Properties

Label 190.2.b.a
Level 190190
Weight 22
Character orbit 190.b
Analytic conductor 1.5171.517
Analytic rank 00
Dimension 44
Inner twists 22

Related objects

Downloads

Learn more

Show commands: Magma / PariGP / SageMath

Newspace parameters

comment: Compute space of new eigenforms
 
[N,k,chi] = [190,2,Mod(39,190)]
 
mf = mfinit([N,k,chi],0)
 
lf = mfeigenbasis(mf)
 
from sage.modular.dirichlet import DirichletCharacter
 
H = DirichletGroup(190, base_ring=CyclotomicField(2))
 
chi = DirichletCharacter(H, H._module([1, 0]))
 
N = Newforms(chi, 2, names="a")
 
//Please install CHIMP (https://github.com/edgarcosta/CHIMP) if you want to run this code
 
chi := DirichletCharacter("190.39");
 
S:= CuspForms(chi, 2);
 
N := Newforms(S);
 
Level: N N == 190=2519 190 = 2 \cdot 5 \cdot 19
Weight: k k == 2 2
Character orbit: [χ][\chi] == 190.b (of order 22, degree 11, minimal)

Newform invariants

comment: select newform
 
sage: f = N[0] # Warning: the index may be different
 
gp: f = lf[1] \\ Warning: the index may be different
 
Self dual: no
Analytic conductor: 1.517157638401.51715763840
Analytic rank: 00
Dimension: 44
Coefficient field: Q(ζ8)\Q(\zeta_{8})
comment: defining polynomial
 
gp: f.mod \\ as an extension of the character field
 
Defining polynomial: x4+1 x^{4} + 1 Copy content Toggle raw display
Coefficient ring: Z[a1,,a5]\Z[a_1, \ldots, a_{5}]
Coefficient ring index: 1 1
Twist minimal: yes
Sato-Tate group: SU(2)[C2]\mathrm{SU}(2)[C_{2}]

qq-expansion

comment: q-expansion
 
sage: f.q_expansion() # note that sage often uses an isomorphic number field
 
gp: mfcoefs(f, 20)
 

Coefficients of the qq-expansion are expressed in terms of a primitive root of unity ζ8\zeta_{8}. We also show the integral qq-expansion of the trace form.

f(q)f(q) == qζ82q2+(ζ83ζ82+ζ8)q3q4+(ζ83+2ζ8)q5+(ζ83+ζ81)q6+(ζ83+3ζ82+ζ8)q7+4q99+O(q100) q - \zeta_{8}^{2} q^{2} + (\zeta_{8}^{3} - \zeta_{8}^{2} + \zeta_{8}) q^{3} - q^{4} + (\zeta_{8}^{3} + 2 \zeta_{8}) q^{5} + ( - \zeta_{8}^{3} + \zeta_{8} - 1) q^{6} + (\zeta_{8}^{3} + 3 \zeta_{8}^{2} + \zeta_{8}) q^{7} + \cdots - 4 q^{99} +O(q^{100}) Copy content Toggle raw display
Tr(f)(q)\operatorname{Tr}(f)(q) == 4q4q44q6+12q1412q15+4q16+4q19+4q21+4q2416q2512q26+12q29+4q30+8q31+4q3412q35+4q39+8q4520q46+16q99+O(q100) 4 q - 4 q^{4} - 4 q^{6} + 12 q^{14} - 12 q^{15} + 4 q^{16} + 4 q^{19} + 4 q^{21} + 4 q^{24} - 16 q^{25} - 12 q^{26} + 12 q^{29} + 4 q^{30} + 8 q^{31} + 4 q^{34} - 12 q^{35} + 4 q^{39} + 8 q^{45} - 20 q^{46}+ \cdots - 16 q^{99}+O(q^{100}) Copy content Toggle raw display

Character values

We give the values of χ\chi on generators for (Z/190Z)×\left(\mathbb{Z}/190\mathbb{Z}\right)^\times.

nn 2121 7777
χ(n)\chi(n) 11 1-1

Embeddings

For each embedding ιm\iota_m of the coefficient field, the values ιm(an)\iota_m(a_n) are shown below.

For more information on an embedded modular form you can click on its label.

comment: embeddings in the coefficient field
 
gp: mfembed(f)
 
Label   ιm(ν)\iota_m(\nu) a2 a_{2} a3 a_{3} a4 a_{4} a5 a_{5} a6 a_{6} a7 a_{7} a8 a_{8} a9 a_{9} a10 a_{10}
39.1
−0.707107 0.707107i
0.707107 + 0.707107i
0.707107 0.707107i
−0.707107 + 0.707107i
1.00000i 2.41421i −1.00000 −0.707107 2.12132i −2.41421 1.58579i 1.00000i −2.82843 −2.12132 + 0.707107i
39.2 1.00000i 0.414214i −1.00000 0.707107 + 2.12132i 0.414214 4.41421i 1.00000i 2.82843 2.12132 0.707107i
39.3 1.00000i 0.414214i −1.00000 0.707107 2.12132i 0.414214 4.41421i 1.00000i 2.82843 2.12132 + 0.707107i
39.4 1.00000i 2.41421i −1.00000 −0.707107 + 2.12132i −2.41421 1.58579i 1.00000i −2.82843 −2.12132 0.707107i
nn: e.g. 2-40 or 990-1000
Significant digits:
Format:

