Properties

Label 192.8.a.d
Level 192192
Weight 88
Character orbit 192.a
Self dual yes
Analytic conductor 59.97859.978
Analytic rank 11
Dimension 11
CM no
Inner twists 11

Related objects

Downloads

Learn more

Show commands: Magma / PariGP / SageMath

Newspace parameters

comment: Compute space of new eigenforms
 
[N,k,chi] = [192,8,Mod(1,192)]
 
mf = mfinit([N,k,chi],0)
 
lf = mfeigenbasis(mf)
 
from sage.modular.dirichlet import DirichletCharacter
 
H = DirichletGroup(192, base_ring=CyclotomicField(2))
 
chi = DirichletCharacter(H, H._module([0, 0, 0]))
 
N = Newforms(chi, 8, names="a")
 
//Please install CHIMP (https://github.com/edgarcosta/CHIMP) if you want to run this code
 
chi := DirichletCharacter("192.1");
 
S:= CuspForms(chi, 8);
 
N := Newforms(S);
 
Level: N N == 192=263 192 = 2^{6} \cdot 3
Weight: k k == 8 8
Character orbit: [χ][\chi] == 192.a (trivial)

Newform invariants

comment: select newform
 
sage: f = N[0] # Warning: the index may be different
 
gp: f = lf[1] \\ Warning: the index may be different
 
Self dual: yes
Analytic conductor: 59.977924893059.9779248930
Analytic rank: 11
Dimension: 11
Coefficient field: Q\mathbb{Q}
Coefficient ring: Z\mathbb{Z}
Coefficient ring index: 1 1
Twist minimal: no (minimal twist has level 24)
Fricke sign: 1-1
Sato-Tate group: SU(2)\mathrm{SU}(2)

qq-expansion

comment: q-expansion
 
sage: f.q_expansion() # note that sage often uses an isomorphic number field
 
gp: mfcoefs(f, 20)
 
f(q)f(q) == q27q3+26q51056q7+729q9+6412q115206q13702q156238q17+41492q19+28512q21+29432q2377449q2519683q27+210498q29185240q31++4674348q99+O(q100) q - 27 q^{3} + 26 q^{5} - 1056 q^{7} + 729 q^{9} + 6412 q^{11} - 5206 q^{13} - 702 q^{15} - 6238 q^{17} + 41492 q^{19} + 28512 q^{21} + 29432 q^{23} - 77449 q^{25} - 19683 q^{27} + 210498 q^{29} - 185240 q^{31}+ \cdots + 4674348 q^{99}+O(q^{100}) Copy content Toggle raw display

Embeddings

For each embedding ιm\iota_m of the coefficient field, the values ιm(an)\iota_m(a_n) are shown below.

For more information on an embedded modular form you can click on its label.

comment: embeddings in the coefficient field
 
gp: mfembed(f)
 
Label   ιm(ν)\iota_m(\nu) a2 a_{2} a3 a_{3} a4 a_{4} a5 a_{5} a6 a_{6} a7 a_{7} a8 a_{8} a9 a_{9} a10 a_{10}
1.1
0
0 −27.0000 0 26.0000 0 −1056.00 0 729.000 0
nn: e.g. 2-40 or 990-1000
Significant digits:
Format:

Atkin-Lehner signs

p p Sign
22 1 -1
33 +1 +1

Inner twists

This newform does not admit any (nontrivial) inner twists.

Twists

       By twisting character orbit
Char Parity Ord Mult Type Twist Min Dim
1.a even 1 1 trivial 192.8.a.d 1
3.b odd 2 1 576.8.a.o 1
4.b odd 2 1 192.8.a.l 1
8.b even 2 1 48.8.a.f 1
8.d odd 2 1 24.8.a.a 1
12.b even 2 1 576.8.a.p 1
24.f even 2 1 72.8.a.c 1
24.h odd 2 1 144.8.a.f 1
40.e odd 2 1 600.8.a.e 1
40.k even 4 2 600.8.f.e 2
    
        By twisted newform orbit
Twist Min Dim Char Parity Ord Mult Type
24.8.a.a 1 8.d odd 2 1
48.8.a.f 1 8.b even 2 1
72.8.a.c 1 24.f even 2 1
144.8.a.f 1 24.h odd 2 1
192.8.a.d 1 1.a even 1 1 trivial
192.8.a.l 1 4.b odd 2 1
576.8.a.o 1 3.b odd 2 1
576.8.a.p 1 12.b even 2 1
600.8.a.e 1 40.e odd 2 1
600.8.f.e 2 40.k even 4 2

Hecke kernels

This newform subspace can be constructed as the intersection of the kernels of the following linear operators acting on S8new(Γ0(192))S_{8}^{\mathrm{new}}(\Gamma_0(192)):

T526 T_{5} - 26 Copy content Toggle raw display
T7+1056 T_{7} + 1056 Copy content Toggle raw display

Hecke characteristic polynomials

pp Fp(T)F_p(T)
22 T T Copy content Toggle raw display
33 T+27 T + 27 Copy content Toggle raw display
55 T26 T - 26 Copy content Toggle raw display
77 T+1056 T + 1056 Copy content Toggle raw display
1111 T6412 T - 6412 Copy content Toggle raw display
1313 T+5206 T + 5206 Copy content Toggle raw display
1717 T+6238 T + 6238 Copy content Toggle raw display
1919 T41492 T - 41492 Copy content Toggle raw display
2323 T29432 T - 29432 Copy content Toggle raw display
2929 T210498 T - 210498 Copy content Toggle raw display
3131 T+185240 T + 185240 Copy content Toggle raw display
3737 T+507630 T + 507630 Copy content Toggle raw display
4141 T360042 T - 360042 Copy content Toggle raw display
4343 T620044 T - 620044 Copy content Toggle raw display
4747 T847680 T - 847680 Copy content Toggle raw display
5353 T+1423750 T + 1423750 Copy content Toggle raw display
5959 T+2548724 T + 2548724 Copy content Toggle raw display
6161 T706058 T - 706058 Copy content Toggle raw display
6767 T+2418796 T + 2418796 Copy content Toggle raw display
7171 T+265976 T + 265976 Copy content Toggle raw display
7373 T+5791238 T + 5791238 Copy content Toggle raw display
7979 T+2955688 T + 2955688 Copy content Toggle raw display
8383 T3462932 T - 3462932 Copy content Toggle raw display
8989 T+2211126 T + 2211126 Copy content Toggle raw display
9797 T+15594814 T + 15594814 Copy content Toggle raw display
show more
show less