Newspace parameters
comment: Compute space of new eigenforms
[N,k,chi] = [1900,2,Mod(1749,1900)]
mf = mfinit([N,k,chi],0)
lf = mfeigenbasis(mf)
from sage.modular.dirichlet import DirichletCharacter
H = DirichletGroup(1900, base_ring=CyclotomicField(2))
chi = DirichletCharacter(H, H._module([0, 1, 0]))
N = Newforms(chi, 2, names="a")
//Please install CHIMP (https://github.com/edgarcosta/CHIMP) if you want to run this code
chi := DirichletCharacter("1900.1749");
S:= CuspForms(chi, 2);
N := Newforms(S);
Level: | \( N \) | \(=\) | \( 1900 = 2^{2} \cdot 5^{2} \cdot 19 \) |
Weight: | \( k \) | \(=\) | \( 2 \) |
Character orbit: | \([\chi]\) | \(=\) | 1900.c (of order \(2\), degree \(1\), not minimal) |
Newform invariants
comment: select newform
sage: f = N[0] # Warning: the index may be different
gp: f = lf[1] \\ Warning: the index may be different
Self dual: | no |
Analytic conductor: | \(15.1715763840\) |
Analytic rank: | \(0\) |
Dimension: | \(2\) |
Coefficient field: | \(\Q(i)\) |
comment: defining polynomial
gp: f.mod \\ as an extension of the character field
|
|
Defining polynomial: |
\( x^{2} + 1 \)
|
Coefficient ring: | \(\Z[a_1, \ldots, a_{7}]\) |
Coefficient ring index: | \( 2 \) |
Twist minimal: | no (minimal twist has level 380) |
Sato-Tate group: | $\mathrm{SU}(2)[C_{2}]$ |
Embedding invariants
Embedding label | 1749.1 | ||
Root | \(1.00000i\) of defining polynomial | ||
Character | \(\chi\) | \(=\) | 1900.1749 |
Dual form | 1900.2.c.c.1749.2 |
$q$-expansion
comment: q-expansion
sage: f.q_expansion() # note that sage often uses an isomorphic number field
gp: mfcoefs(f, 20)
Character values
We give the values of \(\chi\) on generators for \(\left(\mathbb{Z}/1900\mathbb{Z}\right)^\times\).
\(n\) | \(77\) | \(401\) | \(951\) |
\(\chi(n)\) | \(-1\) | \(1\) | \(1\) |
Coefficient data
For each \(n\) we display the coefficients of the \(q\)-expansion \(a_n\), the Satake parameters \(\alpha_p\), and the Satake angles \(\theta_p = \textrm{Arg}(\alpha_p)\).
(See \(a_n\) instead)
(See \(a_n\) instead)
(See \(a_n\) instead)
(See only \(a_p\))
(See only \(a_p\))
(See only \(a_p\))
\(n\) | \(a_n\) | \(a_n / n^{(k-1)/2}\) | \( \alpha_n \) | \( \theta_n \) | ||||||
---|---|---|---|---|---|---|---|---|---|---|
\(p\) | \(a_p\) | \(a_p / p^{(k-1)/2}\) | \( \alpha_p\) | \( \theta_p \) | ||||||
\(2\) | 0 | 0 | ||||||||
\(3\) | 0 | 0 | 1.00000 | \(0\) | ||||||
−1.00000 | \(\pi\) | |||||||||
\(4\) | 0 | 0 | ||||||||
\(5\) | 0 | 0 | ||||||||
\(6\) | 0 | 0 | ||||||||
\(7\) | − 2.00000i | − 0.755929i | −0.925820 | − | 0.377964i | \(-0.876624\pi\) | ||||
0.925820 | − | 0.377964i | \(-0.123376\pi\) | |||||||
\(8\) | 0 | 0 | ||||||||
\(9\) | 3.00000 | 1.00000 | ||||||||
\(10\) | 0 | 0 | ||||||||
\(11\) | −4.00000 | −1.20605 | −0.603023 | − | 0.797724i | \(-0.706037\pi\) | ||||
−0.603023 | + | 0.797724i | \(0.706037\pi\) | |||||||
\(12\) | 0 | 0 | ||||||||
\(13\) | 4.00000i | 1.10940i | 0.832050 | + | 0.554700i | \(0.187167\pi\) | ||||
−0.832050 | + | 0.554700i | \(0.812833\pi\) | |||||||
\(14\) | 0 | 0 | ||||||||
\(15\) | 0 | 0 | ||||||||
\(16\) | 0 | 0 | ||||||||
\(17\) | 6.00000i | 1.45521i | 0.685994 | + | 0.727607i | \(0.259367\pi\) | ||||
−0.685994 | + | 0.727607i | \(0.740633\pi\) | |||||||
\(18\) | 0 | 0 | ||||||||
\(19\) | −1.00000 | −0.229416 | ||||||||
\(20\) | 0 | 0 | ||||||||
\(21\) | 0 | 0 | ||||||||
\(22\) | 0 | 0 | ||||||||
\(23\) | 2.00000i | 0.417029i | 0.978019 | + | 0.208514i | \(0.0668628\pi\) | ||||
−0.978019 | + | 0.208514i | \(0.933137\pi\) | |||||||
\(24\) | 0 | 0 | ||||||||
\(25\) | 0 | 0 | ||||||||
\(26\) | 0 | 0 | ||||||||
\(27\) | 0 | 0 | ||||||||
\(28\) | 0 | 0 | ||||||||
\(29\) | 6.00000 | 1.11417 | 0.557086 | − | 0.830455i | \(-0.311919\pi\) | ||||
0.557086 | + | 0.830455i | \(0.311919\pi\) | |||||||
\(30\) | 0 | 0 | ||||||||
\(31\) | −8.00000 | −1.43684 | −0.718421 | − | 0.695608i | \(-0.755135\pi\) | ||||
−0.718421 | + | 0.695608i | \(0.755135\pi\) | |||||||
\(32\) | 0 | 0 | ||||||||
\(33\) | 0 | 0 | ||||||||
\(34\) | 0 | 0 | ||||||||
\(35\) | 0 | 0 | ||||||||
\(36\) | 0 | 0 | ||||||||
\(37\) | 4.00000i | 0.657596i | 0.944400 | + | 0.328798i | \(0.106644\pi\) | ||||
−0.944400 | + | 0.328798i | \(0.893356\pi\) | |||||||
\(38\) | 0 | 0 | ||||||||
\(39\) | 0 | 0 | ||||||||
\(40\) | 0 | 0 | ||||||||
\(41\) | 6.00000 | 0.937043 | 0.468521 | − | 0.883452i | \(-0.344787\pi\) | ||||
0.468521 | + | 0.883452i | \(0.344787\pi\) | |||||||
\(42\) | 0 | 0 | ||||||||
\(43\) | 6.00000i | 0.914991i | 0.889212 | + | 0.457496i | \(0.151253\pi\) | ||||
−0.889212 | + | 0.457496i | \(0.848747\pi\) | |||||||
\(44\) | 0 | 0 | ||||||||
\(45\) | 0 | 0 | ||||||||
\(46\) | 0 | 0 | ||||||||
\(47\) | 6.00000i | 0.875190i | 0.899172 | + | 0.437595i | \(0.144170\pi\) | ||||
−0.899172 | + | 0.437595i | \(0.855830\pi\) | |||||||
\(48\) | 0 | 0 | ||||||||
\(49\) | 3.00000 | 0.428571 | ||||||||
\(50\) | 0 | 0 | ||||||||
\(51\) | 0 | 0 | ||||||||
\(52\) | 0 | 0 | ||||||||
\(53\) | − 8.00000i | − 1.09888i | −0.835532 | − | 0.549442i | \(-0.814840\pi\) | ||||
0.835532 | − | 0.549442i | \(-0.185160\pi\) | |||||||
\(54\) | 0 | 0 | ||||||||
\(55\) | 0 | 0 | ||||||||
\(56\) | 0 | 0 | ||||||||
\(57\) | 0 | 0 | ||||||||
\(58\) | 0 | 0 | ||||||||
\(59\) | 12.0000 | 1.56227 | 0.781133 | − | 0.624364i | \(-0.214642\pi\) | ||||
0.781133 | + | 0.624364i | \(0.214642\pi\) | |||||||
\(60\) | 0 | 0 | ||||||||
\(61\) | 6.00000 | 0.768221 | 0.384111 | − | 0.923287i | \(-0.374508\pi\) | ||||
0.384111 | + | 0.923287i | \(0.374508\pi\) | |||||||
\(62\) | 0 | 0 | ||||||||
\(63\) | − 6.00000i | − 0.755929i | ||||||||
\(64\) | 0 | 0 | ||||||||
\(65\) | 0 | 0 | ||||||||
\(66\) | 0 | 0 | ||||||||
\(67\) | 0 | 0 | 1.00000 | \(0\) | ||||||
−1.00000 | \(\pi\) | |||||||||
\(68\) | 0 | 0 | ||||||||
\(69\) | 0 | 0 | ||||||||
\(70\) | 0 | 0 | ||||||||
\(71\) | 0 | 0 | − | 1.00000i | \(-0.5\pi\) | |||||
1.00000i | \(0.5\pi\) | |||||||||
\(72\) | 0 | 0 | ||||||||
\(73\) | 10.0000i | 1.17041i | 0.810885 | + | 0.585206i | \(0.198986\pi\) | ||||
−0.810885 | + | 0.585206i | \(0.801014\pi\) | |||||||
\(74\) | 0 | 0 | ||||||||
\(75\) | 0 | 0 | ||||||||
\(76\) | 0 | 0 | ||||||||
\(77\) | 8.00000i | 0.911685i | ||||||||
\(78\) | 0 | 0 | ||||||||
\(79\) | 8.00000 | 0.900070 | 0.450035 | − | 0.893011i | \(-0.351411\pi\) | ||||
