Properties

Label 192.8.c.a.191.1
Level 192192
Weight 88
Character 192.191
Analytic conductor 59.97859.978
Analytic rank 00
Dimension 22
CM discriminant -3
Inner twists 44

Related objects

Downloads

Learn more

Show commands: Magma / PariGP / SageMath

Newspace parameters

comment: Compute space of new eigenforms
 
[N,k,chi] = [192,8,Mod(191,192)]
 
mf = mfinit([N,k,chi],0)
 
lf = mfeigenbasis(mf)
 
from sage.modular.dirichlet import DirichletCharacter
 
H = DirichletGroup(192, base_ring=CyclotomicField(2))
 
chi = DirichletCharacter(H, H._module([1, 0, 1]))
 
N = Newforms(chi, 8, names="a")
 
//Please install CHIMP (https://github.com/edgarcosta/CHIMP) if you want to run this code
 
chi := DirichletCharacter("192.191");
 
S:= CuspForms(chi, 8);
 
N := Newforms(S);
 
Level: N N == 192=263 192 = 2^{6} \cdot 3
Weight: k k == 8 8
Character orbit: [χ][\chi] == 192.c (of order 22, degree 11, not minimal)

Newform invariants

comment: select newform
 
sage: f = N[0] # Warning: the index may be different
 
gp: f = lf[1] \\ Warning: the index may be different
 
Self dual: no
Analytic conductor: 59.977924893059.9779248930
Analytic rank: 00
Dimension: 22
Coefficient field: Q(ζ6)\Q(\zeta_{6})
comment: defining polynomial
 
gp: f.mod \\ as an extension of the character field
 
Defining polynomial: x2x+1 x^{2} - x + 1 Copy content Toggle raw display
Coefficient ring: Z[a1,,a7]\Z[a_1, \ldots, a_{7}]
Coefficient ring index: 2 2
Twist minimal: no (minimal twist has level 48)
Sato-Tate group: U(1)[D2]\mathrm{U}(1)[D_{2}]

Embedding invariants

Embedding label 191.1
Root 0.500000+0.866025i0.500000 + 0.866025i of defining polynomial
Character χ\chi == 192.191
Dual form 192.8.c.a.191.2

qq-expansion

comment: q-expansion
 
sage: f.q_expansion() # note that sage often uses an isomorphic number field
 
gp: mfcoefs(f, 20)
 
f(q)f(q) == q46.7654iq31742.44iq72187.00q914614.0q13+16589.6iq1981486.0q21+78125.0q25+102276.iq27279356.iq31279710.q37+683429.iq39124843.iq432.21256e6q49+775818.q57+3.53555e6q61+3.81072e6iq63+4.90862e6iq67+6.27481e6q733.65354e6iq75+157149.iq79+4.78297e6q81+2.54641e7iq911.30642e7q931.22452e7q97+O(q100)q-46.7654i q^{3} -1742.44i q^{7} -2187.00 q^{9} -14614.0 q^{13} +16589.6i q^{19} -81486.0 q^{21} +78125.0 q^{25} +102276. i q^{27} -279356. i q^{31} -279710. q^{37} +683429. i q^{39} -124843. i q^{43} -2.21256e6 q^{49} +775818. q^{57} +3.53555e6 q^{61} +3.81072e6i q^{63} +4.90862e6i q^{67} +6.27481e6 q^{73} -3.65354e6i q^{75} +157149. i q^{79} +4.78297e6 q^{81} +2.54641e7i q^{91} -1.30642e7 q^{93} -1.22452e7 q^{97} +O(q^{100})
Tr(f)(q)\operatorname{Tr}(f)(q) == 2q4374q929228q13162972q21+156250q25559420q374425130q49+1551636q57+7071092q61+12549620q73+9565938q8126128332q9324490396q97+O(q100) 2 q - 4374 q^{9} - 29228 q^{13} - 162972 q^{21} + 156250 q^{25} - 559420 q^{37} - 4425130 q^{49} + 1551636 q^{57} + 7071092 q^{61} + 12549620 q^{73} + 9565938 q^{81} - 26128332 q^{93} - 24490396 q^{97}+O(q^{100}) Copy content Toggle raw display

Character values

We give the values of χ\chi on generators for (Z/192Z)×\left(\mathbb{Z}/192\mathbb{Z}\right)^\times.

nn 6565 127127 133133
χ(n)\chi(n) 1-1 1-1 11

Coefficient data

For each nn we display the coefficients of the qq-expansion ana_n, the Satake parameters αp\alpha_p, and the Satake angles θp=Arg(αp)\theta_p = \textrm{Arg}(\alpha_p).



