pi\)
−0.692086 + 0.721815i \(0.743308\pi\)
\(710\) 8.15232 14.1202i 0.305951 0.529923i
\(711\) 0 0
\(712\) 1.42132 + 2.46180i 0.0532663 + 0.0922599i
\(713\) −9.78810 + 16.9535i −0.366567 + 0.634913i
\(714\) 0 0
\(715\) 1.82049 + 3.15318i 0.0680825 + 0.117922i
\(716\) 11.0539 19.1459i 0.413103 0.715515i
\(717\) 0 0
\(718\) −11.9318 20.6665i −0.445292 0.771268i
\(719\) 20.1527 + 34.9055i 0.751569 + 1.30176i 0.947062 + 0.321051i \(0.104036\pi\)
−0.195492 + 0.980705i \(0.562631\pi\)
\(720\) 0 0
\(721\) 7.64190 + 10.7020i 0.284599 + 0.398562i
\(722\) 8.72462 15.1115i 0.324697 0.562391i
\(723\) 0 0
\(724\) 6.82038 0.253477
\(725\) 6.53758 0.242800
\(726\) 0 0
\(727\) −6.90054 + 11.9521i −0.255927 + 0.443278i −0.965147 0.261709i \(-0.915714\pi\)
0.709220 + 0.704987i \(0.249047\pi\)
\(728\) 8.64146 0.836537i 0.320274 0.0310041i
\(729\) 0 0
\(730\) −0.731993 1.26785i −0.0270923 0.0469252i
\(731\) −21.4656 37.1795i −0.793933 1.37513i
\(732\) 0 0
\(733\) −14.8346 + 25.6942i −0.547928 + 0.949038i 0.450489 + 0.892782i \(0.351250\pi\)
−0.998416 + 0.0562563i \(0.982084\pi\)
\(734\) −3.98627 6.90443i −0.147136 0.254847i
\(735\) 0 0
\(736\) −3.14773 + 5.45204i −0.116027 + 0.200965i
\(737\) −2.90286 5.02790i −0.106928 0.185205i
\(738\) 0 0
\(739\) 22.7417 39.3898i 0.836568 1.44898i −0.0561788 0.998421i \(-0.517892\pi\)
0.892747 0.450558i \(-0.148775\pi\)
\(740\) −1.31981 −0.0485173
\(741\) 0 0
\(742\) −8.40343 11.7684i −0.308499 0.432033i
\(743\) 16.8783 + 29.2341i 0.619206 + 1.07250i 0.989631 + 0.143634i \(0.0458789\pi\)
−0.370424 + 0.928863i \(0.620788\pi\)
\(744\) 0 0
\(745\) 1.37460 + 2.38087i 0.0503613 + 0.0872283i
\(746\) 2.25724 3.90965i 0.0826433 0.143142i
\(747\) 0 0
\(748\) −4.87649 −0.178302
\(749\) −18.5147 + 1.79232i −0.676514 + 0.0654899i
\(750\) 0 0
\(751\) 16.2454 28.1379i 0.592805 1.02677i −0.401048 0.916057i \(-0.631354\pi\)
0.993853 0.110711i \(-0.0353127\pi\)
\(752\) 11.4617 0.417964
\(753\) 0 0
\(754\) 21.4526 0.781259
\(755\) −18.4770 −0.672446
\(756\) 0 0
\(757\) 18.6647 0.678382 0.339191 0.940718i \(-0.389847\pi\)
0.339191 + 0.940718i \(0.389847\pi\)
\(758\) −7.52115 −0.273181
\(759\) 0 0
\(760\) 1.24529 0.0451715
\(761\) 16.4080 28.4195i 0.594789 1.03021i −0.398787 0.917044i \(-0.630569\pi\)
0.993577 0.113162i \(-0.0360979\pi\)
\(762\) 0 0
\(763\) −15.7694 22.0841i −0.570892 0.799497i
\(764\) −3.93174 −0.142245
\(765\) 0 0
\(766\) 8.53489 14.7829i 0.308378 0.534127i
\(767\) 10.6153 + 18.3863i 0.383297 + 0.663890i
\(768\) 0 0
\(769\) 13.2690 + 22.9826i 0.478493 + 0.828775i 0.999696 0.0246581i \(-0.00784972\pi\)
−0.521203 + 0.853433i \(0.674516\pi\)
