Properties

Label 192.4.c.a
Level 192192
Weight 44
Character orbit 192.c
Analytic conductor 11.32811.328
Analytic rank 00
Dimension 22
CM discriminant -3
Inner twists 44

Related objects

Downloads

Learn more

Show commands: Magma / Pari/GP / SageMath

Newspace parameters

Copy content comment:Compute space of new eigenforms
 
Copy content gp:[N,k,chi] = [192,4,Mod(191,192)] mf = mfinit([N,k,chi],0) lf = mfeigenbasis(mf)
 
Copy content sage:from sage.modular.dirichlet import DirichletCharacter H = DirichletGroup(192, base_ring=CyclotomicField(2)) chi = DirichletCharacter(H, H._module([1, 0, 1])) N = Newforms(chi, 4, names="a")
 
Copy content magma://Please install CHIMP (https://github.com/edgarcosta/CHIMP) if you want to run this code chi := DirichletCharacter("192.191"); S:= CuspForms(chi, 4); N := Newforms(S);
 
Level: N N == 192=263 192 = 2^{6} \cdot 3
Weight: k k == 4 4
Character orbit: [χ][\chi] == 192.c (of order 22, degree 11, not minimal)

Newform invariants

Copy content comment:select newform
 
Copy content sage:traces = [2,0,0,0,0,0,0,0,-54] f = next(g for g in N if [g.coefficient(i+1).trace() for i in range(9)] == traces)
 
Copy content gp:f = lf[1] \\ Warning: the index may be different
 
Self dual: no
Analytic conductor: 11.328366721111.3283667211
Analytic rank: 00
Dimension: 22
Coefficient field: Q(3)\Q(\sqrt{-3})
Copy content comment:defining polynomial
 
Copy content gp:f.mod \\ as an extension of the character field
 
Defining polynomial: x2x+1 x^{2} - x + 1 Copy content Toggle raw display
Coefficient ring: Z[a1,a2,a3]\Z[a_1, a_2, a_3]
Coefficient ring index: 23 2\cdot 3
Twist minimal: no (minimal twist has level 48)
Sato-Tate group: U(1)[D2]\mathrm{U}(1)[D_{2}]

qq-expansion

Copy content comment:q-expansion
 
Copy content sage:f.q_expansion() # note that sage often uses an isomorphic number field
 
Copy content gp:mfcoefs(f, 20)
 

Coefficients of the qq-expansion are expressed in terms of β=33\beta = 3\sqrt{-3}. We also show the integral qq-expansion of the trace form.

f(q)f(q) == q+βq36βq727q970q1330βq19+162q21+125q2527βq2730βq31110q3770βq39+42βq43629q49+810q57++1330q97+O(q100) q + \beta q^{3} - 6 \beta q^{7} - 27 q^{9} - 70 q^{13} - 30 \beta q^{19} + 162 q^{21} + 125 q^{25} - 27 \beta q^{27} - 30 \beta q^{31} - 110 q^{37} - 70 \beta q^{39} + 42 \beta q^{43} - 629 q^{49} + 810 q^{57} + \cdots + 1330 q^{97} +O(q^{100}) Copy content Toggle raw display
Tr(f)(q)\operatorname{Tr}(f)(q) == 2q54q9140q13+324q21+250q25220q371258q49+1620q57364q612380q73+1458q81+1620q93+2660q97+O(q100) 2 q - 54 q^{9} - 140 q^{13} + 324 q^{21} + 250 q^{25} - 220 q^{37} - 1258 q^{49} + 1620 q^{57} - 364 q^{61} - 2380 q^{73} + 1458 q^{81} + 1620 q^{93} + 2660 q^{97}+O(q^{100}) Copy content Toggle raw display

Character values

We give the values of χ\chi on generators for (Z/192Z)×\left(\mathbb{Z}/192\mathbb{Z}\right)^\times.

nn 6565 127127 133133
χ(n)\chi(n) 1-1 1-1 11

Embeddings

For each embedding ιm\iota_m of the coefficient field, the values ιm(an)\iota_m(a_n) are shown below.

For more information on an embedded modular form you can click on its label.