0.450035 | + | 0.893011i | \(0.351411\pi\) | |||||||
\(80\) | 0 | 0 | ||||||||
\(81\) | 9.00000 | 1.00000 | ||||||||
\(82\) | 0 | 0 | ||||||||
\(83\) | − 14.0000i | − 1.53670i | −0.640030 | − | 0.768350i | \(-0.721078\pi\) | ||||
0.640030 | − | 0.768350i | \(-0.278922\pi\) | |||||||
\(84\) | 0 | 0 | ||||||||
\(85\) | 0 | 0 | ||||||||
\(86\) | 0 | 0 | ||||||||
\(87\) | 0 | 0 | ||||||||
\(88\) | 0 | 0 | ||||||||
\(89\) | −14.0000 | −1.48400 | −0.741999 | − | 0.670402i | \(-0.766122\pi\) | ||||
−0.741999 | + | 0.670402i | \(0.766122\pi\) | |||||||
\(90\) | 0 | 0 | ||||||||
\(91\) | 8.00000 | 0.838628 | ||||||||
\(92\) | 0 | 0 | ||||||||
\(93\) | 0 | 0 | ||||||||
\(94\) | 0 | 0 | ||||||||
\(95\) | 0 | 0 | ||||||||
\(96\) | 0 | 0 | ||||||||
\(97\) | 16.0000i | 1.62455i | 0.583272 | + | 0.812277i | \(0.301772\pi\) | ||||
−0.583272 | + | 0.812277i | \(0.698228\pi\) | |||||||
\(98\) | 0 | 0 | ||||||||
\(99\) | −12.0000 | −1.20605 | ||||||||
\(100\) | 0 | 0 | ||||||||
\(101\) | −14.0000 | −1.39305 | −0.696526 | − | 0.717532i | \(-0.745272\pi\) | ||||
−0.696526 | + | 0.717532i | \(0.745272\pi\) | |||||||
\(102\) | 0 | 0 | ||||||||
\(103\) | 20.0000i | 1.97066i | 0.170664 | + | 0.985329i | \(0.445409\pi\) | ||||
−0.170664 | + | 0.985329i | \(0.554591\pi\) | |||||||
\(104\) | 0 | 0 | ||||||||
\(105\) | 0 | 0 | ||||||||
\(106\) | 0 | 0 | ||||||||
\(107\) | − 4.00000i | − 0.386695i | −0.981130 | − | 0.193347i | \(-0.938066\pi\) | ||||
0.981130 | − | 0.193347i | \(-0.0619344\pi\) | |||||||
\(108\) | 0 | 0 | ||||||||
\(109\) | 2.00000 | 0.191565 | 0.0957826 | − | 0.995402i | \(-0.469465\pi\) | ||||
0.0957826 | + | 0.995402i | \(0.469465\pi\) | |||||||
\(110\) | 0 | 0 | ||||||||
\(111\) | 0 | 0 | ||||||||
\(112\) | 0 | 0 | ||||||||
\(113\) | 0 | 0 | 1.00000 | \(0\) | ||||||
−1.00000 | \(\pi\) | |||||||||
\(114\) | 0 | 0 | ||||||||
\(115\) | 0 | 0 | ||||||||
\(116\) | 0 | 0 | ||||||||
\(117\) | 12.0000i | 1.10940i | ||||||||
\(118\) | 0 | 0 | ||||||||
\(119\) | 12.0000 | 1.10004 | ||||||||
\(120\) | 0 | 0 | ||||||||
\(121\) | 5.00000 | 0.454545 | ||||||||
\(122\) | 0 | 0 | ||||||||
\(123\) | 0 | 0 | ||||||||
\(124\) | 0 | 0 | ||||||||
\(125\) | 0 | 0 | ||||||||
\(126\) | 0 | 0 | ||||||||
\(127\) | 12.0000i | 1.06483i | 0.846484 | + | 0.532414i | \(0.178715\pi\) | ||||
−0.846484 | + | 0.532414i | \(0.821285\pi\) | |||||||
\(128\) | 0 | 0 | ||||||||
\(129\) | 0 | 0 | ||||||||
\(130\) | 0 | 0 | ||||||||
\(131\) | −8.00000 | −0.698963 | −0.349482 | − | 0.936943i | \(-0.613642\pi\) | ||||
−0.349482 | + | 0.936943i | \(0.613642\pi\) | |||||||
\(132\) | 0 | 0 | ||||||||
\(133\) | 2.00000i | 0.173422i | ||||||||
\(134\) | 0 | 0 | ||||||||
\(135\) | 0 | 0 | ||||||||
\(136\) | 0 | 0 | ||||||||
\(137\) | 6.00000i | 0.512615i | 0.966595 | + | 0.256307i | \(0.0825059\pi\) | ||||
−0.966595 | + | 0.256307i | \(0.917494\pi\) | |||||||
\(138\) | 0 | 0 | ||||||||
\(139\) | 8.00000 | 0.678551 | 0.339276 | − | 0.940687i | \(-0.389818\pi\) | ||||
0.339276 | + | 0.940687i | \(0.389818\pi\) | |||||||
\(140\) | 0 | 0 | ||||||||
\(141\) | 0 | 0 | ||||||||
\(142\) | 0 | 0 | ||||||||
\(143\) | − 16.0000i | − 1.33799i | ||||||||
\(144\) | 0 | 0 | ||||||||
\(145\) | 0 | 0 | ||||||||
\(146\) | 0 | 0 | ||||||||
\(147\) | 0 | 0 | ||||||||
\(148\) | 0 | 0 | ||||||||
\(149\) | 10.0000 | 0.819232 | 0.409616 | − | 0.912258i | \(-0.365663\pi\) | ||||
0.409616 | + | 0.912258i | \(0.365663\pi\) | |||||||
\(150\) | 0 | 0 | ||||||||
\(151\) | −16.0000 | −1.30206 | −0.651031 | − | 0.759051i | \(-0.725663\pi\) | ||||
−0.651031 | + | 0.759051i | \(0.725663\pi\) | |||||||
\(152\) | 0 | 0 | ||||||||
\(153\) | 18.0000i | 1.45521i | ||||||||
\(154\) | 0 | 0 | ||||||||
\(155\) | 0 | 0 | ||||||||
\(156\) | 0 | 0 | ||||||||
\(157\) | − 18.0000i | − 1.43656i | −0.695756 | − | 0.718278i | \(-0.744931\pi\) | ||||
0.695756 | − | 0.718278i | \(-0.255069\pi\) | |||||||
\(158\) | 0 | 0 | ||||||||
\(159\) | 0 | 0 | ||||||||
\(160\) | 0 | 0 | ||||||||
\(161\) | 4.00000 | 0.315244 | ||||||||
\(162\) | 0 | 0 | ||||||||
\(163\) | 14.0000i | 1.09656i | 0.836293 | + | 0.548282i | \(0.184718\pi\) | ||||
−0.836293 | + | 0.548282i | \(0.815282\pi\) | |||||||
\(164\) | 0 | 0 | ||||||||
\(165\) | 0 | 0 | ||||||||
\(166\) | 0 | 0 | ||||||||
\(167\) | 16.0000i | 1.23812i | 0.785345 | + | 0.619059i | \(0.212486\pi\) | ||||
−0.785345 | + | 0.619059i | \(0.787514\pi\) | |||||||
\(168\) | 0 | 0 | ||||||||
\(169\) | −3.00000 | −0.230769 | ||||||||
\(170\) | 0 | 0 | ||||||||
\(171\) | −3.00000 | −0.229416 | ||||||||
\(172\) | 0 | 0 | ||||||||
\(173\) | 8.00000i | 0.608229i | 0.952636 | + | 0.304114i | \(0.0983605\pi\) | ||||
−0.952636 | + | 0.304114i | \(0.901639\pi\) | |||||||
\(174\) | 0 | 0 | ||||||||
\(175\) | 0 | 0 | ||||||||
\(176\) | 0 | 0 | ||||||||
\(177\) | 0 | 0 | ||||||||
\(178\) | 0 | 0 | ||||||||
\(179\) | −4.00000 | −0.298974 | −0.149487 | − | 0.988764i | \(-0.547762\pi\) | ||||
−0.149487 | + | 0.988764i | \(0.547762\pi\) | |||||||
\(180\) | 0 | 0 | ||||||||
\(181\) | −10.0000 | −0.743294 | −0.371647 | − | 0.928374i | \(-0.621207\pi\) | ||||
−0.371647 | + | 0.928374i | \(0.621207\pi\) | |||||||
\(182\) | 0 | 0 | ||||||||
\(183\) | 0 | 0 | ||||||||
\(184\) | 0 | 0 | ||||||||
\(185\) | 0 | 0 | ||||||||
\(186\) | 0 | 0 | ||||||||
\(187\) | − 24.0000i | − 1.75505i | ||||||||
\(188\) | 0 | 0 | ||||||||
\(189\) | 0 | 0 | ||||||||
\(190\) | 0 | 0 | ||||||||
\(191\) | 12.0000 | 0.868290 | 0.434145 | − | 0.900843i | \(-0.357051\pi\) | ||||
0.434145 | + | 0.900843i | \(0.357051\pi\) | |||||||
\(192\) | 0 | 0 | ||||||||
\(193\) | − 16.0000i | − 1.15171i | −0.817554 | − | 0.575853i | \(-0.804670\pi\) | ||||
0.817554 | − | 0.575853i | \(-0.195330\pi\) | |||||||
\(194\) | 0 | 0 | ||||||||
\(195\) | 0 | 0 | ||||||||
\(196\) | 0 | 0 | ||||||||
\(197\) | − 22.0000i | − 1.56744i | −0.621117 | − | 0.783718i | \(-0.713321\pi\) | ||||
0.621117 | − | 0.783718i | \(-0.286679\pi\) | |||||||
\(198\) | 0 | 0 | ||||||||
\(199\) | 24.0000 | 1.70131 | 0.850657 | − | 0.525720i | \(-0.176204\pi\) | ||||
0.850657 | + | 0.525720i | \(0.176204\pi\) | |||||||
\(200\) | 0 | 0 | ||||||||
\(201\) | 0 | 0 | ||||||||
\(202\) | 0 | 0 | ||||||||
\(203\) | − 12.0000i | − 0.842235i | ||||||||
\(204\) | 0 | 0 | ||||||||
\(205\) | 0 | 0 | ||||||||
\(206\) | 0 | 0 | ||||||||
