Properties

Label 192.8.c.a.191.1
Level $192$
Weight $8$
Character 192.191
Analytic conductor $59.978$
Analytic rank $0$
Dimension $2$
CM discriminant -3
Inner twists $4$

Related objects

Downloads

Learn more

Show commands: Magma / PariGP / SageMath

Newspace parameters

comment: Compute space of new eigenforms
 
[N,k,chi] = [192,8,Mod(191,192)]
 
mf = mfinit([N,k,chi],0)
 
lf = mfeigenbasis(mf)
 
from sage.modular.dirichlet import DirichletCharacter
 
H = DirichletGroup(192, base_ring=CyclotomicField(2))
 
chi = DirichletCharacter(H, H._module([1, 0, 1]))
 
N = Newforms(chi, 8, names="a")
 
//Please install CHIMP (https://github.com/edgarcosta/CHIMP) if you want to run this code
 
chi := DirichletCharacter("192.191");
 
S:= CuspForms(chi, 8);
 
N := Newforms(S);
 
Level: \( N \) \(=\) \( 192 = 2^{6} \cdot 3 \)
Weight: \( k \) \(=\) \( 8 \)
Character orbit: \([\chi]\) \(=\) 192.c (of order \(2\), degree \(1\), not minimal)

Newform invariants

comment: select newform
 
sage: f = N[0] # Warning: the index may be different
 
gp: f = lf[1] \\ Warning: the index may be different
 
Self dual: no
Analytic conductor: \(59.9779248930\)
Analytic rank: \(0\)
Dimension: \(2\)
Coefficient field: \(\Q(\zeta_{6})\)
comment: defining polynomial
 
gp: f.mod \\ as an extension of the character field
 
Defining polynomial: \( x^{2} - x + 1 \) Copy content Toggle raw display
Coefficient ring: \(\Z[a_1, \ldots, a_{7}]\)
Coefficient ring index: \( 2 \)
Twist minimal: no (minimal twist has level 48)
Sato-Tate group: $\mathrm{U}(1)[D_{2}]$

Embedding invariants

Embedding label 191.1
Root \(0.500000 + 0.866025i\) of defining polynomial
Character \(\chi\) \(=\) 192.191
Dual form 192.8.c.a.191.2

$q$-expansion

comment: q-expansion
 
sage: f.q_expansion() # note that sage often uses an isomorphic number field
 
gp: mfcoefs(f, 20)
 
\(f(q)\) \(=\) \(q-46.7654i q^{3} -1742.44i q^{7} -2187.00 q^{9} -14614.0 q^{13} +16589.6i q^{19} -81486.0 q^{21} +78125.0 q^{25} +102276. i q^{27} -279356. i q^{31} -279710. q^{37} +683429. i q^{39} -124843. i q^{43} -2.21256e6 q^{49} +775818. q^{57} +3.53555e6 q^{61} +3.81072e6i q^{63} +4.90862e6i q^{67} +6.27481e6 q^{73} -3.65354e6i q^{75} +157149. i q^{79} +4.78297e6 q^{81} +2.54641e7i q^{91} -1.30642e7 q^{93} -1.22452e7 q^{97} +O(q^{100})\)
\(\operatorname{Tr}(f)(q)\) \(=\) \( 2 q - 4374 q^{9} - 29228 q^{13} - 162972 q^{21} + 156250 q^{25} - 559420 q^{37} - 4425130 q^{49} + 1551636 q^{57} + 7071092 q^{61} + 12549620 q^{73} + 9565938 q^{81} - 26128332 q^{93} - 24490396 q^{97}+O(q^{100}) \) Copy content Toggle raw display

Character values

We give the values of \(\chi\) on generators for \(\left(\mathbb{Z}/192\mathbb{Z}\right)^\times\).

\(n\) \(65\) \(127\) \(133\)
\(\chi(n)\) \(-1\) \(-1\) \(1\)

Coefficient data

For each \(n\) we display the coefficients of the \(q\)-expansion \(a_n\), the Satake parameters \(\alpha_p\), and the Satake angles \(\theta_p = \textrm{Arg}(\alpha_p)\).



Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))
Significant digits:
\(n\) \(a_n\) \(a_n / n^{(k-1)/2}\) \( \alpha_n \) \( \theta_n \)
\(p\) \(a_p\) \(a_p / p^{(k-1)/2}\) \( \alpha_p\) \( \theta_p \)
\(2\) 0 0
\(3\) − 46.7654i − 1.00000i
\(4\) 0 0
\(5\) 0 0 1.00000 \(0\)
−1.00000 \(\pi\)
\(6\) 0 0
\(7\) − 1742.44i − 1.92006i −0.279892 0.960031i \(-0.590299\pi\)
0.279892 0.960031i \(-0.409701\pi\)
\(8\) 0 0
\(9\) −2187.00 −1.00000
\(10\) 0 0
\(11\) 0 0 1.00000i \(-0.5\pi\)
1.00000i \(0.5\pi\)
\(12\) 0 0
\(13\) −14614.0 −1.84488 −0.922438 0.386144i \(-0.873807\pi\)
−0.922438 + 0.386144i \(0.873807\pi\)
\(14\) 0 0
\(15\) 0 0
\(16\) 0 0
\(17\) 0 0 1.00000 \(0\)
−1.00000 \(\pi\)
\(18\) 0 0
\(19\) 16589.6i 0.554878i 0.960743 + 0.277439i \(0.0894857\pi\)
−0.960743 + 0.277439i \(0.910514\pi\)
\(20\) 0 0
\(21\) −81486.0 −1.92006
\(22\) 0 0
\(23\) 0 0 1.00000i \(-0.5\pi\)
1.00000i \(0.5\pi\)
\(24\) 0 0
\(25\) 78125.0 1.00000
\(26\) 0 0
\(27\) 102276.i 1.00000i
\(28\) 0 0
\(29\) 0 0 1.00000 \(0\)
−1.00000 \(\pi\)
\(30\) 0 0
\(31\) − 279356.i − 1.68419i −0.539328 0.842096i \(-0.681322\pi\)
0.539328 0.842096i \(-0.318678\pi\)
\(32\) 0 0
\(33\) 0 0
\(34\) 0 0
\(35\) 0 0
\(36\) 0 0
\(37\) −279710. −0.907825 −0.453912 0.891046i \(-0.649972\pi\)
−0.453912 + 0.891046i \(0.649972\pi\)
\(38\) 0 0
\(39\) 683429.i 1.84488i
\(40\) 0 0
\(41\) 0 0 1.00000 \(0\)
−1.00000 \(\pi\)
\(42\) 0 0
\(43\) − 124843.i − 0.239455i −0.992807 0.119727i \(-0.961798\pi\)
0.992807 0.119727i \(-0.0382021\pi\)
\(44\) 0 0
\(45\) 0 0
\(46\) 0 0
\(47\) 0 0 1.00000i \(-0.5\pi\)
1.00000i \(0.5\pi\)
\(48\) 0 0
\(49\) −2.21256e6 −2.68664
\(50\) 0 0
\(51\) 0 0
\(52\) 0 0
\(53\) 0 0 1.00000 \(0\)
−1.00000 \(\pi\)
\(54\) 0 0
\(55\) 0 0
\(56\) 0 0
\(57\) 775818. 0.554878
\(58\) 0 0
\(59\) 0 0 1.00000i \(-0.5\pi\)
1.00000i \(0.5\pi\)
\(60\) 0 0
\(61\) 3.53555e6 1.99435 0.997177 0.0750923i \(-0.0239251\pi\)
0.997177 + 0.0750923i \(0.0239251\pi\)
\(62\) 0 0
\(63\) 3.81072e6i 1.92006i
\(64\) 0 0
\(65\) 0 0
\(66\) 0 0
\(67\) 4.90862e6i 1.99387i 0.0782078 + 0.996937i \(0.475080\pi\)
−0.0782078 + 0.996937i \(0.524920\pi\)
\(68\) 0 0
\(69\) 0 0
\(70\) 0 0
\(71\) 0 0 1.00000i \(-0.5\pi\)
1.00000i \(0.5\pi\)
\(72\) 0 0
\(73\) 6.27481e6 1.88786 0.943932 0.330141i \(-0.107096\pi\)
0.943932 + 0.330141i \(0.107096\pi\)
\(74\) 0 0
\(75\) − 3.65354e6i − 1.00000i
\(76\) 0 0
\(77\) 0 0
\(78\) 0 0
\(79\) 157149.i 0.0358605i 0.999839 + 0.0179303i \(0.00570769\pi\)
−0.999839 + 0.0179303i \(0.994292\pi\)
\(80\) 0 0
\(81\) 4.78297e6 1.00000
\(82\) 0 0
\(83\) 0 0 1.00000i \(-0.5\pi\)
1.00000i \(0.5\pi\)
\(84\) 0 0
\(85\) 0 0
\(86\) 0 0
\(87\) 0 0
\(88\) 0 0
\(89\) 0 0 1.00000 \(0\)
−1.00000 \(\pi\)
\(90\) 0 0
\(91\) 2.54641e7i 3.54228i
\(92\) 0 0
\(93\) −1.30642e7 −1.68419
\(94\) 0 0
\(95\) 0 0