\(770\) 1.21603 2.67195i 0.0438226 0.0962902i
\(771\) 0 0
\(772\) 5.85359 0.210675
\(773\) −24.6606 + 42.7135i −0.886981 + 1.53630i −0.0435555 + 0.999051i \(0.513869\pi\)
−0.843426 + 0.537246i \(0.819465\pi\)
\(774\) 0 0
\(775\) −1.55478 2.69297i −0.0558495 0.0967342i
\(776\) −8.54592 + 14.8020i −0.306781 + 0.531360i
\(777\) 0 0
\(778\) 18.3046 + 31.7044i 0.656250 + 1.13666i
\(779\) −4.49002 + 7.77695i −0.160872 + 0.278638i
\(780\) 0 0
\(781\) −9.04557 15.6674i −0.323676 0.560623i
\(782\) −13.8341 23.9614i −0.494706 0.856856i
\(783\) 0 0
\(784\) −4.59781 5.27827i −0.164208 0.188510i
\(785\) 2.14967 3.72333i 0.0767249 0.132891i
\(786\) 0 0
\(787\) −40.4417 −1.44159 −0.720795 0.693149i \(-0.756223\pi\)
−0.720795 + 0.693149i \(0.756223\pi\)
\(788\) −1.71845 −0.0612174
\(789\) 0 0
\(790\) −1.70834 + 2.95894i −0.0607801 + 0.105274i
\(791\) 19.1875 1.85744i 0.682227 0.0660430i
\(792\) 0 0
\(793\) −7.22686 12.5173i −0.256633 0.444502i
\(794\) 3.55157 + 6.15150i 0.126041 + 0.218309i
\(795\) 0 0
\(796\) 2.00694 3.47612i 0.0711340 0.123208i
\(797\) 21.8594 + 37.8616i 0.774300 + 1.34113i 0.935187 + 0.354154i \(0.115231\pi\)
−0.160887 + 0.986973i \(0.551435\pi\)
\(798\) 0 0
\(799\) −25.1867 + 43.6246i −0.891041 + 1.54333i
\(800\) −0.500000 0.866025i −0.0176777 0.0306186i
\(801\) 0 0
\(802\) −14.8674 + 25.7511i −0.524986 + 0.909302i
\(803\) −1.62439 −0.0573236
\(804\) 0 0
\(805\) 16.5787 1.60491i 0.584324 0.0565655i
\(806\) −5.10192 8.83679i −0.179708 0.311263i
\(807\) 0 0
\(808\) 3.73642 + 6.47167i 0.131447 + 0.227672i
\(809\) 3.41634 5.91727i 0.120112 0.208040i −0.799700 0.600400i \(-0.795008\pi\)
0.919812 + 0.392360i \(0.128341\pi\)
\(810\) 0 0
\(811\) −43.5544 −1.52940 −0.764701 0.644386i \(-0.777113\pi\)
−0.764701 + 0.644386i \(0.777113\pi\)
\(812\) −10.0515 14.0765i −0.352739 0.493987i
\(813\) 0 0
\(814\) −0.732212 + 1.26823i −0.0256640 + 0.0444514i
\(815\) −12.4750 −0.436980
\(816\) 0 0
\(817\) 12.1644 0.425579
\(818\) −34.4783 −1.20551
\(819\) 0 0
\(820\) 7.21119 0.251826
\(821\) −4.94619 −0.172623 −0.0863116 0.996268i \(-0.527508\pi\)
−0.0863116 + 0.996268i \(0.527508\pi\)
\(822\) 0 0
\(823\) 49.7275 1.73339 0.866696 0.498836i \(-0.166239\pi\)
0.866696 + 0.498836i \(0.166239\pi\)
\(824\) 2.48518 4.30445i 0.0865752 0.149953i
\(825\) 0 0
\(826\) 7.09068 15.5802i 0.246716 0.542104i
\(827\) 34.5238 1.20051 0.600255 0.799808i \(-0.295066\pi\)
0.600255 + 0.799808i \(0.295066\pi\)
\(828\) 0 0
\(829\) −12.9897 + 22.4988i −0.451150 + 0.781414i −0.998458 0.0555170i \(-0.982319\pi\)
0.547308 + 0.836931i \(0.315653\pi\)
\(830\) 4.06648 + 7.04336i 0.141150 + 0.244478i
\(831\) 0 0