Display apa_p with pp up to: 50 250 1000 (See ana_n instead) (See ana_n instead) (See ana_n instead) Display ana_n with nn up to: 50 250 1000 (See only apa_p) (See only apa_p) (See only apa_p)
Significant digits:
nn ana_n an/n(k1)/2a_n / n^{(k-1)/2} αn \alpha_n θn \theta_n
pp apa_p ap/p(k1)/2a_p / p^{(k-1)/2} αp \alpha_p θp \theta_p
22 0 0
33 − 46.7654i − 1.00000i
44 0 0
55 0 0 1.00000 00
−1.00000 π\pi
66 0 0
77 − 1742.44i − 1.92006i −0.279892 0.960031i 0.590299π-0.590299\pi
0.279892 0.960031i 0.409701π-0.409701\pi
88 0 0
99 −2187.00 −1.00000
1010 0 0
1111 0 0 1.00000i 0.5π-0.5\pi
1.00000i 0.5π0.5\pi
1212 0 0
1313 −14614.0 −1.84488 −0.922438 0.386144i 0.873807π-0.873807\pi
−0.922438 + 0.386144i 0.873807π0.873807\pi
1414 0 0
1515 0 0
1616 0 0
1717 0 0 1.00000 00
−1.00000 π\pi
1818 0 0
1919 16589.6i 0.554878i 0.960743 + 0.277439i 0.0894857π0.0894857\pi
−0.960743 + 0.277439i 0.910514π0.910514\pi
2020 0 0
2121 −81486.0 −1.92006
2222 0 0
2323 0 0 1.00000i 0.5π-0.5\pi
1.00000i 0.5π0.5\pi
2424 0 0
2525 78125.0 1.00000
2626 0 0
2727 102276.i 1.00000i
2828 0 0
2929 0 0 1.00000 00
−1.00000 π\pi
3030 0 0
3131 − 279356.i − 1.68419i −0.539328 0.842096i 0.681322π-0.681322\pi
0.539328 0.842096i 0.318678π-0.318678\pi
3232 0 0
3333 0 0
3434 0 0
3535 0 0
3636 0 0
3737 −279710. −0.907825 −0.453912 0.891046i 0.649972π-0.649972\pi
−0.453912 + 0.891046i 0.649972π0.649972\pi
3838 0 0
3939 683429.i 1.84488i
4040 0 0
4141 0 0 1.00000 00
−1.00000 π\pi
4242 0 0
4343 − 124843.i − 0.239455i −0.992807 0.119727i 0.961798π-0.961798\pi
0.992807 0.119727i 0.0382021π-0.0382021\pi
4444 0 0
4545 0 0
4646 0 0
4747 0 0 1.00000i 0.5π-0.5\pi
1.00000i 0.5π0.5\pi
4848 0 0
4949 −2.21256e6 −2.68664
5050 0 0
5151 0 0
5252 0 0
5353 0 0 1.00000 00
−1.00000 π\pi
5454 0 0
5555 0 0
5656 0 0
5757 775818. 0.554878
5858 0 0
5959 0 0 1.00000i 0.5π-0.5\pi
1.00000i 0.5π0.5\pi
6060 0 0
6161 3.53555e6 1.99435 0.997177 0.0750923i 0.0239251π-0.0239251\pi
0.997177 + 0.0750923i 0.0239251π0.0239251\pi
6262 0 0
6363 3.81072e6i 1.92006i
6464 0 0
6565 0 0
6666 0 0
6767 4.90862e6i 1.99387i 0.0782078 + 0.996937i 0.475080π0.475080\pi
−0.0782078 + 0.996937i 0.524920π0.524920\pi
6868 0 0
6969 0 0
7070 0 0
7171 0 0 1.00000i 0.5π-0.5\pi
1.00000i 0.5π0.5\pi
7272 0 0
7373 6.27481e6 1.88786 0.943932 0.330141i 0.107096π-0.107096\pi
0.943932 + 0.330141i 0.107096π0.107096\pi
7474 0 0
7575 − 3.65354e6i − 1.00000i
7676 0 0
7777 0 0
7878 0 0
7979 157149.i 0.0358605i 0.999839 + 0.0179303i 0.00570769π0.00570769\pi
−0.999839 + 0.0179303i 0.994292π0.994292\pi
8080 0 0
8181 4.78297e6 1.00000
8282 0 0
8383 0 0 1.00000i 0.5π-0.5\pi
1.00000i 0.5π0.5\pi
8484 0 0
8585 0 0
8686 0 0
8787 0 0
8888 0 0
8989 0 0 1.00000 00
−1.00000 π\pi
9090 0 0
9191 2.54641e7i 3.54228i
9292 0 0
9393 −1.30642e7 −1.68419
9494 0 0
9595 0 0
9696 0 0
9797 −1.22452e7 −1.36227 −0.681137 0.732156i 0.738514π-0.738514\pi
−0.681137 + 0.732156i 0.738514π0.738514\pi
9898 0 0
9999 0 0
100100 0 0
101101 0 0 1.00000 00
−1.00000 π\pi
102102 0 0
103103 2.06768e7i 1.86446i 0.361868 + 0.932229i 0.382139π0.382139\pi
−0.361868 + 0.932229i 0.617861π0.617861\pi
104104 0 0
105105 0 0
106106 0 0
107107 0 0 1.00000i 0.5π-0.5\pi
1.00000i 0.5π0.5\pi
108108 0 0
109109 −1.68240e7 −1.24433 −0.622167 0.782884i 0.713748π-0.713748\pi
−0.622167 + 0.782884i 0.713748π0.713748\pi
110110 0 0
111111 1.30807e7i 0.907825i
112112 0 0
113113 0 0 1.00000 00
−1.00000 π\pi
114114 0 0
115115 0 0
116116 0 0
117117 3.19608e7 1.84488
118118 0 0
119119 0 0
120120 0 0
121121 −1.94872e7 −1.00000
122122 0 0
123123 0 0
124124 0 0
125125 0 0
126126 0 0