\(207\) | 6.00000i | 0.417029i | ||||||||
\(208\) | 0 | 0 | ||||||||
\(209\) | 4.00000 | 0.276686 | ||||||||
\(210\) | 0 | 0 | ||||||||
\(211\) | 4.00000 | 0.275371 | 0.137686 | − | 0.990476i | \(-0.456034\pi\) | ||||
0.137686 | + | 0.990476i | \(0.456034\pi\) | |||||||
\(212\) | 0 | 0 | ||||||||
\(213\) | 0 | 0 | ||||||||
\(214\) | 0 | 0 | ||||||||
\(215\) | 0 | 0 | ||||||||
\(216\) | 0 | 0 | ||||||||
\(217\) | 16.0000i | 1.08615i | ||||||||
\(218\) | 0 | 0 | ||||||||
\(219\) | 0 | 0 | ||||||||
\(220\) | 0 | 0 | ||||||||
\(221\) | −24.0000 | −1.61441 | ||||||||
\(222\) | 0 | 0 | ||||||||
\(223\) | − 4.00000i | − 0.267860i | −0.990991 | − | 0.133930i | \(-0.957240\pi\) | ||||
0.990991 | − | 0.133930i | \(-0.0427597\pi\) | |||||||
\(224\) | 0 | 0 | ||||||||
\(225\) | 0 | 0 | ||||||||
\(226\) | 0 | 0 | ||||||||
\(227\) | − 4.00000i | − 0.265489i | −0.991150 | − | 0.132745i | \(-0.957621\pi\) | ||||
0.991150 | − | 0.132745i | \(-0.0423790\pi\) | |||||||
\(228\) | 0 | 0 | ||||||||
\(229\) | 6.00000 | 0.396491 | 0.198246 | − | 0.980152i | \(-0.436476\pi\) | ||||
0.198246 | + | 0.980152i | \(0.436476\pi\) | |||||||
\(230\) | 0 | 0 | ||||||||
\(231\) | 0 | 0 | ||||||||
\(232\) | 0 | 0 | ||||||||
\(233\) | 14.0000i | 0.917170i | 0.888650 | + | 0.458585i | \(0.151644\pi\) | ||||
−0.888650 | + | 0.458585i | \(0.848356\pi\) | |||||||
\(234\) | 0 | 0 | ||||||||
\(235\) | 0 | 0 | ||||||||
\(236\) | 0 | 0 | ||||||||
\(237\) | 0 | 0 | ||||||||
\(238\) | 0 | 0 | ||||||||
\(239\) | −16.0000 | −1.03495 | −0.517477 | − | 0.855697i | \(-0.673129\pi\) | ||||
−0.517477 | + | 0.855697i | \(0.673129\pi\) | |||||||
\(240\) | 0 | 0 | ||||||||
\(241\) | 6.00000 | 0.386494 | 0.193247 | − | 0.981150i | \(-0.438098\pi\) | ||||
0.193247 | + | 0.981150i | \(0.438098\pi\) | |||||||
\(242\) | 0 | 0 | ||||||||
\(243\) | 0 | 0 | ||||||||
\(244\) | 0 | 0 | ||||||||
\(245\) | 0 | 0 | ||||||||
\(246\) | 0 | 0 | ||||||||
\(247\) | − 4.00000i | − 0.254514i | ||||||||
\(248\) | 0 | 0 | ||||||||
\(249\) | 0 | 0 | ||||||||
\(250\) | 0 | 0 | ||||||||
\(251\) | 0 | 0 | − | 1.00000i | \(-0.5\pi\) | |||||
1.00000i | \(0.5\pi\) | |||||||||
\(252\) | 0 | 0 | ||||||||
\(253\) | − 8.00000i | − 0.502956i | ||||||||
\(254\) | 0 | 0 | ||||||||
\(255\) | 0 | 0 | ||||||||
\(256\) | 0 | 0 | ||||||||
\(257\) | − 20.0000i | − 1.24757i | −0.781598 | − | 0.623783i | \(-0.785595\pi\) | ||||
0.781598 | − | 0.623783i | \(-0.214405\pi\) | |||||||
\(258\) | 0 | 0 | ||||||||
\(259\) | 8.00000 | 0.497096 | ||||||||
\(260\) | 0 | 0 | ||||||||
\(261\) | 18.0000 | 1.11417 | ||||||||
\(262\) | 0 | 0 | ||||||||
\(263\) | − 14.0000i | − 0.863277i | −0.902047 | − | 0.431638i | \(-0.857936\pi\) | ||||
0.902047 | − | 0.431638i | \(-0.142064\pi\) | |||||||
\(264\) | 0 | 0 | ||||||||
\(265\) | 0 | 0 | ||||||||
\(266\) | 0 | 0 | ||||||||
\(267\) | 0 | 0 | ||||||||
\(268\) | 0 | 0 | ||||||||
\(269\) | −14.0000 | −0.853595 | −0.426798 | − | 0.904347i | \(-0.640358\pi\) | ||||
−0.426798 | + | 0.904347i | \(0.640358\pi\) | |||||||
\(270\) | 0 | 0 | ||||||||
\(271\) | −24.0000 | −1.45790 | −0.728948 | − | 0.684569i | \(-0.759990\pi\) | ||||
−0.728948 | + | 0.684569i | \(0.759990\pi\) | |||||||
\(272\) | 0 | 0 | ||||||||
\(273\) | 0 | 0 | ||||||||
\(274\) | 0 | 0 | ||||||||
\(275\) | 0 | 0 | ||||||||
\(276\) | 0 | 0 | ||||||||
\(277\) | − 26.0000i | − 1.56219i | −0.624413 | − | 0.781094i | \(-0.714662\pi\) | ||||
0.624413 | − | 0.781094i | \(-0.285338\pi\) | |||||||
\(278\) | 0 | 0 | ||||||||
\(279\) | −24.0000 | −1.43684 | ||||||||
\(280\) | 0 | 0 | ||||||||
\(281\) | 30.0000 | 1.78965 | 0.894825 | − | 0.446417i | \(-0.147300\pi\) | ||||
0.894825 | + | 0.446417i | \(0.147300\pi\) | |||||||
\(282\) | 0 | 0 | ||||||||
\(283\) | − 22.0000i | − 1.30776i | −0.756596 | − | 0.653882i | \(-0.773139\pi\) | ||||
0.756596 | − | 0.653882i | \(-0.226861\pi\) | |||||||
\(284\) | 0 | 0 | ||||||||
\(285\) | 0 | 0 | ||||||||
\(286\) | 0 | 0 | ||||||||
\(287\) | − 12.0000i | − 0.708338i | ||||||||
\(288\) | 0 | 0 | ||||||||
\(289\) | −19.0000 | −1.11765 | ||||||||
\(290\) | 0 | 0 | ||||||||
\(291\) | 0 | 0 | ||||||||
\(292\) | 0 | 0 | ||||||||
\(293\) | 24.0000i | 1.40209i | 0.713115 | + | 0.701047i | \(0.247284\pi\) | ||||
−0.713115 | + | 0.701047i | \(0.752716\pi\) | |||||||
\(294\) | 0 | 0 | ||||||||
\(295\) | 0 | 0 | ||||||||
\(296\) | 0 | 0 | ||||||||
\(297\) | 0 | 0 | ||||||||
\(298\) | 0 | 0 | ||||||||
\(299\) | −8.00000 | −0.462652 | ||||||||
\(300\) | 0 | 0 | ||||||||
\(301\) | 12.0000 | 0.691669 | ||||||||
\(302\) | 0 | 0 | ||||||||
\(303\) | 0 | 0 | ||||||||
\(304\) | 0 | 0 | ||||||||
\(305\) | 0 | 0 | ||||||||
\(306\) | 0 | 0 | ||||||||
\(307\) | 4.00000i | 0.228292i | 0.993464 | + | 0.114146i | \(0.0364132\pi\) | ||||
−0.993464 | + | 0.114146i | \(0.963587\pi\) | |||||||
\(308\) | 0 | 0 | ||||||||
\(309\) | 0 | 0 | ||||||||
\(310\) | 0 | 0 | ||||||||
\(311\) | −8.00000 | −0.453638 | −0.226819 | − | 0.973937i | \(-0.572833\pi\) | ||||
−0.226819 | + | 0.973937i | \(0.572833\pi\) | |||||||
\(312\) | 0 | 0 | ||||||||
\(313\) | 22.0000i | 1.24351i | 0.783210 | + | 0.621757i | \(0.213581\pi\) | ||||
−0.783210 | + | 0.621757i | \(0.786419\pi\) | |||||||
\(314\) | 0 | 0 | ||||||||
\(315\) | 0 | 0 | ||||||||
\(316\) | 0 | 0 | ||||||||
\(317\) | − 12.0000i | − 0.673987i | −0.941507 | − | 0.336994i | \(-0.890590\pi\) | ||||
0.941507 | − | 0.336994i | \(-0.109410\pi\) | |||||||
\(318\) | 0 | 0 | ||||||||
\(319\) | −24.0000 | −1.34374 | ||||||||
\(320\) | 0 | 0 | ||||||||
\(321\) | 0 | 0 | ||||||||
\(322\) | 0 | 0 | ||||||||
\(323\) | − 6.00000i | − 0.333849i | ||||||||
\(324\) | 0 | 0 | ||||||||
\(325\) | 0 | 0 | ||||||||
\(326\) | 0 | 0 | ||||||||
\(327\) | 0 | 0 | ||||||||
\(328\) | 0 | 0 | ||||||||
\(329\) | 12.0000 | 0.661581 | ||||||||
\(330\) | 0 | 0 | ||||||||
\(331\) | 20.0000 | 1.09930 | 0.549650 | − | 0.835395i | \(-0.314761\pi\) | ||||
0.549650 | + | 0.835395i | \(0.314761\pi\) | |||||||
\(332\) | 0 | 0 | ||||||||
\(333\) | 12.0000i | 0.657596i | ||||||||
\(334\) | 0 | 0 | ||||||||
\(335\) | 0 | 0 | ||||||||
\(336\) | 0 | 0 | ||||||||
\(337\) | 24.0000i | 1.30736i | 0.756770 | + | 0.653682i | \(0.226776\pi\) | ||||
−0.756770 | + | 0.653682i | \(0.773224\pi\) | |||||||
\(338\) | 0 | 0 | ||||||||
\(339\) | 0 | 0 | ||||||||
\(340\) | 0 | 0 | ||||||||
\(341\) | 32.0000 | 1.73290 | ||||||||