\(832\) −1.64072 2.84181i −0.0568816 0.0985219i
\(833\) 30.1933 5.90103i 1.04614 0.204458i
\(834\) 0 0
\(835\) 6.81169 0.235728
\(836\) 0.690870 1.19662i 0.0238942 0.0413860i
\(837\) 0 0
\(838\) 6.08528 + 10.5400i 0.210212 + 0.364098i
\(839\) 12.0636 20.8948i 0.416483 0.721370i −0.579100 0.815257i \(-0.696596\pi\)
0.995583 + 0.0938866i \(0.0299291\pi\)
\(840\) 0 0
\(841\) −6.86997 11.8991i −0.236895 0.410315i
\(842\) −4.27799 + 7.40969i −0.147429 + 0.255355i
\(843\) 0 0
\(844\) −2.32892 4.03380i −0.0801646 0.138849i
\(845\) 1.11609 + 1.93313i 0.0383948 + 0.0665017i
\(846\) 0 0
\(847\) 15.0196 + 21.0339i 0.516079 + 0.722734i
\(848\) −2.73283 + 4.73340i −0.0938457 + 0.162545i
\(849\) 0 0
\(850\) 4.39494 0.150745
\(851\) −8.30884 −0.284823
\(852\) 0 0
\(853\) 2.39457 4.14752i 0.0819886 0.142008i −0.822115 0.569321i \(-0.807206\pi\)
0.904104 + 0.427312i \(0.140540\pi\)
\(854\) −4.82730 + 10.6069i −0.165187 + 0.362961i
\(855\) 0 0
\(856\) 3.51531 + 6.08870i 0.120151 + 0.208107i
\(857\) −14.5259 25.1597i −0.496197 0.859438i 0.503794 0.863824i \(-0.331937\pi\)
−0.999990 + 0.00438620i \(0.998604\pi\)
\(858\) 0 0
\(859\) −10.8654 + 18.8194i −0.370722 + 0.642109i −0.989677 0.143318i \(-0.954223\pi\)
0.618955 + 0.785426i \(0.287556\pi\)
\(860\) −4.88416 8.45961i −0.166548 0.288470i
\(861\) 0 0
\(862\) 12.6727 21.9497i 0.431633 0.747611i
\(863\) 2.46678 + 4.27259i 0.0839703 + 0.145441i 0.904952 0.425514i \(-0.139907\pi\)
−0.820982 + 0.570955i \(0.806573\pi\)
\(864\) 0 0
\(865\) −4.20667 + 7.28617i −0.143031 + 0.247737i
\(866\) −17.9795 −0.610969
\(867\) 0 0
\(868\) −3.40792 + 7.48813i −0.115672 + 0.254164i
\(869\) 1.89552 + 3.28315i 0.0643013 + 0.111373i
\(870\) 0 0
\(871\) 8.58490 + 14.8695i 0.290888 + 0.503833i
\(872\) −5.12829 + 8.88245i −0.173666 + 0.300798i
\(873\) 0 0
\(874\) 7.83971 0.265182
\(875\) −1.09594 + 2.40809i −0.0370497 + 0.0814084i
\(876\) 0 0
\(877\) 13.0736 22.6442i 0.441465 0.764639i −0.556334 0.830959i \(-0.687792\pi\)
0.997798 + 0.0663196i \(0.0211257\pi\)
\(878\) −4.23398 −0.142890
\(879\) 0 0
\(880\) −1.10957 −0.0374036
\(881\) −39.6778 −1.33678 −0.668389 0.743812i \(-0.733016\pi\)
−0.668389 + 0.743812i \(0.733016\pi\)
\(882\) 0 0
\(883\) −26.5578 −0.893742 −0.446871 0.894598i \(-0.647462\pi\)
−0.446871 + 0.894598i \(0.647462\pi\)
\(884\) 14.4217 0.485054
\(885\) 0 0
\(886\) 21.7581 0.730977
\(887\) 17.4629 30.2467i 0.586348 1.01558i −0.408358 0.912822i \(-0.633899\pi\)
0.994706 0.102762i \(-0.0327681\pi\)
\(888\) 0 0
\(889\) −22.9318 + 50.3875i −0.769108 + 1.68994i
\(890\) −2.84264 −0.0952856
\(891\) 0 0
\(892\) 13.3981 23.2061i 0.448600 0.776999i