127127 9.75612e6i 0.422634i 0.977418 + 0.211317i 0.0677752π0.0677752\pi
−0.977418 + 0.211317i 0.932225π0.932225\pi
128128 0 0
129129 −5.83832e6 −0.239455
130130 0 0
131131 0 0 1.00000i 0.5π-0.5\pi
1.00000i 0.5π0.5\pi
132132 0 0
133133 2.89064e7 1.06540
134134 0 0
135135 0 0
136136 0 0
137137 0 0 1.00000 00
−1.00000 π\pi
138138 0 0
139139 − 3.08109e7i − 0.973088i −0.873656 0.486544i 0.838257π-0.838257\pi
0.873656 0.486544i 0.161743π-0.161743\pi
140140 0 0
141141 0 0
142142 0 0
143143 0 0
144144 0 0
145145 0 0
146146 0 0
147147 1.03471e8i 2.68664i
148148 0 0
149149 0 0 1.00000 00
−1.00000 π\pi
150150 0 0
151151 3.49967e7i 0.827194i 0.910460 + 0.413597i 0.135728π0.135728\pi
−0.910460 + 0.413597i 0.864272π0.864272\pi
152152 0 0
153153 0 0
154154 0 0
155155 0 0
156156 0 0
157157 −8.20114e7 −1.69132 −0.845659 0.533723i 0.820792π-0.820792\pi
−0.845659 + 0.533723i 0.820792π0.820792\pi
158158 0 0
159159 0 0
160160 0 0
161161 0 0
162162 0 0
163163 − 6.77910e7i − 1.22607i −0.790056 0.613035i 0.789948π-0.789948\pi
0.790056 0.613035i 0.210052π-0.210052\pi
164164 0 0
165165 0 0
166166 0 0
167167 0 0 1.00000i 0.5π-0.5\pi
1.00000i 0.5π0.5\pi
168168 0 0
169169 1.50820e8 2.40357
170170 0 0
171171 − 3.62814e7i − 0.554878i
172172 0 0
173173 0 0 1.00000 00
−1.00000 π\pi
174174 0 0
175175 − 1.36128e8i − 1.92006i
176176 0 0
177177 0 0
178178 0 0
179179 0 0 1.00000i 0.5π-0.5\pi
1.00000i 0.5π0.5\pi
180180 0 0
181181 −3.98034e7 −0.498936 −0.249468 0.968383i 0.580256π-0.580256\pi
−0.249468 + 0.968383i 0.580256π0.580256\pi
182182 0 0
183183 − 1.65341e8i − 1.99435i
184184 0 0
185185 0 0
186186 0 0
187187 0 0
188188 0 0
189189 1.78210e8 1.92006
190190 0 0
191191 0 0 1.00000i 0.5π-0.5\pi
1.00000i 0.5π0.5\pi
192192 0 0
193193 −9.65180e7 −0.966402 −0.483201 0.875509i 0.660526π-0.660526\pi
−0.483201 + 0.875509i 0.660526π0.660526\pi
194194 0 0
195195 0 0
196196 0 0
197197 0 0 1.00000 00
−1.00000 π\pi
198198 0 0
199199 1.68737e8i 1.51783i 0.651188 + 0.758916i 0.274271π0.274271\pi
−0.651188 + 0.758916i 0.725729π0.725729\pi
200200 0 0
201201 2.29554e8 1.99387
202202 0 0
203203 0 0
204204 0 0
205205 0 0
206206 0 0
207207 0 0
208208 0 0
209209 0 0
210210 0 0
211211 − 1.60698e8i − 1.17766i −0.808256 0.588832i 0.799588π-0.799588\pi
0.808256 0.588832i 0.200412π-0.200412\pi
212212 0 0
213213 0 0
214214 0 0
215215 0 0
216216 0 0
217217 −4.86761e8 −3.23375
218218 0 0
219219 − 2.93444e8i − 1.88786i
220220 0 0
221221 0 0
222222 0 0
223223 − 2.01450e8i − 1.21647i −0.793759 0.608233i 0.791879π-0.791879\pi
0.793759 0.608233i 0.208121π-0.208121\pi
224224 0 0
225225 −1.70859e8 −1.00000
226226 0 0
227227 0 0 1.00000i 0.5π-0.5\pi
1.00000i 0.5π0.5\pi
228228 0 0
229229 −2.01186e8 −1.10707 −0.553534 0.832827i 0.686721π-0.686721\pi
−0.553534 + 0.832827i 0.686721π0.686721\pi
230230 0 0
231231 0 0
232232 0 0
233233 0 0 1.00000 00
−1.00000 π\pi
234234 0 0
235235 0 0
236236 0 0
237237 7.34913e6 0.0358605
238238 0 0
239239 0 0 1.00000i 0.5π-0.5\pi
1.00000i 0.5π0.5\pi
240240 0 0
241241 −5.75871e7 −0.265012 −0.132506 0.991182i 0.542302π-0.542302\pi
−0.132506 + 0.991182i 0.542302π0.542302\pi
242242 0 0
243243 − 2.23677e8i − 1.00000i
244244 0 0
245245 0 0
246246 0 0
247247 − 2.42440e8i − 1.02368i
248248 0 0
249249 0 0
250250 0 0
251251 0 0 1.00000i 0.5π-0.5\pi
1.00000i 0.5π0.5\pi
252252 0 0
253253 0 0
254254 0 0
255255 0 0
256256 0 0
257257 0 0 1.00000 00
−1.00000 π\pi
258258 0 0
259259 4.87379e8i 1.74308i
260260 0 0
261261 0 0
262262 0 0
263263 0 0 1.00000i 0.5π-0.5\pi
1.00000i 0.5π0.5\pi
264264 0 0
265265 0 0
266266 0 0
267267 0 0
268268 0 0
269269 0 0 1.00000 00