Inner twists

Char Parity Ord Mult Type
1.a even 1 1 trivial
5.b even 2 1 inner

Twists

       By twisting character orbit
Char Parity Ord Mult Type Twist Min Dim
1.a even 1 1 trivial 190.2.b.a 4
3.b odd 2 1 1710.2.d.c 4
4.b odd 2 1 1520.2.d.e 4
5.b even 2 1 inner 190.2.b.a 4
5.c odd 4 1 950.2.a.f 2
5.c odd 4 1 950.2.a.g 2
15.d odd 2 1 1710.2.d.c 4
15.e even 4 1 8550.2.a.bn 2
15.e even 4 1 8550.2.a.cb 2
20.d odd 2 1 1520.2.d.e 4
20.e even 4 1 7600.2.a.v 2
20.e even 4 1 7600.2.a.bg 2
    
        By twisted newform orbit
Twist Min Dim Char Parity Ord Mult Type
190.2.b.a 4 1.a even 1 1 trivial
190.2.b.a 4 5.b even 2 1 inner
950.2.a.f 2 5.c odd 4 1
950.2.a.g 2 5.c odd 4 1
1520.2.d.e 4 4.b odd 2 1
1520.2.d.e 4 20.d odd 2 1
1710.2.d.c 4 3.b odd 2 1
1710.2.d.c 4 15.d odd 2 1
7600.2.a.v 2 20.e even 4 1
7600.2.a.bg 2 20.e even 4 1
8550.2.a.bn 2 15.e even 4 1
8550.2.a.cb 2 15.e even 4 1

Hecke kernels

This newform subspace can be constructed as the kernel of the linear operator T34+6T32+1 T_{3}^{4} + 6T_{3}^{2} + 1 acting on S2new(190,[χ])S_{2}^{\mathrm{new}}(190, [\chi]). Copy content Toggle raw display

Hecke characteristic polynomials

pp Fp(T)F_p(T)
22 (T2+1)2 (T^{2} + 1)^{2} Copy content Toggle raw display
33 T4+6T2+1 T^{4} + 6T^{2} + 1 Copy content Toggle raw display
55 T4+8T2+25 T^{4} + 8T^{2} + 25 Copy content Toggle raw display
77 T4+22T2+49 T^{4} + 22T^{2} + 49 Copy content Toggle raw display
1111 (T22)2 (T^{2} - 2)^{2} Copy content Toggle raw display
1313 T4+34T2+1 T^{4} + 34T^{2} + 1 Copy content Toggle raw display
1717 (T2+1)2 (T^{2} + 1)^{2} Copy content Toggle raw display
1919 (T1)4 (T - 1)^{4} Copy content Toggle raw display
2323 T4+86T2+49 T^{4} + 86T^{2} + 49 Copy content Toggle raw display
2929 (T26T+1)2 (T^{2} - 6 T + 1)^{2} Copy content Toggle raw display
3131 (T24T14)2 (T^{2} - 4 T - 14)^{2} Copy content Toggle raw display
3737 (T2+72)2 (T^{2} + 72)^{2} Copy content Toggle raw display
4141 (T218)2 (T^{2} - 18)^{2} Copy content Toggle raw display
4343 T4+108T2+324 T^{4} + 108T^{2} + 324 Copy content Toggle raw display
4747 T4 T^{4} Copy content Toggle raw display
5353 T4+162T2+3969 T^{4} + 162T^{2} + 3969 Copy content Toggle raw display
5959 (T26T89)2 (T^{2} - 6 T - 89)^{2} Copy content Toggle raw display
6161 (T220T+82)2 (T^{2} - 20 T + 82)^{2} Copy content Toggle raw display
6767 T4+198T2+3969 T^{4} + 198T^{2} + 3969 Copy content Toggle raw display
7171 (T2+24T+142)2 (T^{2} + 24 T + 142)^{2} Copy content Toggle raw display
7373 T4+162T2+3969 T^{4} + 162T^{2} + 3969 Copy content Toggle raw display
7979 (T2+4T68)2 (T^{2} + 4 T - 68)^{2} Copy content Toggle raw display
8383 T4+216T2+1296 T^{4} + 216T^{2} + 1296 Copy content Toggle raw display
8989 (T250)2 (T^{2} - 50)^{2} Copy content Toggle raw display
9797 T4+136T2+16 T^{4} + 136T^{2} + 16 Copy content Toggle raw display
show more
show less