\(893\) −7.13657 12.3609i −0.238816 0.413642i
\(894\) 0 0
\(895\) 11.0539 + 19.1459i 0.369490 + 0.639976i
\(896\) −1.09594 + 2.40809i −0.0366129 + 0.0804487i
\(897\) 0 0
\(898\) 29.3888 0.980716
\(899\) −10.1645 + 17.6055i −0.339006 + 0.587176i
\(900\) 0 0
\(901\) −12.0106 20.8030i −0.400131 0.693048i
\(902\) 4.00066 6.92934i 0.133207 0.230722i
\(903\) 0 0
\(904\) −3.64304 6.30993i −0.121166 0.209865i
\(905\) −3.41019 + 5.90662i −0.113359 + 0.196343i
\(906\) 0 0
\(907\) 23.8443 + 41.2996i 0.791737 + 1.37133i 0.924890 + 0.380234i \(0.124157\pi\)
−0.133153 + 0.991096i \(0.542510\pi\)
\(908\) 6.05706 + 10.4911i 0.201011 + 0.348161i
\(909\) 0 0
\(910\) −3.59627 + 7.90200i −0.119215 + 0.261949i
\(911\) −12.1806 + 21.0974i −0.403561 + 0.698989i −0.994153 0.107982i \(-0.965561\pi\)
0.590592 + 0.806971i \(0.298894\pi\)
\(912\) 0 0
\(913\) 9.02409 0.298654
\(914\) 27.7640 0.918352
\(915\) 0 0
\(916\) 8.07886 13.9930i 0.266933 0.462341i
\(917\) 22.7917 + 31.9182i 0.752648 + 1.05403i
\(918\) 0 0
\(919\) −14.7746 25.5904i −0.487369 0.844149i 0.512525 0.858672i \(-0.328710\pi\)
−0.999895 + 0.0145236i \(0.995377\pi\)
\(920\) −3.14773 5.45204i −0.103778 0.179748i
\(921\) 0 0
\(922\) 4.36929 7.56783i 0.143895 0.249233i
\(923\) 26.7513 + 46.3346i 0.880530 + 1.52512i
\(924\) 0 0
\(925\) 0.659906 1.14299i 0.0216976 0.0375813i
\(926\) 17.2947 + 29.9553i 0.568339 + 0.984393i
\(927\) 0 0
\(928\) −3.26879 + 5.66171i −0.107303 + 0.185855i
\(929\) −21.3312 −0.699854 −0.349927 0.936777i \(-0.613794\pi\)
−0.349927 + 0.936777i \(0.613794\pi\)
\(930\) 0 0
\(931\) −2.82957 + 8.24503i −0.0927353 + 0.270220i
\(932\) −8.65151 14.9849i −0.283390 0.490845i
\(933\) 0 0
\(934\) 17.2500 + 29.8779i 0.564438 + 0.977636i
\(935\) 2.43824 4.22316i 0.0797391 0.138112i
\(936\) 0 0
\(937\) 5.48745 0.179267 0.0896337 0.995975i \(-0.471430\pi\)
0.0896337 + 0.995975i \(0.471430\pi\)
\(938\) 5.73443 12.6001i 0.187236 0.411409i
\(939\) 0 0
\(940\) −5.73084 + 9.92610i −0.186919 + 0.323754i
\(941\) 23.8907 0.778813 0.389407 0.921066i \(-0.372680\pi\)
0.389407 + 0.921066i \(0.372680\pi\)
\(942\) 0 0
\(943\) 45.3978 1.47836
\(944\) −6.46993 −0.210578
\(945\) 0 0
\(946\) −10.8386 −0.352394
\(947\) −6.18056 −0.200841 −0.100421 0.994945i \(-0.532019\pi\)
−0.100421 + 0.994945i \(0.532019\pi\)
\(948\) 0 0
\(949\) 4.80397 0.155944
\(950\) −0.622647 + 1.07846i −0.0202013 + 0.0349897i
\(951\) 0 0
\(952\) −6.75720 9.46301i −0.219002 0.306698i
\(953\) −5.30086 −0.171712 −0.0858558 0.996308i \(-0.527362\pi\)
−0.0858558 + 0.996308i \(0.527362\pi\)
\(954\) 0 0
\(955\) 1.96587 3.40499i 0.0636140 0.110183i
\(956\) −0.644644 1.11656i −0.0208493 0.0361120i