−1.00000 π\pi
270270 0 0
271271 − 4.40021e8i − 1.34302i −0.740998 0.671508i 0.765647π-0.765647\pi
0.740998 0.671508i 0.234353π-0.234353\pi
272272 0 0
273273 1.19084e9 3.54228
274274 0 0
275275 0 0
276276 0 0
277277 5.85096e6 0.0165405 0.00827024 0.999966i 0.497367π-0.497367\pi
0.00827024 + 0.999966i 0.497367π0.497367\pi
278278 0 0
279279 6.10951e8i 1.68419i
280280 0 0
281281 0 0 1.00000 00
−1.00000 π\pi
282282 0 0
283283 − 6.17390e8i − 1.61923i −0.586964 0.809613i 0.699677π-0.699677\pi
0.586964 0.809613i 0.300323π-0.300323\pi
284284 0 0
285285 0 0
286286 0 0
287287 0 0
288288 0 0
289289 4.10339e8 1.00000
290290 0 0
291291 5.72651e8i 1.36227i
292292 0 0
293293 0 0 1.00000 00
−1.00000 π\pi
294294 0 0
295295 0 0
296296 0 0
297297 0 0
298298 0 0
299299 0 0
300300 0 0
301301 −2.17531e8 −0.459769
302302 0 0
303303 0 0
304304 0 0
305305 0 0
306306 0 0
307307 9.98019e8i 1.96859i 0.176541 + 0.984293i 0.443509π0.443509\pi
−0.176541 + 0.984293i 0.556491π0.556491\pi
308308 0 0
309309 9.66957e8 1.86446
310310 0 0
311311 0 0 1.00000i 0.5π-0.5\pi
1.00000i 0.5π0.5\pi
312312 0 0
313313 −1.08488e9 −1.99976 −0.999880 0.0155022i 0.995065π-0.995065\pi
−0.999880 + 0.0155022i 0.995065π0.995065\pi
314314 0 0
315315 0 0
316316 0 0
317317 0 0 1.00000 00
−1.00000 π\pi
318318 0 0
319319 0 0
320320 0 0
321321 0 0
322322 0 0
323323 0 0
324324 0 0
325325 −1.14172e9 −1.84488
326326 0 0
327327 7.86782e8i 1.24433i
328328 0 0
329329 0 0
330330 0 0
331331 − 4.29087e8i − 0.650351i −0.945654 0.325175i 0.894577π-0.894577\pi
0.945654 0.325175i 0.105423π-0.105423\pi
332332 0 0
333333 6.11726e8 0.907825
334334 0 0
335335 0 0
336336 0 0
337337 −1.27571e9 −1.81571 −0.907854 0.419286i 0.862281π-0.862281\pi
−0.907854 + 0.419286i 0.862281π0.862281\pi
338338 0 0
339339 0 0
340340 0 0
341341 0 0
342342 0 0
343343 2.42029e9i 3.23846i
344344 0 0
345345 0 0
346346 0 0
347347 0 0 1.00000i 0.5π-0.5\pi
1.00000i 0.5π0.5\pi
348348 0 0
349349 6.95221e8 0.875455 0.437728 0.899108i 0.355783π-0.355783\pi
0.437728 + 0.899108i 0.355783π0.355783\pi
350350 0 0
351351 − 1.49466e9i − 1.84488i
352352 0 0
353353 0 0 1.00000 00
−1.00000 π\pi
354354 0 0
355355 0 0
356356 0 0
357357 0 0
358358 0 0
359359 0 0 1.00000i 0.5π-0.5\pi
1.00000i 0.5π0.5\pi
360360 0 0
361361 6.18657e8 0.692110
362362 0 0
363363 9.11325e8i 1.00000i
364364 0 0
365365 0 0
366366 0 0
367367 1.40861e9i 1.48751i 0.668454 + 0.743754i 0.266956π0.266956\pi
−0.668454 + 0.743754i 0.733044π0.733044\pi
368368 0 0
369369 0 0
370370 0 0
371371 0 0
372372 0 0
373373 −6.08469e8 −0.607096 −0.303548 0.952816i 0.598171π-0.598171\pi
−0.303548 + 0.952816i 0.598171π0.598171\pi
374374 0 0
375375 0 0
376376 0 0
377377 0 0
378378 0 0
379379 2.58413e8i 0.243824i 0.992541 + 0.121912i 0.0389026π0.0389026\pi
−0.992541 + 0.121912i 0.961097π0.961097\pi
380380 0 0
381381 4.56249e8 0.422634
382382 0 0
383383 0 0 1.00000i 0.5π-0.5\pi
1.00000i 0.5π0.5\pi
384384 0 0
385385 0 0
386386 0 0
387387 2.73031e8i 0.239455i
388388 0 0
389389 0 0 1.00000 00
−1.00000 π\pi
390390 0 0
391391 0 0
392392 0 0
393393 0 0
394394 0 0
395395 0 0
396396 0 0
397397 −1.90824e9 −1.53062 −0.765308 0.643665i 0.777413π-0.777413\pi
−0.765308 + 0.643665i 0.777413π0.777413\pi
398398 0 0
399399 − 1.35182e9i − 1.06540i
400400 0 0
401401 0 0 1.00000 00
−1.00000 π\pi
402402 0 0
403403 4.08250e9i 3.10713i
404404 0 0
405405 0 0
406406 0 0
407407 0 0
408408 0 0
409409 2.12727e9 1.53741 0.768707 0.639601i 0.220900π-0.220900\pi
0.768707 + 0.639601i 0.220900π0.220900\pi
410410 0 0
411411 0 0
412412 0 0
413413 0 0
414414 0 0
415415 0 0
416416 0 0