\(342\) | 0 | 0 | ||||||||
\(343\) | − 20.0000i | − 1.07990i | ||||||||
\(344\) | 0 | 0 | ||||||||
\(345\) | 0 | 0 | ||||||||
\(346\) | 0 | 0 | ||||||||
\(347\) | − 6.00000i | − 0.322097i | −0.986947 | − | 0.161048i | \(-0.948512\pi\) | ||||
0.986947 | − | 0.161048i | \(-0.0514875\pi\) | |||||||
\(348\) | 0 | 0 | ||||||||
\(349\) | −14.0000 | −0.749403 | −0.374701 | − | 0.927146i | \(-0.622255\pi\) | ||||
−0.374701 | + | 0.927146i | \(0.622255\pi\) | |||||||
\(350\) | 0 | 0 | ||||||||
\(351\) | 0 | 0 | ||||||||
\(352\) | 0 | 0 | ||||||||
\(353\) | 2.00000i | 0.106449i | 0.998583 | + | 0.0532246i | \(0.0169499\pi\) | ||||
−0.998583 | + | 0.0532246i | \(0.983050\pi\) | |||||||
\(354\) | 0 | 0 | ||||||||
\(355\) | 0 | 0 | ||||||||
\(356\) | 0 | 0 | ||||||||
\(357\) | 0 | 0 | ||||||||
\(358\) | 0 | 0 | ||||||||
\(359\) | −4.00000 | −0.211112 | −0.105556 | − | 0.994413i | \(-0.533662\pi\) | ||||
−0.105556 | + | 0.994413i | \(0.533662\pi\) | |||||||
\(360\) | 0 | 0 | ||||||||
\(361\) | 1.00000 | 0.0526316 | ||||||||
\(362\) | 0 | 0 | ||||||||
\(363\) | 0 | 0 | ||||||||
\(364\) | 0 | 0 | ||||||||
\(365\) | 0 | 0 | ||||||||
\(366\) | 0 | 0 | ||||||||
\(367\) | − 10.0000i | − 0.521996i | −0.965339 | − | 0.260998i | \(-0.915948\pi\) | ||||
0.965339 | − | 0.260998i | \(-0.0840516\pi\) | |||||||
\(368\) | 0 | 0 | ||||||||
\(369\) | 18.0000 | 0.937043 | ||||||||
\(370\) | 0 | 0 | ||||||||
\(371\) | −16.0000 | −0.830679 | ||||||||
\(372\) | 0 | 0 | ||||||||
\(373\) | 8.00000i | 0.414224i | 0.978317 | + | 0.207112i | \(0.0664065\pi\) | ||||
−0.978317 | + | 0.207112i | \(0.933593\pi\) | |||||||
\(374\) | 0 | 0 | ||||||||
\(375\) | 0 | 0 | ||||||||
\(376\) | 0 | 0 | ||||||||
\(377\) | 24.0000i | 1.23606i | ||||||||
\(378\) | 0 | 0 | ||||||||
\(379\) | −12.0000 | −0.616399 | −0.308199 | − | 0.951322i | \(-0.599726\pi\) | ||||
−0.308199 | + | 0.951322i | \(0.599726\pi\) | |||||||
\(380\) | 0 | 0 | ||||||||
\(381\) | 0 | 0 | ||||||||
\(382\) | 0 | 0 | ||||||||
\(383\) | − 32.0000i | − 1.63512i | −0.575841 | − | 0.817562i | \(-0.695325\pi\) | ||||
0.575841 | − | 0.817562i | \(-0.304675\pi\) | |||||||
\(384\) | 0 | 0 | ||||||||
\(385\) | 0 | 0 | ||||||||
\(386\) | 0 | 0 | ||||||||
\(387\) | 18.0000i | 0.914991i | ||||||||
\(388\) | 0 | 0 | ||||||||
\(389\) | −26.0000 | −1.31825 | −0.659126 | − | 0.752032i | \(-0.729074\pi\) | ||||
−0.659126 | + | 0.752032i | \(0.729074\pi\) | |||||||
\(390\) | 0 | 0 | ||||||||
\(391\) | −12.0000 | −0.606866 | ||||||||
\(392\) | 0 | 0 | ||||||||
\(393\) | 0 | 0 | ||||||||
\(394\) | 0 | 0 | ||||||||
\(395\) | 0 | 0 | ||||||||
\(396\) | 0 | 0 | ||||||||
\(397\) | − 10.0000i | − 0.501886i | −0.968002 | − | 0.250943i | \(-0.919259\pi\) | ||||
0.968002 | − | 0.250943i | \(-0.0807406\pi\) | |||||||
\(398\) | 0 | 0 | ||||||||
\(399\) | 0 | 0 | ||||||||
\(400\) | 0 | 0 | ||||||||
\(401\) | −30.0000 | −1.49813 | −0.749064 | − | 0.662497i | \(-0.769497\pi\) | ||||
−0.749064 | + | 0.662497i | \(0.769497\pi\) | |||||||
\(402\) | 0 | 0 | ||||||||
\(403\) | − 32.0000i | − 1.59403i | ||||||||
\(404\) | 0 | 0 | ||||||||
\(405\) | 0 | 0 | ||||||||
\(406\) | 0 | 0 | ||||||||
\(407\) | − 16.0000i | − 0.793091i | ||||||||
\(408\) | 0 | 0 | ||||||||
\(409\) | −10.0000 | −0.494468 | −0.247234 | − | 0.968956i | \(-0.579522\pi\) | ||||
−0.247234 | + | 0.968956i | \(0.579522\pi\) | |||||||
\(410\) | 0 | 0 | ||||||||
\(411\) | 0 | 0 | ||||||||
\(412\) | 0 | 0 | ||||||||
\(413\) | − 24.0000i | − 1.18096i | ||||||||
\(414\) | 0 | 0 | ||||||||
\(415\) | 0 | 0 | ||||||||
\(416\) | 0 | 0 | ||||||||
\(417\) | 0 | 0 | ||||||||
\(418\) | 0 | 0 | ||||||||
\(419\) | 4.00000 | 0.195413 | 0.0977064 | − | 0.995215i | \(-0.468849\pi\) | ||||
0.0977064 | + | 0.995215i | \(0.468849\pi\) | |||||||
\(420\) | 0 | 0 | ||||||||
\(421\) | 10.0000 | 0.487370 | 0.243685 | − | 0.969854i | \(-0.421644\pi\) | ||||
0.243685 | + | 0.969854i | \(0.421644\pi\) | |||||||
\(422\) | 0 | 0 | ||||||||
\(423\) | 18.0000i | 0.875190i | ||||||||
\(424\) | 0 | 0 | ||||||||
\(425\) | 0 | 0 | ||||||||
\(426\) | 0 | 0 | ||||||||
\(427\) | − 12.0000i | − 0.580721i | ||||||||
\(428\) | 0 | 0 | ||||||||
\(429\) | 0 | 0 | ||||||||
\(430\) | 0 | 0 | ||||||||
\(431\) | 24.0000 | 1.15604 | 0.578020 | − | 0.816023i | \(-0.303826\pi\) | ||||
0.578020 | + | 0.816023i | \(0.303826\pi\) | |||||||
\(432\) | 0 | 0 | ||||||||
\(433\) | 16.0000i | 0.768911i | 0.923144 | + | 0.384455i | \(0.125611\pi\) | ||||
−0.923144 | + | 0.384455i | \(0.874389\pi\) | |||||||
\(434\) | 0 | 0 | ||||||||
\(435\) | 0 | 0 | ||||||||
\(436\) | 0 | 0 | ||||||||
\(437\) | − 2.00000i | − 0.0956730i | ||||||||
\(438\) | 0 | 0 | ||||||||
\(439\) | −8.00000 | −0.381819 | −0.190910 | − | 0.981608i | \(-0.561144\pi\) | ||||
−0.190910 | + | 0.981608i | \(0.561144\pi\) | |||||||
\(440\) | 0 | 0 | ||||||||
\(441\) | 9.00000 | 0.428571 | ||||||||
\(442\) | 0 | 0 | ||||||||
\(443\) | − 30.0000i | − 1.42534i | −0.701498 | − | 0.712672i | \(-0.747485\pi\) | ||||
0.701498 | − | 0.712672i | \(-0.252515\pi\) | |||||||
\(444\) | 0 | 0 | ||||||||
\(445\) | 0 | 0 | ||||||||
\(446\) | 0 | 0 | ||||||||
\(447\) | 0 | 0 | ||||||||
\(448\) | 0 | 0 | ||||||||
\(449\) | −2.00000 | −0.0943858 | −0.0471929 | − | 0.998886i | \(-0.515028\pi\) | ||||
−0.0471929 | + | 0.998886i | \(0.515028\pi\) | |||||||
\(450\) | 0 | 0 | ||||||||
\(451\) | −24.0000 | −1.13012 | ||||||||
\(452\) | 0 | 0 | ||||||||
\(453\) | 0 | 0 | ||||||||
\(454\) | 0 | 0 | ||||||||
\(455\) | 0 | 0 | ||||||||
\(456\) | 0 | 0 | ||||||||
\(457\) | 10.0000i | 0.467780i | 0.972263 | + | 0.233890i | \(0.0751456\pi\) | ||||
−0.972263 | + | 0.233890i | \(0.924854\pi\) | |||||||
\(458\) | 0 | 0 | ||||||||
\(459\) | 0 | 0 | ||||||||
\(460\) | 0 | 0 | ||||||||
\(461\) | −18.0000 | −0.838344 | −0.419172 | − | 0.907907i | \(-0.637680\pi\) | ||||
−0.419172 | + | 0.907907i | \(0.637680\pi\) | |||||||
\(462\) | 0 | 0 | ||||||||
\(463\) | − 22.0000i | − 1.02243i | −0.859454 | − | 0.511213i | \(-0.829196\pi\) | ||||
0.859454 | − | 0.511213i | \(-0.170804\pi\) | |||||||
\(464\) | 0 | 0 | ||||||||
\(465\) | 0 | 0 | ||||||||
\(466\) | 0 | 0 | ||||||||
\(467\) | − 14.0000i | − 0.647843i | −0.946084 | − | 0.323921i | \(-0.894999\pi\) | ||||
0.946084 | − | 0.323921i | \(-0.105001\pi\) | |||||||
\(468\) | 0 | 0 | ||||||||