\(957\) 0 0
\(958\) 1.60798 + 2.78510i 0.0519513 + 0.0899824i
\(959\) −32.6688 + 3.16250i −1.05493 + 0.102123i
\(960\) 0 0
\(961\) −21.3306 −0.688083
\(962\) 2.16544 3.75065i 0.0698166 0.120926i
\(963\) 0 0
\(964\) 0.200516 + 0.347304i 0.00645819 + 0.0111859i
\(965\) −2.92679 + 5.06936i −0.0942169 + 0.163188i
\(966\) 0 0
\(967\) 3.99630 + 6.92180i 0.128512 + 0.222590i 0.923100 0.384559i \(-0.125646\pi\)
−0.794588 + 0.607149i \(0.792313\pi\)
\(968\) 4.88443 8.46008i 0.156991 0.271917i
\(969\) 0 0
\(970\) −8.54592 14.8020i −0.274393 0.475263i
\(971\) 10.4036 + 18.0196i 0.333869 + 0.578278i 0.983267 0.182171i \(-0.0583124\pi\)
−0.649398 + 0.760449i \(0.724979\pi\)
\(972\) 0 0
\(973\) −60.7324 + 5.87920i −1.94699 + 0.188479i
\(974\) −7.44719 + 12.8989i −0.238624 + 0.413308i
\(975\) 0 0
\(976\) 4.40470 0.140991
\(977\) −37.8435 −1.21072 −0.605360 0.795952i \(-0.706971\pi\)
−0.605360 + 0.795952i \(0.706971\pi\)
\(978\) 0 0
\(979\) −1.57706 + 2.73154i −0.0504029 + 0.0873004i
\(980\) 6.87002 1.34269i 0.219455 0.0428906i
\(981\) 0 0
\(982\) −21.6718 37.5367i −0.691575 1.19784i
\(983\) −10.9759 19.0108i −0.350077 0.606351i 0.636186 0.771536i \(-0.280511\pi\)
−0.986263 + 0.165185i \(0.947178\pi\)
\(984\) 0 0
\(985\) 0.859227 1.48822i 0.0273772 0.0474188i
\(986\) −14.3661 24.8829i −0.457511 0.792432i
\(987\) 0 0
\(988\) −2.04317 + 3.53888i −0.0650020 + 0.112587i
\(989\) −30.7481 53.2572i −0.977732 1.69348i
\(990\) 0 0
\(991\) 26.5988 46.0704i 0.844938 1.46348i −0.0407375 0.999170i \(-0.512971\pi\)
0.885675 0.464305i \(-0.153696\pi\)
\(992\) 3.10957 0.0987289
\(993\) 0 0
\(994\) 17.8690 39.2631i 0.566770 1.24535i
\(995\) 2.00694 + 3.47612i 0.0636242 + 0.110200i
\(996\) 0 0
\(997\) 19.4525 + 33.6927i 0.616067 + 1.06706i 0.990196 + 0.139683i \(0.0446083\pi\)
−0.374129 + 0.927377i \(0.622058\pi\)
\(998\) −21.8828 + 37.9022i −0.692689 + 1.19977i
\(999\) 0 0
Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))

Twists

       By twisting character
Char Parity Ord Type Twist Min Dim
1.1 even 1 trivial 1890.2.i.i.991.3 16
3.2 odd 2 630.2.i.i.151.7 yes 16
7.2 even 3 1890.2.l.i.1801.3 16
9.4 even 3 1890.2.l.i.361.3 16
9.5 odd 6 630.2.l.i.571.5 yes 16
21.2 odd 6 630.2.l.i.331.5 yes 16
63.23 odd 6 630.2.i.i.121.7 16
63.58 even 3 inner 1890.2.i.i.1171.3 16
    
        By twisted newform
Twist Min Dim Char Parity Ord Type
630.2.i.i.121.7 16 63.23 odd 6
630.2.i.i.151.7 yes 16 3.2 odd 2
630.2.l.i.331.5 yes 16 21.2 odd 6
630.2.l.i.571.5 yes 16 9.5 odd 6
1890.2.i.i.991.3 16 1.1 even 1 trivial
1890.2.i.i.1171.3 16 63.58 even 3 inner
1890.2.l.i.361.3 16 9.4 even 3
1890.2.l.i.1801.3 16 7.2 even 3