417417 −1.44088e9 −0.973088
418418 0 0
419419 0 0 1.00000i 0.5π-0.5\pi
1.00000i 0.5π0.5\pi
420420 0 0
421421 −2.23703e9 −1.46112 −0.730558 0.682850i 0.760740π-0.760740\pi
−0.730558 + 0.682850i 0.760740π0.760740\pi
422422 0 0
423423 0 0
424424 0 0
425425 0 0
426426 0 0
427427 − 6.16049e9i − 3.82928i
428428 0 0
429429 0 0
430430 0 0
431431 0 0 1.00000i 0.5π-0.5\pi
1.00000i 0.5π0.5\pi
432432 0 0
433433 −1.11566e9 −0.660424 −0.330212 0.943907i 0.607120π-0.607120\pi
−0.330212 + 0.943907i 0.607120π0.607120\pi
434434 0 0
435435 0 0
436436 0 0
437437 0 0
438438 0 0
439439 − 1.41308e9i − 0.797151i −0.917135 0.398576i 0.869505π-0.869505\pi
0.917135 0.398576i 0.130495π-0.130495\pi
440440 0 0
441441 4.83888e9 2.68664
442442 0 0
443443 0 0 1.00000i 0.5π-0.5\pi
1.00000i 0.5π0.5\pi
444444 0 0
445445 0 0
446446 0 0
447447 0 0
448448 0 0
449449 0 0 1.00000 00
−1.00000 π\pi
450450 0 0
451451 0 0
452452 0 0
453453 1.63663e9 0.827194
454454 0 0
455455 0 0
456456 0 0
457457 −4.06709e9 −1.99332 −0.996661 0.0816509i 0.973981π-0.973981\pi
−0.996661 + 0.0816509i 0.973981π0.973981\pi
458458 0 0
459459 0 0
460460 0 0
461461 0 0 1.00000 00
−1.00000 π\pi
462462 0 0
463463 − 4.14708e9i − 1.94182i −0.239440 0.970911i 0.576964π-0.576964\pi
0.239440 0.970911i 0.423036π-0.423036\pi
464464 0 0
465465 0 0
466466 0 0
467467 0 0 1.00000i 0.5π-0.5\pi
1.00000i 0.5π0.5\pi
468468 0 0
469469 8.55299e9 3.82836
470470 0 0
471471 3.83529e9i 1.69132i
472472 0 0
473473 0 0
474474 0 0
475475 1.29606e9i 0.554878i
476476 0 0
477477 0 0
478478 0 0
479479 0 0 1.00000i 0.5π-0.5\pi
1.00000i 0.5π0.5\pi
480480 0 0
481481 4.08768e9 1.67482
482482 0 0
483483 0 0
484484 0 0
485485 0 0
486486 0 0
487487 2.66443e9i 1.04533i 0.852539 + 0.522664i 0.175062π0.175062\pi
−0.852539 + 0.522664i 0.824938π0.824938\pi
488488 0 0
489489 −3.17027e9 −1.22607
490490 0 0
491491 0 0 1.00000i 0.5π-0.5\pi
1.00000i 0.5π0.5\pi
492492 0 0
493493 0 0
494494 0 0
495495 0 0
496496 0 0
497497 0 0
498498 0 0
499499 − 4.26639e9i − 1.53712i −0.639775 0.768562i 0.720972π-0.720972\pi
0.639775 0.768562i 0.279028π-0.279028\pi
500500 0 0
501501 0 0
502502 0 0
503503 0 0 1.00000i 0.5π-0.5\pi
1.00000i 0.5π0.5\pi
504504 0 0
505505 0 0
506506 0 0
507507 − 7.05318e9i − 2.40357i
508508 0 0
509509 0 0 1.00000 00
−1.00000 π\pi
510510 0 0
511511 − 1.09335e10i − 3.62482i
512512 0 0
513513 −1.69671e9 −0.554878
514514 0 0
515515 0 0
516516 0 0
517517 0 0
518518 0 0
519519 0 0
520520 0 0
521521 0 0 1.00000 00
−1.00000 π\pi
522522 0 0
523523 − 2.18274e9i − 0.667185i −0.942717 0.333592i 0.891739π-0.891739\pi
0.942717 0.333592i 0.108261π-0.108261\pi
524524 0 0
525525 −6.36609e9 −1.92006
526526 0 0
527527 0 0
528528 0 0
529529 −3.40483e9 −1.00000
530530 0 0
531531 0 0
532532 0 0
533533 0 0
534534 0 0
535535 0 0
536536 0 0
537537 0 0
538538 0 0
539539 0 0
540540 0 0
541541 −3.68782e9 −1.00134 −0.500668 0.865640i 0.666912π-0.666912\pi
−0.500668 + 0.865640i 0.666912π0.666912\pi
542542 0 0
543543 1.86142e9i 0.498936i
544544 0 0
545545 0 0
546546 0 0
547547 4.77362e9i 1.24707i 0.781793 + 0.623537i 0.214305π0.214305\pi
−0.781793 + 0.623537i 0.785695π0.785695\pi
548548 0 0
549549 −7.73224e9 −1.99435
550550 0 0
551551 0 0
552552 0 0
553553 2.73823e8 0.0688545
554554 0 0
555555 0 0
556556 0 0
557557 0 0 1.00000 00
−1.00000 π\pi
558558 0 0
559559 1.82445e9i 0.441765i
560560 0 0
561561 0 0
562562 0 0
563563 0 0 1.00000i 0.5π-0.5\pi
1.00000i 0.5π0.5\pi
564564 0 0
565565 0 0
566566 0 0
567567 − 8.33405e9i − 1.92006i
568568 0 0
569569 0 0 1.00000 00
−1.00000 π\pi
570570 0 0
571571 6.49838e9i 1.46076i 0.683042 + 0.730379i 0.260657π0.260657\pi