\(469\) | 0 | 0 | ||||||||
\(470\) | 0 | 0 | ||||||||
\(471\) | 0 | 0 | ||||||||
\(472\) | 0 | 0 | ||||||||
\(473\) | − 24.0000i | − 1.10352i | ||||||||
\(474\) | 0 | 0 | ||||||||
\(475\) | 0 | 0 | ||||||||
\(476\) | 0 | 0 | ||||||||
\(477\) | − 24.0000i | − 1.09888i | ||||||||
\(478\) | 0 | 0 | ||||||||
\(479\) | 12.0000 | 0.548294 | 0.274147 | − | 0.961688i | \(-0.411605\pi\) | ||||
0.274147 | + | 0.961688i | \(0.411605\pi\) | |||||||
\(480\) | 0 | 0 | ||||||||
\(481\) | −16.0000 | −0.729537 | ||||||||
\(482\) | 0 | 0 | ||||||||
\(483\) | 0 | 0 | ||||||||
\(484\) | 0 | 0 | ||||||||
\(485\) | 0 | 0 | ||||||||
\(486\) | 0 | 0 | ||||||||
\(487\) | − 32.0000i | − 1.45006i | −0.688718 | − | 0.725029i | \(-0.741826\pi\) | ||||
0.688718 | − | 0.725029i | \(-0.258174\pi\) | |||||||
\(488\) | 0 | 0 | ||||||||
\(489\) | 0 | 0 | ||||||||
\(490\) | 0 | 0 | ||||||||
\(491\) | −24.0000 | −1.08310 | −0.541552 | − | 0.840667i | \(-0.682163\pi\) | ||||
−0.541552 | + | 0.840667i | \(0.682163\pi\) | |||||||
\(492\) | 0 | 0 | ||||||||
\(493\) | 36.0000i | 1.62136i | ||||||||
\(494\) | 0 | 0 | ||||||||
\(495\) | 0 | 0 | ||||||||
\(496\) | 0 | 0 | ||||||||
\(497\) | 0 | 0 | ||||||||
\(498\) | 0 | 0 | ||||||||
\(499\) | −24.0000 | −1.07439 | −0.537194 | − | 0.843459i | \(-0.680516\pi\) | ||||
−0.537194 | + | 0.843459i | \(0.680516\pi\) | |||||||
\(500\) | 0 | 0 | ||||||||
\(501\) | 0 | 0 | ||||||||
\(502\) | 0 | 0 | ||||||||
\(503\) | − 6.00000i | − 0.267527i | −0.991013 | − | 0.133763i | \(-0.957294\pi\) | ||||
0.991013 | − | 0.133763i | \(-0.0427062\pi\) | |||||||
\(504\) | 0 | 0 | ||||||||
\(505\) | 0 | 0 | ||||||||
\(506\) | 0 | 0 | ||||||||
\(507\) | 0 | 0 | ||||||||
\(508\) | 0 | 0 | ||||||||
\(509\) | −26.0000 | −1.15243 | −0.576215 | − | 0.817298i | \(-0.695471\pi\) | ||||
−0.576215 | + | 0.817298i | \(0.695471\pi\) | |||||||
\(510\) | 0 | 0 | ||||||||
\(511\) | 20.0000 | 0.884748 | ||||||||
\(512\) | 0 | 0 | ||||||||
\(513\) | 0 | 0 | ||||||||
\(514\) | 0 | 0 | ||||||||
\(515\) | 0 | 0 | ||||||||
\(516\) | 0 | 0 | ||||||||
\(517\) | − 24.0000i | − 1.05552i | ||||||||
\(518\) | 0 | 0 | ||||||||
\(519\) | 0 | 0 | ||||||||
\(520\) | 0 | 0 | ||||||||
\(521\) | −30.0000 | −1.31432 | −0.657162 | − | 0.753749i | \(-0.728243\pi\) | ||||
−0.657162 | + | 0.753749i | \(0.728243\pi\) | |||||||
\(522\) | 0 | 0 | ||||||||
\(523\) | 36.0000i | 1.57417i | 0.616844 | + | 0.787085i | \(0.288411\pi\) | ||||
−0.616844 | + | 0.787085i | \(0.711589\pi\) | |||||||
\(524\) | 0 | 0 | ||||||||
\(525\) | 0 | 0 | ||||||||
\(526\) | 0 | 0 | ||||||||
\(527\) | − 48.0000i | − 2.09091i | ||||||||
\(528\) | 0 | 0 | ||||||||
\(529\) | 19.0000 | 0.826087 | ||||||||
\(530\) | 0 | 0 | ||||||||
\(531\) | 36.0000 | 1.56227 | ||||||||
\(532\) | 0 | 0 | ||||||||
\(533\) | 24.0000i | 1.03956i | ||||||||
\(534\) | 0 | 0 | ||||||||
\(535\) | 0 | 0 | ||||||||
\(536\) | 0 | 0 | ||||||||
\(537\) | 0 | 0 | ||||||||
\(538\) | 0 | 0 | ||||||||
\(539\) | −12.0000 | −0.516877 | ||||||||
\(540\) | 0 | 0 | ||||||||
\(541\) | 34.0000 | 1.46177 | 0.730887 | − | 0.682498i | \(-0.239107\pi\) | ||||
0.730887 | + | 0.682498i | \(0.239107\pi\) | |||||||
\(542\) | 0 | 0 | ||||||||
\(543\) | 0 | 0 | ||||||||
\(544\) | 0 | 0 | ||||||||
\(545\) | 0 | 0 | ||||||||
\(546\) | 0 | 0 | ||||||||
\(547\) | 20.0000i | 0.855138i | 0.903983 | + | 0.427569i | \(0.140630\pi\) | ||||
−0.903983 | + | 0.427569i | \(0.859370\pi\) | |||||||
\(548\) | 0 | 0 | ||||||||
\(549\) | 18.0000 | 0.768221 | ||||||||
\(550\) | 0 | 0 | ||||||||
\(551\) | −6.00000 | −0.255609 | ||||||||
\(552\) | 0 | 0 | ||||||||
\(553\) | − 16.0000i | − 0.680389i | ||||||||
\(554\) | 0 | 0 | ||||||||
\(555\) | 0 | 0 | ||||||||
\(556\) | 0 | 0 | ||||||||
\(557\) | − 18.0000i | − 0.762684i | −0.924434 | − | 0.381342i | \(-0.875462\pi\) | ||||
0.924434 | − | 0.381342i | \(-0.124538\pi\) | |||||||
\(558\) | 0 | 0 | ||||||||
\(559\) | −24.0000 | −1.01509 | ||||||||
\(560\) | 0 | 0 | ||||||||
\(561\) | 0 | 0 | ||||||||
\(562\) | 0 | 0 | ||||||||
\(563\) | 4.00000i | 0.168580i | 0.996441 | + | 0.0842900i | \(0.0268622\pi\) | ||||
−0.996441 | + | 0.0842900i | \(0.973138\pi\) | |||||||
\(564\) | 0 | 0 | ||||||||
\(565\) | 0 | 0 | ||||||||
\(566\) | 0 | 0 | ||||||||
\(567\) | − 18.0000i | − 0.755929i | ||||||||
\(568\) | 0 | 0 | ||||||||
\(569\) | 30.0000 | 1.25767 | 0.628833 | − | 0.777541i | \(-0.283533\pi\) | ||||
0.628833 | + | 0.777541i | \(0.283533\pi\) | |||||||
\(570\) | 0 | 0 | ||||||||
\(571\) | 36.0000 | 1.50655 | 0.753277 | − | 0.657704i | \(-0.228472\pi\) | ||||
0.753277 | + | 0.657704i | \(0.228472\pi\) | |||||||
\(572\) | 0 | 0 | ||||||||
\(573\) | 0 | 0 | ||||||||
\(574\) | 0 | 0 | ||||||||
\(575\) | 0 | 0 | ||||||||
\(576\) | 0 | 0 | ||||||||
\(577\) | 2.00000i | 0.0832611i | 0.999133 | + | 0.0416305i | \(0.0132552\pi\) | ||||
−0.999133 | + | 0.0416305i | \(0.986745\pi\) | |||||||
\(578\) | 0 | 0 | ||||||||
\(579\) | 0 | 0 | ||||||||
\(580\) | 0 | 0 | ||||||||
\(581\) | −28.0000 | −1.16164 | ||||||||
\(582\) | 0 | 0 | ||||||||
\(583\) | 32.0000i | 1.32530i | ||||||||
\(584\) | 0 | 0 | ||||||||
\(585\) | 0 | 0 | ||||||||
\(586\) | 0 | 0 | ||||||||
\(587\) | − 6.00000i | − 0.247647i | −0.992304 | − | 0.123823i | \(-0.960484\pi\) | ||||
0.992304 | − | 0.123823i | \(-0.0395156\pi\) | |||||||
\(588\) | 0 | 0 | ||||||||
\(589\) | 8.00000 | 0.329634 | ||||||||
\(590\) | 0 | 0 | ||||||||
\(591\) | 0 | 0 | ||||||||
\(592\) | 0 | 0 | ||||||||
\(593\) | − 42.0000i | − 1.72473i | −0.506284 | − | 0.862367i | \(-0.668981\pi\) | ||||
0.506284 | − | 0.862367i | \(-0.331019\pi\) | |||||||
\(594\) | 0 | 0 | ||||||||
\(595\) | 0 | 0 | ||||||||
\(596\) | 0 | 0 | ||||||||
\(597\) | 0 | 0 | ||||||||
\(598\) | 0 | 0 | ||||||||
\(599\) | −16.0000 | −0.653742 | −0.326871 | − | 0.945069i | \(-0.605994\pi\) | ||||
−0.326871 | + | 0.945069i | \(0.605994\pi\) | |||||||
\(600\) | 0 | 0 | ||||||||
\(601\) | 30.0000 | 1.22373 | 0.611863 | − | 0.790964i | \(-0.290420\pi\) | ||||
0.611863 | + | 0.790964i | \(0.290420\pi\) | |||||||
\(602\) | 0 | 0 | ||||||||
\(603\) | 0 | 0 | ||||||||
\(604\) | 0 | 0 | ||||||||
\(605\) | 0 | 0 | ||||||||
\(606\) | 0 | 0 | ||||||||
\(607\) | 16.0000i | 0.649420i | 0.945814 | + | 0.324710i | \(0.105267\pi\) | ||||
−0.945814 | + | 0.324710i | \(0.894733\pi\) | |||||||