Copy content comment:embeddings in the coefficient field
 
Copy content gp:mfembed(f)
 
Label   ιm(ν)\iota_m(\nu) a2 a_{2} a3 a_{3} a4 a_{4} a5 a_{5} a6 a_{6} a7 a_{7} a8 a_{8} a9 a_{9} a10 a_{10}
191.1
0.500000 0.866025i
0.500000 + 0.866025i
0 5.19615i 0 0 0 31.1769i 0 −27.0000 0
191.2 0 5.19615i 0 0 0 31.1769i 0 −27.0000 0
nn: e.g. 2-40 or 990-1000
Significant digits:
Format:

Inner twists

Char Parity Ord Mult Type
1.a even 1 1 trivial
3.b odd 2 1 CM by Q(3)\Q(\sqrt{-3})
4.b odd 2 1 inner
12.b even 2 1 inner

Twists

       By twisting character orbit
Char Parity Ord Mult Type Twist Min Dim
1.a even 1 1 trivial 192.4.c.a 2
3.b odd 2 1 CM 192.4.c.a 2
4.b odd 2 1 inner 192.4.c.a 2
8.b even 2 1 48.4.c.a 2
8.d odd 2 1 48.4.c.a 2
12.b even 2 1 inner 192.4.c.a 2
16.e even 4 2 768.4.f.a 4
16.f odd 4 2 768.4.f.a 4
24.f even 2 1 48.4.c.a 2
24.h odd 2 1 48.4.c.a 2
48.i odd 4 2 768.4.f.a 4
48.k even 4 2 768.4.f.a 4
    
        By twisted newform orbit
Twist Min Dim Char Parity Ord Mult Type
48.4.c.a 2 8.b even 2 1
48.4.c.a 2 8.d odd 2 1
48.4.c.a 2 24.f even 2 1
48.4.c.a 2 24.h odd 2 1
192.4.c.a 2 1.a even 1 1 trivial
192.4.c.a 2 3.b odd 2 1 CM
192.4.c.a 2 4.b odd 2 1 inner
192.4.c.a 2 12.b even 2 1 inner
768.4.f.a 4 16.e even 4 2
768.4.f.a 4 16.f odd 4 2
768.4.f.a 4 48.i odd 4 2
768.4.f.a 4 48.k even 4 2

Hecke kernels

This newform subspace can be constructed as the kernel of the linear operator T5 T_{5} acting on S4new(192,[χ])S_{4}^{\mathrm{new}}(192, [\chi]). Copy content Toggle raw display

Hecke characteristic polynomials

pp Fp(T)F_p(T)
22 T2 T^{2} Copy content Toggle raw display
33 T2+27 T^{2} + 27 Copy content Toggle raw display
55 T2 T^{2} Copy content Toggle raw display
77 T2+972 T^{2} + 972 Copy content Toggle raw display
1111 T2 T^{2} Copy content Toggle raw display
1313 (T+70)2 (T + 70)^{2} Copy content Toggle raw display
1717 T2 T^{2} Copy content Toggle raw display
1919 T2+24300 T^{2} + 24300 Copy content Toggle raw display
2323 T2 T^{2} Copy content Toggle raw display
2929 T2 T^{2} Copy content Toggle raw display
3131 T2+24300 T^{2} + 24300 Copy content Toggle raw display
3737 (T+110)2 (T + 110)^{2} Copy content Toggle raw display
4141 T2 T^{2} Copy content Toggle raw display
4343 T2+47628 T^{2} + 47628 Copy content Toggle raw display
4747 T2 T^{2} Copy content Toggle raw display
5353 T2 T^{2} Copy content Toggle raw display
5959 T2 T^{2} Copy content Toggle raw display
6161 (T+182)2 (T + 182)^{2} Copy content Toggle raw display
6767 T2+428652 T^{2} + 428652 Copy content Toggle raw display
7171 T2 T^{2} Copy content Toggle raw display
7373 (T+1190)2 (T + 1190)^{2} Copy content Toggle raw display
7979 T2+1190700 T^{2} + 1190700 Copy content Toggle raw display
8383 T2 T^{2} Copy content Toggle raw display
8989 T2 T^{2} Copy content Toggle raw display
9797 (T1330)2 (T - 1330)^{2} Copy content Toggle raw display
show more
show less