−0.683042 + 0.730379i 0.739343π0.739343\pi
572572 0 0
573573 0 0
574574 0 0
575575 0 0
576576 0 0
577577 4.23933e9 0.918718 0.459359 0.888251i 0.348079π-0.348079\pi
0.459359 + 0.888251i 0.348079π0.348079\pi
578578 0 0
579579 4.51370e9i 0.966402i
580580 0 0
581581 0 0
582582 0 0
583583 0 0
584584 0 0
585585 0 0
586586 0 0
587587 0 0 1.00000i 0.5π-0.5\pi
1.00000i 0.5π0.5\pi
588588 0 0
589589 4.63439e9 0.934521
590590 0 0
591591 0 0
592592 0 0
593593 0 0 1.00000 00
−1.00000 π\pi
594594 0 0
595595 0 0
596596 0 0
597597 7.89103e9 1.51783
598598 0 0
599599 0 0 1.00000i 0.5π-0.5\pi
1.00000i 0.5π0.5\pi
600600 0 0
601601 7.41654e9 1.39361 0.696804 0.717262i 0.254605π-0.254605\pi
0.696804 + 0.717262i 0.254605π0.254605\pi
602602 0 0
603603 − 1.07352e10i − 1.99387i
604604 0 0
605605 0 0
606606 0 0
607607 1.07643e10i 1.95355i 0.214270 + 0.976774i 0.431263π0.431263\pi
−0.214270 + 0.976774i 0.568737π0.568737\pi
608608 0 0
609609 0 0
610610 0 0
611611 0 0
612612 0 0
613613 −1.12826e10 −1.97832 −0.989161 0.146837i 0.953091π-0.953091\pi
−0.989161 + 0.146837i 0.953091π0.953091\pi
614614 0 0
615615 0 0
616616 0 0
617617 0 0 1.00000 00
−1.00000 π\pi
618618 0 0
619619 2.08193e9i 0.352816i 0.984317 + 0.176408i 0.0564478π0.0564478\pi
−0.984317 + 0.176408i 0.943552π0.943552\pi
620620 0 0
621621 0 0
622622 0 0
623623 0 0
624624 0 0
625625 6.10352e9 1.00000
626626 0 0
627627 0 0
628628 0 0
629629 0 0
630630 0 0
631631 4.73166e9i 0.749740i 0.927077 + 0.374870i 0.122313π0.122313\pi
−0.927077 + 0.374870i 0.877687π0.877687\pi
632632 0 0
633633 −7.51509e9 −1.17766
634634 0 0
635635 0 0
636636 0 0
637637 3.23344e10 4.95652
638638 0 0
639639 0 0
640640 0 0
641641 0 0 1.00000 00
−1.00000 π\pi
642642 0 0
643643 − 1.34415e10i − 1.99393i −0.0778386 0.996966i 0.524802π-0.524802\pi
0.0778386 0.996966i 0.475198π-0.475198\pi
644644 0 0
645645 0 0
646646 0 0
647647 0 0 1.00000i 0.5π-0.5\pi
1.00000i 0.5π0.5\pi
648648 0 0
649649 0 0
650650 0 0
651651 2.27636e10i 3.23375i
652652 0 0
653653 0 0 1.00000 00
−1.00000 π\pi
654654 0 0
655655 0 0
656656 0 0
657657 −1.37230e10 −1.88786
658658 0 0
659659 0 0 1.00000i 0.5π-0.5\pi
1.00000i 0.5π0.5\pi
660660 0 0
661661 −6.61860e9 −0.891376 −0.445688 0.895188i 0.647041π-0.647041\pi
−0.445688 + 0.895188i 0.647041π0.647041\pi
662662 0 0
663663 0 0
664664 0 0
665665 0 0
666666 0 0
667667 0 0
668668 0 0
669669 −9.42087e9 −1.21647
670670 0 0
671671 0 0
672672 0 0
673673 −4.99918e9 −0.632187 −0.316094 0.948728i 0.602371π-0.602371\pi
−0.316094 + 0.948728i 0.602371π0.602371\pi
674674 0 0
675675 7.99030e9i 1.00000i
676676 0 0
677677 0 0 1.00000 00
−1.00000 π\pi
678678 0 0
679679 2.13366e10i 2.61565i
680680 0 0
681681 0 0
682682 0 0
683683 0 0 1.00000i 0.5π-0.5\pi
1.00000i 0.5π0.5\pi
684684 0 0
685685 0 0
686686 0 0
687687 9.40855e9i 1.10707i
688688 0 0
689689 0 0
690690 0 0
691691 8.33859e9i 0.961434i 0.876876 + 0.480717i 0.159624π0.159624\pi
−0.876876 + 0.480717i 0.840376π0.840376\pi
692692 0 0
693693 0 0
694694 0 0
695695 0 0
696696 0 0
697697 0 0
698698 0 0
699699 0 0
700700 0 0
701701 0 0 1.00000 00
−1.00000 π\pi
702702 0 0
703703 − 4.64027e9i − 0.503732i
704704 0 0
705705 0 0
706706 0 0
707707 0 0
708708 0 0
709709 3.03318e9 0.319622 0.159811 0.987148i 0.448912π-0.448912\pi
0.159811 + 0.987148i 0.448912π0.448912\pi
710710 0 0
711711 − 3.43685e8i − 0.0358605i
712712 0 0
713713 0 0
714714 0 0
715715 0 0
716716 0 0
717717 0 0
718718 0 0
719719 0 0 1.00000i 0.5π-0.5\pi
1.00000i 0.5π0.5\pi
720720 0 0
721721 3.60281e10 3.57988
722722 0 0
723723 2.69308e9i 0.265012i
724724 0 0
725725 0 0