\(608\) | 0 | 0 | ||||||||
\(609\) | 0 | 0 | ||||||||
\(610\) | 0 | 0 | ||||||||
\(611\) | −24.0000 | −0.970936 | ||||||||
\(612\) | 0 | 0 | ||||||||
\(613\) | 2.00000i | 0.0807792i | 0.999184 | + | 0.0403896i | \(0.0128599\pi\) | ||||
−0.999184 | + | 0.0403896i | \(0.987140\pi\) | |||||||
\(614\) | 0 | 0 | ||||||||
\(615\) | 0 | 0 | ||||||||
\(616\) | 0 | 0 | ||||||||
\(617\) | − 10.0000i | − 0.402585i | −0.979531 | − | 0.201292i | \(-0.935486\pi\) | ||||
0.979531 | − | 0.201292i | \(-0.0645141\pi\) | |||||||
\(618\) | 0 | 0 | ||||||||
\(619\) | 48.0000 | 1.92928 | 0.964641 | − | 0.263566i | \(-0.0848986\pi\) | ||||
0.964641 | + | 0.263566i | \(0.0848986\pi\) | |||||||
\(620\) | 0 | 0 | ||||||||
\(621\) | 0 | 0 | ||||||||
\(622\) | 0 | 0 | ||||||||
\(623\) | 28.0000i | 1.12180i | ||||||||
\(624\) | 0 | 0 | ||||||||
\(625\) | 0 | 0 | ||||||||
\(626\) | 0 | 0 | ||||||||
\(627\) | 0 | 0 | ||||||||
\(628\) | 0 | 0 | ||||||||
\(629\) | −24.0000 | −0.956943 | ||||||||
\(630\) | 0 | 0 | ||||||||
\(631\) | −40.0000 | −1.59237 | −0.796187 | − | 0.605050i | \(-0.793153\pi\) | ||||
−0.796187 | + | 0.605050i | \(0.793153\pi\) | |||||||
\(632\) | 0 | 0 | ||||||||
\(633\) | 0 | 0 | ||||||||
\(634\) | 0 | 0 | ||||||||
\(635\) | 0 | 0 | ||||||||
\(636\) | 0 | 0 | ||||||||
\(637\) | 12.0000i | 0.475457i | ||||||||
\(638\) | 0 | 0 | ||||||||
\(639\) | 0 | 0 | ||||||||
\(640\) | 0 | 0 | ||||||||
\(641\) | 14.0000 | 0.552967 | 0.276483 | − | 0.961019i | \(-0.410831\pi\) | ||||
0.276483 | + | 0.961019i | \(0.410831\pi\) | |||||||
\(642\) | 0 | 0 | ||||||||
\(643\) | 34.0000i | 1.34083i | 0.741987 | + | 0.670415i | \(0.233884\pi\) | ||||
−0.741987 | + | 0.670415i | \(0.766116\pi\) | |||||||
\(644\) | 0 | 0 | ||||||||
\(645\) | 0 | 0 | ||||||||
\(646\) | 0 | 0 | ||||||||
\(647\) | − 6.00000i | − 0.235884i | −0.993020 | − | 0.117942i | \(-0.962370\pi\) | ||||
0.993020 | − | 0.117942i | \(-0.0376297\pi\) | |||||||
\(648\) | 0 | 0 | ||||||||
\(649\) | −48.0000 | −1.88416 | ||||||||
\(650\) | 0 | 0 | ||||||||
\(651\) | 0 | 0 | ||||||||
\(652\) | 0 | 0 | ||||||||
\(653\) | 10.0000i | 0.391330i | 0.980671 | + | 0.195665i | \(0.0626866\pi\) | ||||
−0.980671 | + | 0.195665i | \(0.937313\pi\) | |||||||
\(654\) | 0 | 0 | ||||||||
\(655\) | 0 | 0 | ||||||||
\(656\) | 0 | 0 | ||||||||
\(657\) | 30.0000i | 1.17041i | ||||||||
\(658\) | 0 | 0 | ||||||||
\(659\) | 36.0000 | 1.40236 | 0.701180 | − | 0.712984i | \(-0.252657\pi\) | ||||
0.701180 | + | 0.712984i | \(0.252657\pi\) | |||||||
\(660\) | 0 | 0 | ||||||||
\(661\) | 42.0000 | 1.63361 | 0.816805 | − | 0.576913i | \(-0.195743\pi\) | ||||
0.816805 | + | 0.576913i | \(0.195743\pi\) | |||||||
\(662\) | 0 | 0 | ||||||||
\(663\) | 0 | 0 | ||||||||
\(664\) | 0 | 0 | ||||||||
\(665\) | 0 | 0 | ||||||||
\(666\) | 0 | 0 | ||||||||
\(667\) | 12.0000i | 0.464642i | ||||||||
\(668\) | 0 | 0 | ||||||||
\(669\) | 0 | 0 | ||||||||
\(670\) | 0 | 0 | ||||||||
\(671\) | −24.0000 | −0.926510 | ||||||||
\(672\) | 0 | 0 | ||||||||
\(673\) | − 28.0000i | − 1.07932i | −0.841883 | − | 0.539660i | \(-0.818553\pi\) | ||||
0.841883 | − | 0.539660i | \(-0.181447\pi\) | |||||||
\(674\) | 0 | 0 | ||||||||
\(675\) | 0 | 0 | ||||||||
\(676\) | 0 | 0 | ||||||||
\(677\) | 0 | 0 | 1.00000 | \(0\) | ||||||
−1.00000 | \(\pi\) | |||||||||
\(678\) | 0 | 0 | ||||||||
\(679\) | 32.0000 | 1.22805 | ||||||||
\(680\) | 0 | 0 | ||||||||
\(681\) | 0 | 0 | ||||||||
\(682\) | 0 | 0 | ||||||||
\(683\) | 44.0000i | 1.68361i | 0.539779 | + | 0.841807i | \(0.318508\pi\) | ||||
−0.539779 | + | 0.841807i | \(0.681492\pi\) | |||||||
\(684\) | 0 | 0 | ||||||||
\(685\) | 0 | 0 | ||||||||
\(686\) | 0 | 0 | ||||||||
\(687\) | 0 | 0 | ||||||||
\(688\) | 0 | 0 | ||||||||
\(689\) | 32.0000 | 1.21910 | ||||||||
\(690\) | 0 | 0 | ||||||||
\(691\) | −36.0000 | −1.36950 | −0.684752 | − | 0.728776i | \(-0.740090\pi\) | ||||
−0.684752 | + | 0.728776i | \(0.740090\pi\) | |||||||
\(692\) | 0 | 0 | ||||||||
\(693\) | 24.0000i | 0.911685i | ||||||||
\(694\) | 0 | 0 | ||||||||
\(695\) | 0 | 0 | ||||||||
\(696\) | 0 | 0 | ||||||||
\(697\) | 36.0000i | 1.36360i | ||||||||
\(698\) | 0 | 0 | ||||||||
\(699\) | 0 | 0 | ||||||||
\(700\) | 0 | 0 | ||||||||
\(701\) | −18.0000 | −0.679851 | −0.339925 | − | 0.940452i | \(-0.610402\pi\) | ||||
−0.339925 | + | 0.940452i | \(0.610402\pi\) | |||||||
\(702\) | 0 | 0 | ||||||||
\(703\) | − 4.00000i | − 0.150863i | ||||||||
\(704\) | 0 | 0 | ||||||||
\(705\) | 0 | 0 | ||||||||
\(706\) | 0 | 0 | ||||||||
\(707\) | 28.0000i | 1.05305i | ||||||||
\(708\) | 0 | 0 | ||||||||
\(709\) | 10.0000 | 0.375558 | 0.187779 | − | 0.982211i | \(-0.439871\pi\) | ||||
0.187779 | + | 0.982211i | \(0.439871\pi\) | |||||||
\(710\) | 0 | 0 | ||||||||
\(711\) | 24.0000 | 0.900070 | ||||||||
\(712\) | 0 | 0 | ||||||||
\(713\) | − 16.0000i | − 0.599205i | ||||||||
\(714\) | 0 | 0 | ||||||||
\(715\) | 0 | 0 | ||||||||
\(716\) | 0 | 0 | ||||||||
\(717\) | 0 | 0 | ||||||||
\(718\) | 0 | 0 | ||||||||
\(719\) | 12.0000 | 0.447524 | 0.223762 | − | 0.974644i | \(-0.428166\pi\) | ||||
0.223762 | + | 0.974644i | \(0.428166\pi\) | |||||||
\(720\) | 0 | 0 | ||||||||
\(721\) | 40.0000 | 1.48968 | ||||||||
\(722\) | 0 | 0 | ||||||||
\(723\) | 0 | 0 | ||||||||
\(724\) | 0 | 0 | ||||||||
\(725\) | 0 | 0 | ||||||||
\(726\) | 0 | 0 | ||||||||
\(727\) | 14.0000i | 0.519231i | 0.965712 | + | 0.259616i | \(0.0835959\pi\) | ||||
−0.965712 | + | 0.259616i | \(0.916404\pi\) | |||||||
\(728\) | 0 | 0 | ||||||||
\(729\) | 27.0000 | 1.00000 | ||||||||
\(730\) | 0 | 0 | ||||||||
\(731\) | −36.0000 | −1.33151 | ||||||||
\(732\) | 0 | 0 | ||||||||
\(733\) | − 42.0000i | − 1.55131i | −0.631160 | − | 0.775653i | \(-0.717421\pi\) | ||||
0.631160 | − | 0.775653i | \(-0.282579\pi\) | |||||||
\(734\) | 0 | 0 | ||||||||
\(735\) | 0 | 0 | ||||||||
\(736\) | 0 | 0 | ||||||||
\(737\) | 0 | 0 | ||||||||
\(738\) | 0 | 0 | ||||||||
\(739\) | −44.0000 | −1.61857 | −0.809283 | − | 0.587419i | \(-0.800144\pi\) | ||||
−0.809283 | + | 0.587419i | \(0.800144\pi\) | |||||||
\(740\) | 0 | 0 | ||||||||
\(741\) | 0 | 0 | ||||||||
\(742\) | 0 | 0 | ||||||||
\(743\) | − 24.0000i | − 0.880475i | −0.897881 | − | 0.440237i | \(-0.854894\pi\) | ||||
0.897881 | − | 0.440237i | \(-0.145106\pi\) | |||||||
\(744\) | 0 | 0 | ||||||||
\(745\) | 0 | 0 | ||||||||
\(746\) | 0 | 0 | ||||||||
