gp: [N,k,chi] = [192,4,Mod(191,192)]
mf = mfinit([N,k,chi],0)
lf = mfeigenbasis(mf)
sage: from sage.modular.dirichlet import DirichletCharacter
H = DirichletGroup(192, base_ring=CyclotomicField(2))
chi = DirichletCharacter(H, H._module([1, 0, 1]))
N = Newforms(chi, 4, names="a")
magma: //Please install CHIMP (https://github.com/edgarcosta/CHIMP) if you want to run this code
chi := DirichletCharacter("192.191");
S:= CuspForms(chi, 4);
N := Newforms(S);
Newform invariants
sage: traces = [2,0,0,0,0,0,0,0,-54]
f = next(g for g in N if [g.coefficient(i+1).trace() for i in range(9)] == traces)
gp: f = lf[1] \\ Warning: the index may be different
sage: f.q_expansion() # note that sage often uses an isomorphic number field
gp: mfcoefs(f, 20)
Coefficients of the q q q -expansion are expressed in terms of β = 3 − 3 \beta = 3\sqrt{-3} β = 3 − 3 .
We also show the integral q q q -expansion of the trace form .
Character values
We give the values of χ \chi χ on generators for ( Z / 192 Z ) × \left(\mathbb{Z}/192\mathbb{Z}\right)^\times ( Z / 1 9 2 Z ) × .
n n n
65 65 6 5
127 127 1 2 7
133 133 1 3 3
χ ( n ) \chi(n) χ ( n )
− 1 -1 − 1
− 1 -1 − 1
1 1 1
For each embedding ι m \iota_m ι m of the coefficient field, the values ι m ( a n ) \iota_m(a_n) ι m ( a n ) are shown below.
For more information on an embedded modular form you can click on its label.
gp: mfembed(f)
Refresh table
This newform subspace can be constructed as the kernel of the linear operator
T 5 T_{5} T 5
T5
acting on S 4 n e w ( 192 , [ χ ] ) S_{4}^{\mathrm{new}}(192, [\chi]) S 4 n e w ( 1 9 2 , [ χ ] ) .
p p p
F p ( T ) F_p(T) F p ( T )
2 2 2
T 2 T^{2} T 2
T^2
3 3 3
T 2 + 27 T^{2} + 27 T 2 + 2 7
T^2 + 27
5 5 5
T 2 T^{2} T 2
T^2
7 7 7
T 2 + 972 T^{2} + 972 T 2 + 9 7 2
T^2 + 972
11 11 1 1
T 2 T^{2} T 2
T^2
13 13 1 3
( T + 70 ) 2 (T + 70)^{2} ( T + 7 0 ) 2
(T + 70)^2
17 17 1 7
T 2 T^{2} T 2
T^2
19 19 1 9
T 2 + 24300 T^{2} + 24300 T 2 + 2 4 3 0 0
T^2 + 24300
23 23 2 3
T 2 T^{2} T 2
T^2
29 29 2 9
T 2 T^{2} T 2
T^2
31 31 3 1
T 2 + 24300 T^{2} + 24300 T 2 + 2 4 3 0 0
T^2 + 24300
37 37 3 7
( T + 110 ) 2 (T + 110)^{2} ( T + 1 1 0 ) 2
(T + 110)^2
41 41 4 1
T 2 T^{2} T 2
T^2
43 43 4 3
T 2 + 47628 T^{2} + 47628 T 2 + 4 7 6 2 8
T^2 + 47628
47 47 4 7
T 2 T^{2} T 2
T^2
53 53 5 3
T 2 T^{2} T 2
T^2
59 59 5 9
T 2 T^{2} T 2
T^2
61 61 6 1
( T + 182 ) 2 (T + 182)^{2} ( T + 1 8 2 ) 2
(T + 182)^2
67 67 6 7
T 2 + 428652 T^{2} + 428652 T 2 + 4 2 8 6 5 2
T^2 + 428652
71 71 7 1
T 2 T^{2} T 2
T^2
73 73 7 3
( T + 1190 ) 2 (T + 1190)^{2} ( T + 1 1 9 0 ) 2
(T + 1190)^2
79 79 7 9
T 2 + 1190700 T^{2} + 1190700 T 2 + 1 1 9 0 7 0 0
T^2 + 1190700
83 83 8 3
T 2 T^{2} T 2
T^2
89 89 8 9
T 2 T^{2} T 2
T^2
97 97 9 7
( T − 1330 ) 2 (T - 1330)^{2} ( T − 1 3 3 0 ) 2
(T - 1330)^2
show more
show less