726726 0 0
727727 − 1.91072e10i − 1.84428i −0.386861 0.922138i 0.626441π-0.626441\pi
0.386861 0.922138i 0.373559π-0.373559\pi
728728 0 0
729729 −1.04604e10 −1.00000
730730 0 0
731731 0 0
732732 0 0
733733 −1.97732e10 −1.85445 −0.927223 0.374511i 0.877811π-0.877811\pi
−0.927223 + 0.374511i 0.877811π0.877811\pi
734734 0 0
735735 0 0
736736 0 0
737737 0 0
738738 0 0
739739 − 1.09057e10i − 0.994026i −0.867743 0.497013i 0.834430π-0.834430\pi
0.867743 0.497013i 0.165570π-0.165570\pi
740740 0 0
741741 −1.13378e10 −1.02368
742742 0 0
743743 0 0 1.00000i 0.5π-0.5\pi
1.00000i 0.5π0.5\pi
744744 0 0
745745 0 0
746746 0 0
747747 0 0
748748 0 0
749749 0 0
750750 0 0
751751 1.80528e10i 1.55527i 0.628718 + 0.777633i 0.283580π0.283580\pi
−0.628718 + 0.777633i 0.716420π0.716420\pi
752752 0 0
753753 0 0
754754 0 0
755755 0 0
756756 0 0
757757 7.12787e9 0.597206 0.298603 0.954377i 0.403479π-0.403479\pi
0.298603 + 0.954377i 0.403479π0.403479\pi
758758 0 0
759759 0 0
760760 0 0
761761 0 0 1.00000 00
−1.00000 π\pi
762762 0 0
763763 2.93149e10i 2.38920i
764764 0 0
765765 0 0
766766 0 0
767767 0 0
768768 0 0
769769 −6.30053e9 −0.499615 −0.249807 0.968296i 0.580367π-0.580367\pi
−0.249807 + 0.968296i 0.580367π0.580367\pi
770770 0 0
771771 0 0
772772 0 0
773773 0 0 1.00000 00
−1.00000 π\pi
774774 0 0
775775 − 2.18247e10i − 1.68419i
776776 0 0
777777 2.27924e10 1.74308
778778 0 0
779779 0 0
780780 0 0
781781 0 0
782782 0 0
783783 0 0
784784 0 0
785785 0 0
786786 0 0
787787 1.14622e10i 0.838214i 0.907937 + 0.419107i 0.137657π0.137657\pi
−0.907937 + 0.419107i 0.862343π0.862343\pi
788788 0 0
789789 0 0
790790 0 0
791791 0 0
792792 0 0
793793 −5.16685e10 −3.67934
794794 0 0
795795 0 0
796796 0 0
797797 0 0 1.00000 00
−1.00000 π\pi
798798 0 0
799799 0 0
800800 0 0
801801 0 0
802802 0 0
803803 0 0
804804 0 0
805805 0 0
806806 0 0
807807 0 0
808808 0 0
809809 0 0 1.00000 00
−1.00000 π\pi
810810 0 0
811811 − 2.91438e10i − 1.91855i −0.282472 0.959276i 0.591154π-0.591154\pi
0.282472 0.959276i 0.408846π-0.408846\pi
812812 0 0
813813 −2.05777e10 −1.34302
814814 0 0
815815 0 0
816816 0 0
817817 2.07109e9 0.132868
818818 0 0
819819 − 5.56899e10i − 3.54228i
820820 0 0
821821 0 0 1.00000 00
−1.00000 π\pi
822822 0 0
823823 − 2.78506e9i − 0.174154i −0.996202 0.0870772i 0.972247π-0.972247\pi
0.996202 0.0870772i 0.0277527π-0.0277527\pi
824824 0 0
825825 0 0
826826 0 0
827827 0 0 1.00000i 0.5π-0.5\pi
1.00000i 0.5π0.5\pi
828828 0 0
829829 6.33017e9 0.385900 0.192950 0.981209i 0.438195π-0.438195\pi
0.192950 + 0.981209i 0.438195π0.438195\pi
830830 0 0
831831 − 2.73622e8i − 0.0165405i
832832 0 0
833833 0 0
834834 0 0
835835 0 0
836836 0 0
837837 2.85713e10 1.68419
838838 0 0
839839 0 0 1.00000i 0.5π-0.5\pi
1.00000i 0.5π0.5\pi
840840 0 0
841841 1.72499e10 1.00000
842842 0 0
843843 0 0
844844 0 0
845845 0 0
846846 0 0
847847 3.39553e10i 1.92006i
848848 0 0
849849 −2.88725e10 −1.61923
850850 0 0
851851 0 0
852852 0 0
853853 2.44073e10 1.34647 0.673237 0.739427i 0.264904π-0.264904\pi
0.673237 + 0.739427i 0.264904π0.264904\pi
854854 0 0
855855 0 0
856856 0 0
857857 0 0 1.00000 00
−1.00000 π\pi
858858 0 0
859859 3.20767e10i 1.72669i 0.504617 + 0.863343i 0.331634π0.331634\pi
−0.504617 + 0.863343i 0.668366π0.668366\pi
860860 0 0
861861 0 0
862862 0 0
863863 0 0 1.00000i 0.5π-0.5\pi
1.00000i 0.5π0.5\pi
864864 0 0
865865 0 0
866866 0 0
867867 − 1.91896e10i − 1.00000i
868868 0 0
869869 0 0
870870 0 0
871871 − 7.17346e10i − 3.67845i
872872 0 0
873873 2.67802e10 1.36227
874874 0 0
875875 0 0
876876 0 0
877877 3.62759e10 1.81602 0.908008 0.418953i 0.137603π-0.137603\pi