\(747\) | − 42.0000i | − 1.53670i | ||||||||
\(748\) | 0 | 0 | ||||||||
\(749\) | −8.00000 | −0.292314 | ||||||||
\(750\) | 0 | 0 | ||||||||
\(751\) | 40.0000 | 1.45962 | 0.729810 | − | 0.683650i | \(-0.239608\pi\) | ||||
0.729810 | + | 0.683650i | \(0.239608\pi\) | |||||||
\(752\) | 0 | 0 | ||||||||
\(753\) | 0 | 0 | ||||||||
\(754\) | 0 | 0 | ||||||||
\(755\) | 0 | 0 | ||||||||
\(756\) | 0 | 0 | ||||||||
\(757\) | 42.0000i | 1.52652i | 0.646094 | + | 0.763258i | \(0.276401\pi\) | ||||
−0.646094 | + | 0.763258i | \(0.723599\pi\) | |||||||
\(758\) | 0 | 0 | ||||||||
\(759\) | 0 | 0 | ||||||||
\(760\) | 0 | 0 | ||||||||
\(761\) | −10.0000 | −0.362500 | −0.181250 | − | 0.983437i | \(-0.558014\pi\) | ||||
−0.181250 | + | 0.983437i | \(0.558014\pi\) | |||||||
\(762\) | 0 | 0 | ||||||||
\(763\) | − 4.00000i | − 0.144810i | ||||||||
\(764\) | 0 | 0 | ||||||||
\(765\) | 0 | 0 | ||||||||
\(766\) | 0 | 0 | ||||||||
\(767\) | 48.0000i | 1.73318i | ||||||||
\(768\) | 0 | 0 | ||||||||
\(769\) | 2.00000 | 0.0721218 | 0.0360609 | − | 0.999350i | \(-0.488519\pi\) | ||||
0.0360609 | + | 0.999350i | \(0.488519\pi\) | |||||||
\(770\) | 0 | 0 | ||||||||
\(771\) | 0 | 0 | ||||||||
\(772\) | 0 | 0 | ||||||||
\(773\) | − 36.0000i | − 1.29483i | −0.762138 | − | 0.647415i | \(-0.775850\pi\) | ||||
0.762138 | − | 0.647415i | \(-0.224150\pi\) | |||||||
\(774\) | 0 | 0 | ||||||||
\(775\) | 0 | 0 | ||||||||
\(776\) | 0 | 0 | ||||||||
\(777\) | 0 | 0 | ||||||||
\(778\) | 0 | 0 | ||||||||
\(779\) | −6.00000 | −0.214972 | ||||||||
\(780\) | 0 | 0 | ||||||||
\(781\) | 0 | 0 | ||||||||
\(782\) | 0 | 0 | ||||||||
\(783\) | 0 | 0 | ||||||||
\(784\) | 0 | 0 | ||||||||
\(785\) | 0 | 0 | ||||||||
\(786\) | 0 | 0 | ||||||||
\(787\) | 12.0000i | 0.427754i | 0.976861 | + | 0.213877i | \(0.0686091\pi\) | ||||
−0.976861 | + | 0.213877i | \(0.931391\pi\) | |||||||
\(788\) | 0 | 0 | ||||||||
\(789\) | 0 | 0 | ||||||||
\(790\) | 0 | 0 | ||||||||
\(791\) | 0 | 0 | ||||||||
\(792\) | 0 | 0 | ||||||||
\(793\) | 24.0000i | 0.852265i | ||||||||
\(794\) | 0 | 0 | ||||||||
\(795\) | 0 | 0 | ||||||||
\(796\) | 0 | 0 | ||||||||
\(797\) | 16.0000i | 0.566749i | 0.959009 | + | 0.283375i | \(0.0914540\pi\) | ||||
−0.959009 | + | 0.283375i | \(0.908546\pi\) | |||||||
\(798\) | 0 | 0 | ||||||||
\(799\) | −36.0000 | −1.27359 | ||||||||
\(800\) | 0 | 0 | ||||||||
\(801\) | −42.0000 | −1.48400 | ||||||||
\(802\) | 0 | 0 | ||||||||
\(803\) | − 40.0000i | − 1.41157i | ||||||||
\(804\) | 0 | 0 | ||||||||
\(805\) | 0 | 0 | ||||||||
\(806\) | 0 | 0 | ||||||||
\(807\) | 0 | 0 | ||||||||
\(808\) | 0 | 0 | ||||||||
\(809\) | −10.0000 | −0.351581 | −0.175791 | − | 0.984428i | \(-0.556248\pi\) | ||||
−0.175791 | + | 0.984428i | \(0.556248\pi\) | |||||||
\(810\) | 0 | 0 | ||||||||
\(811\) | 28.0000 | 0.983213 | 0.491606 | − | 0.870817i | \(-0.336410\pi\) | ||||
0.491606 | + | 0.870817i | \(0.336410\pi\) | |||||||
\(812\) | 0 | 0 | ||||||||
\(813\) | 0 | 0 | ||||||||
\(814\) | 0 | 0 | ||||||||
\(815\) | 0 | 0 | ||||||||
\(816\) | 0 | 0 | ||||||||
\(817\) | − 6.00000i | − 0.209913i | ||||||||
\(818\) | 0 | 0 | ||||||||
\(819\) | 24.0000 | 0.838628 | ||||||||
\(820\) | 0 | 0 | ||||||||
\(821\) | −22.0000 | −0.767805 | −0.383903 | − | 0.923374i | \(-0.625420\pi\) | ||||
−0.383903 | + | 0.923374i | \(0.625420\pi\) | |||||||
\(822\) | 0 | 0 | ||||||||
\(823\) | − 50.0000i | − 1.74289i | −0.490493 | − | 0.871445i | \(-0.663183\pi\) | ||||
0.490493 | − | 0.871445i | \(-0.336817\pi\) | |||||||
\(824\) | 0 | 0 | ||||||||
\(825\) | 0 | 0 | ||||||||
\(826\) | 0 | 0 | ||||||||
\(827\) | 24.0000i | 0.834562i | 0.908778 | + | 0.417281i | \(0.137017\pi\) | ||||
−0.908778 | + | 0.417281i | \(0.862983\pi\) | |||||||
\(828\) | 0 | 0 | ||||||||
\(829\) | −14.0000 | −0.486240 | −0.243120 | − | 0.969996i | \(-0.578171\pi\) | ||||
−0.243120 | + | 0.969996i | \(0.578171\pi\) | |||||||
\(830\) | 0 | 0 | ||||||||
\(831\) | 0 | 0 | ||||||||
\(832\) | 0 | 0 | ||||||||
\(833\) | 18.0000i | 0.623663i | ||||||||
\(834\) | 0 | 0 | ||||||||
\(835\) | 0 | 0 | ||||||||
\(836\) | 0 | 0 | ||||||||
\(837\) | 0 | 0 | ||||||||
\(838\) | 0 | 0 | ||||||||
\(839\) | 40.0000 | 1.38095 | 0.690477 | − | 0.723355i | \(-0.257401\pi\) | ||||
0.690477 | + | 0.723355i | \(0.257401\pi\) | |||||||
\(840\) | 0 | 0 | ||||||||
\(841\) | 7.00000 | 0.241379 | ||||||||
\(842\) | 0 | 0 | ||||||||
\(843\) | 0 | 0 | ||||||||
\(844\) | 0 | 0 | ||||||||
\(845\) | 0 | 0 | ||||||||
\(846\) | 0 | 0 | ||||||||
\(847\) | − 10.0000i | − 0.343604i | ||||||||
\(848\) | 0 | 0 | ||||||||
\(849\) | 0 | 0 | ||||||||
\(850\) | 0 | 0 | ||||||||
\(851\) | −8.00000 | −0.274236 | ||||||||
\(852\) | 0 | 0 | ||||||||
\(853\) | − 18.0000i | − 0.616308i | −0.951336 | − | 0.308154i | \(-0.900289\pi\) | ||||
0.951336 | − | 0.308154i | \(-0.0997113\pi\) | |||||||
\(854\) | 0 | 0 | ||||||||
\(855\) | 0 | 0 | ||||||||
\(856\) | 0 | 0 | ||||||||
\(857\) | − 52.0000i | − 1.77629i | −0.459567 | − | 0.888143i | \(-0.651995\pi\) | ||||
0.459567 | − | 0.888143i | \(-0.348005\pi\) | |||||||
\(858\) | 0 | 0 | ||||||||
\(859\) | 28.0000 | 0.955348 | 0.477674 | − | 0.878537i | \(-0.341480\pi\) | ||||
0.477674 | + | 0.878537i | \(0.341480\pi\) | |||||||
\(860\) | 0 | 0 | ||||||||
\(861\) | 0 | 0 | ||||||||
\(862\) | 0 | 0 | ||||||||
\(863\) | 40.0000i | 1.36162i | 0.732462 | + | 0.680808i | \(0.238371\pi\) | ||||
−0.732462 | + | 0.680808i | \(0.761629\pi\) | |||||||
\(864\) | 0 | 0 | ||||||||
\(865\) | 0 | 0 | ||||||||
\(866\) | 0 | 0 | ||||||||
\(867\) | 0 | 0 | ||||||||
\(868\) | 0 | 0 | ||||||||
\(869\) | −32.0000 | −1.08553 | ||||||||
\(870\) | 0 | 0 | ||||||||
\(871\) | 0 | 0 | ||||||||
\(872\) | 0 | 0 | ||||||||
\(873\) | 48.0000i | 1.62455i | ||||||||
\(874\) | 0 | 0 | ||||||||
\(875\) | 0 | 0 | ||||||||
\(876\) | 0 | 0 | ||||||||
\(877\) | − 24.0000i | − 0.810422i | −0.914223 | − | 0.405211i | \(-0.867198\pi\) | ||||
0.914223 | − | 0.405211i | \(-0.132802\pi\) | |||||||
\(878\) | 0 | 0 | ||||||||
\(879\) | 0 | 0 | ||||||||
\(880\) | 0 | 0 | ||||||||
\(881\) | 10.0000 | 0.336909 | 0.168454 | − | 0.985709i | \(-0.446122\pi\) | ||||
0.168454 | + | 0.985709i | \(0.446122\pi\) | |||||||
\(882\) | 0 | 0 | ||||||||
\(883\) | 6.00000i | 0.201916i | 0.994891 | + | 0.100958i | \(0.0321908\pi\) | ||||
