Properties

Label 192.6.a.m
Level 192192
Weight 66
Character orbit 192.a
Self dual yes
Analytic conductor 30.79430.794
Analytic rank 00
Dimension 11
CM no
Inner twists 11

Related objects

Downloads

Learn more

Show commands: Magma / PariGP / SageMath

Newspace parameters

comment: Compute space of new eigenforms
 
[N,k,chi] = [192,6,Mod(1,192)]
 
mf = mfinit([N,k,chi],0)
 
lf = mfeigenbasis(mf)
 
from sage.modular.dirichlet import DirichletCharacter
 
H = DirichletGroup(192, base_ring=CyclotomicField(2))
 
chi = DirichletCharacter(H, H._module([0, 0, 0]))
 
N = Newforms(chi, 6, names="a")
 
//Please install CHIMP (https://github.com/edgarcosta/CHIMP) if you want to run this code
 
chi := DirichletCharacter("192.1");
 
S:= CuspForms(chi, 6);
 
N := Newforms(S);
 
Level: N N == 192=263 192 = 2^{6} \cdot 3
Weight: k k == 6 6
Character orbit: [χ][\chi] == 192.a (trivial)

Newform invariants

comment: select newform
 
sage: f = N[0] # Warning: the index may be different
 
gp: f = lf[1] \\ Warning: the index may be different
 
Self dual: yes
Analytic conductor: 30.793693404130.7936934041
Analytic rank: 00
Dimension: 11
Coefficient field: Q\mathbb{Q}
Coefficient ring: Z\mathbb{Z}
Coefficient ring index: 1 1
Twist minimal: no (minimal twist has level 96)
Fricke sign: 1-1
Sato-Tate group: SU(2)\mathrm{SU}(2)

qq-expansion

comment: q-expansion
 
sage: f.q_expansion() # note that sage often uses an isomorphic number field
 
gp: mfcoefs(f, 20)
 
f(q)f(q) == q+9q3+14q5+100q7+81q9220q11+818q13+126q15774q17+1436q19+900q21+192q232929q25+729q27+7022q29+1436q311980q33+17820q99+O(q100) q + 9 q^{3} + 14 q^{5} + 100 q^{7} + 81 q^{9} - 220 q^{11} + 818 q^{13} + 126 q^{15} - 774 q^{17} + 1436 q^{19} + 900 q^{21} + 192 q^{23} - 2929 q^{25} + 729 q^{27} + 7022 q^{29} + 1436 q^{31} - 1980 q^{33}+ \cdots - 17820 q^{99}+O(q^{100}) Copy content Toggle raw display

Embeddings

For each embedding ιm\iota_m of the coefficient field, the values ιm(an)\iota_m(a_n) are shown below.

For more information on an embedded modular form you can click on its label.

comment: embeddings in the coefficient field
 
gp: mfembed(f)
 
Label   ιm(ν)\iota_m(\nu) a2 a_{2} a3 a_{3} a4 a_{4} a5 a_{5} a6 a_{6} a7 a_{7} a8 a_{8} a9 a_{9} a10 a_{10}
1.1
0
0 9.00000 0 14.0000 0 100.000 0 81.0000 0
nn: e.g. 2-40 or 990-1000
Significant digits:
Format:

Atkin-Lehner signs

p p Sign
22 +1 +1
33 1 -1

Inner twists

This newform does not admit any (nontrivial) inner twists.

Twists

       By twisting character orbit
Char Parity Ord Mult Type Twist Min Dim
1.a even 1 1 trivial 192.6.a.m 1
3.b odd 2 1 576.6.a.p 1
4.b odd 2 1 192.6.a.e 1
8.b even 2 1 96.6.a.b 1
8.d odd 2 1 96.6.a.e yes 1
12.b even 2 1 576.6.a.o 1
16.e even 4 2 768.6.d.g 2
16.f odd 4 2 768.6.d.l 2
24.f even 2 1 288.6.a.f 1
24.h odd 2 1 288.6.a.g 1
    
        By twisted newform orbit
Twist Min Dim Char Parity Ord Mult Type
96.6.a.b 1 8.b even 2 1
96.6.a.e yes 1 8.d odd 2 1
192.6.a.e 1 4.b odd 2 1
192.6.a.m 1 1.a even 1 1 trivial
288.6.a.f 1 24.f even 2 1
288.6.a.g 1 24.h odd 2 1
576.6.a.o 1 12.b even 2 1
576.6.a.p 1 3.b odd 2 1
768.6.d.g 2 16.e even 4 2
768.6.d.l 2 16.f odd 4 2

Hecke kernels

This newform subspace can be constructed as the intersection of the kernels of the following linear operators acting on S6new(Γ0(192))S_{6}^{\mathrm{new}}(\Gamma_0(192)):

T514 T_{5} - 14 Copy content Toggle raw display
T7100 T_{7} - 100 Copy content Toggle raw display

Hecke characteristic polynomials

pp Fp(T)F_p(T)
22 T T Copy content Toggle raw display
33 T9 T - 9 Copy content Toggle raw display
55 T14 T - 14 Copy content Toggle raw display
77 T100 T - 100 Copy content Toggle raw display
1111 T+220 T + 220 Copy content Toggle raw display
1313 T818 T - 818 Copy content Toggle raw display
1717 T+774 T + 774 Copy content Toggle raw display
1919 T1436 T - 1436 Copy content Toggle raw display
2323 T192 T - 192 Copy content Toggle raw display
2929 T7022 T - 7022 Copy content Toggle raw display
3131 T1436 T - 1436 Copy content Toggle raw display
3737 T3410 T - 3410 Copy content Toggle raw display
4141 T+7838 T + 7838 Copy content Toggle raw display
4343 T16036 T - 16036 Copy content Toggle raw display
4747 T22712 T - 22712 Copy content Toggle raw display
5353 T+27578 T + 27578 Copy content Toggle raw display
5959 T28828 T - 28828 Copy content Toggle raw display
6161 T+12438 T + 12438 Copy content Toggle raw display
6767 T70948 T - 70948 Copy content Toggle raw display
7171 T58832 T - 58832 Copy content Toggle raw display
7373 T79386 T - 79386 Copy content Toggle raw display
7979 T+46948 T + 46948 Copy content Toggle raw display
8383 T+67284 T + 67284 Copy content Toggle raw display
8989 T16106 T - 16106 Copy content Toggle raw display
9797 T+4238 T + 4238 Copy content Toggle raw display
show more
show less