0.908008 + 0.418953i 0.137603π0.137603\pi
878878 0 0
879879 0 0
880880 0 0
881881 0 0 1.00000 00
−1.00000 π\pi
882882 0 0
883883 − 2.39614e10i − 1.17125i −0.810581 0.585626i 0.800849π-0.800849\pi
0.810581 0.585626i 0.199151π-0.199151\pi
884884 0 0
885885 0 0
886886 0 0
887887 0 0 1.00000i 0.5π-0.5\pi
1.00000i 0.5π0.5\pi
888888 0 0
889889 1.69995e10 0.811483
890890 0 0
891891 0 0
892892 0 0
893893 0 0
894894 0 0
895895 0 0
896896 0 0
897897 0 0
898898 0 0
899899 0 0
900900 0 0
901901 0 0
902902 0 0
903903 1.01729e10i 0.459769i
904904 0 0
905905 0 0
906906 0 0
907907 − 1.63161e10i − 0.726092i −0.931771 0.363046i 0.881737π-0.881737\pi
0.931771 0.363046i 0.118263π-0.118263\pi
908908 0 0
909909 0 0
910910 0 0
911911 0 0 1.00000i 0.5π-0.5\pi
1.00000i 0.5π0.5\pi
912912 0 0
913913 0 0
914914 0 0
915915 0 0
916916 0 0
917917 0 0
918918 0 0
919919 − 2.80673e10i − 1.19288i −0.802658 0.596440i 0.796581π-0.796581\pi
0.802658 0.596440i 0.203419π-0.203419\pi
920920 0 0
921921 4.66727e10 1.96859
922922 0 0
923923 0 0
924924 0 0
925925 −2.18523e10 −0.907825
926926 0 0
927927 − 4.52201e10i − 1.86446i
928928 0 0
929929 0 0 1.00000 00
−1.00000 π\pi
930930 0 0
931931 − 3.67055e10i − 1.49076i
932932 0 0
933933 0 0
934934 0 0
935935 0 0
936936 0 0
937937 −3.58514e9 −0.142370 −0.0711848 0.997463i 0.522678π-0.522678\pi
−0.0711848 + 0.997463i 0.522678π0.522678\pi
938938 0 0
939939 5.07350e10i 1.99976i
940940 0 0
941941 0 0 1.00000 00
−1.00000 π\pi
942942 0 0
943943 0 0
944944 0 0
945945 0 0
946946 0 0
947947 0 0 1.00000i 0.5π-0.5\pi
1.00000i 0.5π0.5\pi
948948 0 0
949949 −9.17001e10 −3.48288
950950 0 0
951951 0 0
952952 0 0
953953 0 0 1.00000 00
−1.00000 π\pi
954954 0 0
955955 0 0
956956 0 0
957957 0 0
958958 0 0
959959 0 0
960960 0 0
961961 −5.05269e10 −1.83650
962962 0 0
963963 0 0
964964 0 0
965965 0 0
966966 0 0
967967 3.71231e10i 1.32023i 0.751163 + 0.660117i 0.229493π0.229493\pi
−0.751163 + 0.660117i 0.770507π0.770507\pi
968968 0 0
969969 0 0
970970 0 0
971971 0 0 1.00000i 0.5π-0.5\pi
1.00000i 0.5π0.5\pi
972972 0 0
973973 −5.36862e10 −1.86839
974974 0 0
975975 5.33929e10i 1.84488i
976976 0 0
977977 0 0 1.00000 00
−1.00000 π\pi
978978 0 0
979979 0 0
980980 0 0
981981 3.67941e10 1.24433
982982 0 0
983983 0 0 1.00000i 0.5π-0.5\pi
1.00000i 0.5π0.5\pi
984984 0 0
985985 0 0
986986 0 0
987987 0 0
988988 0 0
989989 0 0
990990 0 0
991991 − 3.96695e10i − 1.29479i −0.762156 0.647394i 0.775859π-0.775859\pi
0.762156 0.647394i 0.224141π-0.224141\pi
992992 0 0
993993 −2.00664e10 −0.650351
994994 0 0
995995 0 0
996996 0 0
997997 −5.61437e10 −1.79419 −0.897093 0.441841i 0.854326π-0.854326\pi
−0.897093 + 0.441841i 0.854326π0.854326\pi
998998 0 0
999999 − 2.86076e10i − 0.907825i
Display apa_p with pp up to: 50 250 1000 (See ana_n instead) (See ana_n instead) (See ana_n instead) Display ana_n with nn up to: 50 250 1000 (See only apa_p) (See only apa_p) (See only apa_p)

Twists

       By twisting character
Char Parity Ord Type Twist Min Dim
1.1 even 1 trivial 192.8.c.a.191.1 2
3.2 odd 2 CM 192.8.c.a.191.1 2
4.3 odd 2 inner 192.8.c.a.191.2 2
8.3 odd 2 48.8.c.a.47.1 2
8.5 even 2 48.8.c.a.47.2 yes 2
12.11 even 2 inner 192.8.c.a.191.2 2
24.5 odd 2 48.8.c.a.47.2 yes 2
24.11 even 2 48.8.c.a.47.1 2
    
        By twisted newform
Twist Min Dim Char Parity Ord Type
48.8.c.a.47.1 2 8.3 odd 2
48.8.c.a.47.1 2 24.11 even 2
48.8.c.a.47.2 yes 2 8.5 even 2
48.8.c.a.47.2 yes 2 24.5 odd 2
192.8.c.a.191.1 2 1.1 even 1 trivial
192.8.c.a.191.1 2 3.2 odd 2 CM
192.8.c.a.191.2 2 4.3 odd 2 inner
192.8.c.a.191.2 2 12.11 even 2 inner