−0.994891 | + | 0.100958i | \(0.967809\pi\) | |||||||
\(884\) | 0 | 0 | ||||||||
\(885\) | 0 | 0 | ||||||||
\(886\) | 0 | 0 | ||||||||
\(887\) | − 4.00000i | − 0.134307i | −0.997743 | − | 0.0671534i | \(-0.978608\pi\) | ||||
0.997743 | − | 0.0671534i | \(-0.0213917\pi\) | |||||||
\(888\) | 0 | 0 | ||||||||
\(889\) | 24.0000 | 0.804934 | ||||||||
\(890\) | 0 | 0 | ||||||||
\(891\) | −36.0000 | −1.20605 | ||||||||
\(892\) | 0 | 0 | ||||||||
\(893\) | − 6.00000i | − 0.200782i | ||||||||
\(894\) | 0 | 0 | ||||||||
\(895\) | 0 | 0 | ||||||||
\(896\) | 0 | 0 | ||||||||
\(897\) | 0 | 0 | ||||||||
\(898\) | 0 | 0 | ||||||||
\(899\) | −48.0000 | −1.60089 | ||||||||
\(900\) | 0 | 0 | ||||||||
\(901\) | 48.0000 | 1.59911 | ||||||||
\(902\) | 0 | 0 | ||||||||
\(903\) | 0 | 0 | ||||||||
\(904\) | 0 | 0 | ||||||||
\(905\) | 0 | 0 | ||||||||
\(906\) | 0 | 0 | ||||||||
\(907\) | 44.0000i | 1.46100i | 0.682915 | + | 0.730498i | \(0.260712\pi\) | ||||
−0.682915 | + | 0.730498i | \(0.739288\pi\) | |||||||
\(908\) | 0 | 0 | ||||||||
\(909\) | −42.0000 | −1.39305 | ||||||||
\(910\) | 0 | 0 | ||||||||
\(911\) | 24.0000 | 0.795155 | 0.397578 | − | 0.917568i | \(-0.369851\pi\) | ||||
0.397578 | + | 0.917568i | \(0.369851\pi\) | |||||||
\(912\) | 0 | 0 | ||||||||
\(913\) | 56.0000i | 1.85333i | ||||||||
\(914\) | 0 | 0 | ||||||||
\(915\) | 0 | 0 | ||||||||
\(916\) | 0 | 0 | ||||||||
\(917\) | 16.0000i | 0.528367i | ||||||||
\(918\) | 0 | 0 | ||||||||
\(919\) | 32.0000 | 1.05558 | 0.527791 | − | 0.849374i | \(-0.323020\pi\) | ||||
0.527791 | + | 0.849374i | \(0.323020\pi\) | |||||||
\(920\) | 0 | 0 | ||||||||
\(921\) | 0 | 0 | ||||||||
\(922\) | 0 | 0 | ||||||||
\(923\) | 0 | 0 | ||||||||
\(924\) | 0 | 0 | ||||||||
\(925\) | 0 | 0 | ||||||||
\(926\) | 0 | 0 | ||||||||
\(927\) | 60.0000i | 1.97066i | ||||||||
\(928\) | 0 | 0 | ||||||||
\(929\) | 42.0000 | 1.37798 | 0.688988 | − | 0.724773i | \(-0.258055\pi\) | ||||
0.688988 | + | 0.724773i | \(0.258055\pi\) | |||||||
\(930\) | 0 | 0 | ||||||||
\(931\) | −3.00000 | −0.0983210 | ||||||||
\(932\) | 0 | 0 | ||||||||
\(933\) | 0 | 0 | ||||||||
\(934\) | 0 | 0 | ||||||||
\(935\) | 0 | 0 | ||||||||
\(936\) | 0 | 0 | ||||||||
\(937\) | 38.0000i | 1.24141i | 0.784046 | + | 0.620703i | \(0.213153\pi\) | ||||
−0.784046 | + | 0.620703i | \(0.786847\pi\) | |||||||
\(938\) | 0 | 0 | ||||||||
\(939\) | 0 | 0 | ||||||||
\(940\) | 0 | 0 | ||||||||
\(941\) | −18.0000 | −0.586783 | −0.293392 | − | 0.955992i | \(-0.594784\pi\) | ||||
−0.293392 | + | 0.955992i | \(0.594784\pi\) | |||||||
\(942\) | 0 | 0 | ||||||||
\(943\) | 12.0000i | 0.390774i | ||||||||
\(944\) | 0 | 0 | ||||||||
\(945\) | 0 | 0 | ||||||||
\(946\) | 0 | 0 | ||||||||
\(947\) | 18.0000i | 0.584921i | 0.956278 | + | 0.292461i | \(0.0944741\pi\) | ||||
−0.956278 | + | 0.292461i | \(0.905526\pi\) | |||||||
\(948\) | 0 | 0 | ||||||||
\(949\) | −40.0000 | −1.29845 | ||||||||
\(950\) | 0 | 0 | ||||||||
\(951\) | 0 | 0 | ||||||||
\(952\) | 0 | 0 | ||||||||
\(953\) | − 60.0000i | − 1.94359i | −0.235826 | − | 0.971795i | \(-0.575780\pi\) | ||||
0.235826 | − | 0.971795i | \(-0.424220\pi\) | |||||||
\(954\) | 0 | 0 | ||||||||
\(955\) | 0 | 0 | ||||||||
\(956\) | 0 | 0 | ||||||||
\(957\) | 0 | 0 | ||||||||
\(958\) | 0 | 0 | ||||||||
\(959\) | 12.0000 | 0.387500 | ||||||||
\(960\) | 0 | 0 | ||||||||
\(961\) | 33.0000 | 1.06452 | ||||||||
\(962\) | 0 | 0 | ||||||||
\(963\) | − 12.0000i | − 0.386695i | ||||||||
\(964\) | 0 | 0 | ||||||||
\(965\) | 0 | 0 | ||||||||
\(966\) | 0 | 0 | ||||||||
\(967\) | − 14.0000i | − 0.450210i | −0.974335 | − | 0.225105i | \(-0.927728\pi\) | ||||
0.974335 | − | 0.225105i | \(-0.0722725\pi\) | |||||||
\(968\) | 0 | 0 | ||||||||
\(969\) | 0 | 0 | ||||||||
\(970\) | 0 | 0 | ||||||||
\(971\) | 4.00000 | 0.128366 | 0.0641831 | − | 0.997938i | \(-0.479556\pi\) | ||||
0.0641831 | + | 0.997938i | \(0.479556\pi\) | |||||||
\(972\) | 0 | 0 | ||||||||
\(973\) | − 16.0000i | − 0.512936i | ||||||||
\(974\) | 0 | 0 | ||||||||
\(975\) | 0 | 0 | ||||||||
\(976\) | 0 | 0 | ||||||||
\(977\) | 4.00000i | 0.127971i | 0.997951 | + | 0.0639857i | \(0.0203812\pi\) | ||||
−0.997951 | + | 0.0639857i | \(0.979619\pi\) | |||||||
\(978\) | 0 | 0 | ||||||||
\(979\) | 56.0000 | 1.78977 | ||||||||
\(980\) | 0 | 0 | ||||||||
\(981\) | 6.00000 | 0.191565 | ||||||||
\(982\) | 0 | 0 | ||||||||
\(983\) | 0 | 0 | 1.00000 | \(0\) | ||||||
−1.00000 | \(\pi\) | |||||||||
\(984\) | 0 | 0 | ||||||||
\(985\) | 0 | 0 | ||||||||
\(986\) | 0 | 0 | ||||||||
\(987\) | 0 | 0 | ||||||||
\(988\) | 0 | 0 | ||||||||
\(989\) | −12.0000 | −0.381578 | ||||||||
\(990\) | 0 | 0 | ||||||||
\(991\) | −48.0000 | −1.52477 | −0.762385 | − | 0.647124i | \(-0.775972\pi\) | ||||
−0.762385 | + | 0.647124i | \(0.775972\pi\) | |||||||
\(992\) | 0 | 0 | ||||||||
\(993\) | 0 | 0 | ||||||||
\(994\) | 0 | 0 | ||||||||
\(995\) | 0 | 0 | ||||||||
\(996\) | 0 | 0 | ||||||||
\(997\) | 22.0000i | 0.696747i | 0.937356 | + | 0.348373i | \(0.113266\pi\) | ||||
−0.937356 | + | 0.348373i | \(0.886734\pi\) | |||||||
\(998\) | 0 | 0 | ||||||||
\(999\) | 0 | 0 |
(See \(a_n\) instead)
(See \(a_n\) instead)
(See \(a_n\) instead)
(See only \(a_p\))
(See only \(a_p\))
(See only \(a_p\))
Twists
By twisting character | |||||||
---|---|---|---|---|---|---|---|
Char | Parity | Ord | Type | Twist | Min | Dim | |
1.1 | even | 1 | trivial | 1900.2.c.c.1749.1 | 2 | ||
5.2 | odd | 4 | 1900.2.a.c.1.1 | 1 | |||
5.3 | odd | 4 | 380.2.a.a.1.1 | ✓ | 1 | ||
5.4 | even | 2 | inner | 1900.2.c.c.1749.2 | 2 | ||
15.8 | even | 4 | 3420.2.a.d.1.1 | 1 | |||
20.3 | even | 4 | 1520.2.a.e.1.1 | 1 | |||
20.7 | even | 4 | 7600.2.a.j.1.1 | 1 | |||
40.3 | even | 4 | 6080.2.a.n.1.1 | 1 | |||
40.13 | odd | 4 | 6080.2.a.m.1.1 | 1 | |||
95.18 | even | 4 | 7220.2.a.d.1.1 | 1 |
By twisted newform | |||||||
---|---|---|---|---|---|---|---|
Twist | Min | Dim | Char | Parity | Ord | Type | |
380.2.a.a.1.1 | ✓ | 1 | 5.3 | odd | 4 | ||
1520.2.a.e.1.1 | 1 | 20.3 | even | 4 | |||
1900.2.a.c.1.1 | 1 | 5.2 | odd | 4 | |||
1900.2.c.c.1749.1 | 2 | 1.1 | even | 1 | trivial | ||
1900.2.c.c.1749.2 | 2 | 5.4 | even | 2 | inner | ||
3420.2.a.d.1.1 | 1 | 15.8 | even | 4 | |||
6080.2.a.m.1.1 | 1 | 40.13 | odd | 4 | |||
6080.2.a.n.1.1 | 1 | 40.3 | even | 4 | |||
7220.2.a.d.1.1 | 1 | 95.18 | even | 4 | |||
7600.2.a.j.1.1 | 1 | 20.7 | even | 4 |