\(96\) 0 0
\(97\) −1.22452e7 −1.36227 −0.681137 0.732156i \(-0.738514\pi\)
−0.681137 + 0.732156i \(0.738514\pi\)
\(98\) 0 0
\(99\) 0 0
\(100\) 0 0
\(101\) 0 0 1.00000 \(0\)
−1.00000 \(\pi\)
\(102\) 0 0
\(103\) 2.06768e7i 1.86446i 0.361868 + 0.932229i \(0.382139\pi\)
−0.361868 + 0.932229i \(0.617861\pi\)
\(104\) 0 0
\(105\) 0 0
\(106\) 0 0
\(107\) 0 0 1.00000i \(-0.5\pi\)
1.00000i \(0.5\pi\)
\(108\) 0 0
\(109\) −1.68240e7 −1.24433 −0.622167 0.782884i \(-0.713748\pi\)
−0.622167 + 0.782884i \(0.713748\pi\)
\(110\) 0 0
\(111\) 1.30807e7i 0.907825i
\(112\) 0 0
\(113\) 0 0 1.00000 \(0\)
−1.00000 \(\pi\)
\(114\) 0 0
\(115\) 0 0
\(116\) 0 0
\(117\) 3.19608e7 1.84488
\(118\) 0 0
\(119\) 0 0
\(120\) 0 0
\(121\) −1.94872e7 −1.00000
\(122\) 0 0
\(123\) 0 0
\(124\) 0 0
\(125\) 0 0
\(126\) 0 0
\(127\) 9.75612e6i 0.422634i 0.977418 + 0.211317i \(0.0677752\pi\)
−0.977418 + 0.211317i \(0.932225\pi\)
\(128\) 0 0
\(129\) −5.83832e6 −0.239455
\(130\) 0 0
\(131\) 0 0 1.00000i \(-0.5\pi\)
1.00000i \(0.5\pi\)
\(132\) 0 0
\(133\) 2.89064e7 1.06540
\(134\) 0 0
\(135\) 0 0
\(136\) 0 0
\(137\) 0 0 1.00000 \(0\)
−1.00000 \(\pi\)
\(138\) 0 0
\(139\) − 3.08109e7i − 0.973088i −0.873656 0.486544i \(-0.838257\pi\)
0.873656 0.486544i \(-0.161743\pi\)
\(140\) 0 0
\(141\) 0 0
\(142\) 0 0
\(143\) 0 0
\(144\) 0 0
\(145\) 0 0
\(146\) 0 0
\(147\) 1.03471e8i 2.68664i
\(148\) 0 0
\(149\) 0 0 1.00000 \(0\)
−1.00000 \(\pi\)
\(150\) 0 0
\(151\) 3.49967e7i 0.827194i 0.910460 + 0.413597i \(0.135728\pi\)
−0.910460 + 0.413597i \(0.864272\pi\)
\(152\) 0 0
\(153\) 0 0
\(154\) 0 0
\(155\) 0 0
\(156\) 0 0
\(157\) −8.20114e7 −1.69132 −0.845659 0.533723i \(-0.820792\pi\)
−0.845659 + 0.533723i \(0.820792\pi\)
\(158\) 0 0
\(159\) 0 0
\(160\) 0 0
\(161\) 0 0
\(162\) 0 0
\(163\) − 6.77910e7i − 1.22607i −0.790056 0.613035i \(-0.789948\pi\)
0.790056 0.613035i \(-0.210052\pi\)
\(164\) 0 0
\(165\) 0 0
\(166\) 0 0
\(167\) 0 0 1.00000i \(-0.5\pi\)
1.00000i \(0.5\pi\)
\(168\) 0 0
\(169\) 1.50820e8 2.40357
\(170\) 0 0
\(171\) − 3.62814e7i − 0.554878i
\(172\) 0 0
\(173\) 0 0 1.00000 \(0\)
−1.00000 \(\pi\)
\(174\) 0 0
\(175\) − 1.36128e8i − 1.92006i
\(176\) 0 0
\(177\) 0 0
\(178\) 0 0
\(179\) 0 0 1.00000i \(-0.5\pi\)
1.00000i \(0.5\pi\)
\(180\) 0 0
\(181\) −3.98034e7 −0.498936 −0.249468 0.968383i \(-0.580256\pi\)
−0.249468 + 0.968383i \(0.580256\pi\)
\(182\) 0 0
\(183\) − 1.65341e8i − 1.99435i
\(184\) 0 0
\(185\) 0 0
\(186\) 0 0
\(187\) 0 0
\(188\) 0 0
\(189\) 1.78210e8 1.92006
\(190\) 0 0
\(191\) 0 0 1.00000i \(-0.5\pi\)
1.00000i \(0.5\pi\)
\(192\) 0 0
\(193\) −9.65180e7 −0.966402 −0.483201 0.875509i \(-0.660526\pi\)
−0.483201 + 0.875509i \(0.660526\pi\)
\(194\) 0 0
\(195\) 0 0
\(196\) 0 0
\(197\) 0 0 1.00000 \(0\)
−1.00000 \(\pi\)
\(198\) 0 0
\(199\) 1.68737e8i 1.51783i 0.651188 + 0.758916i \(0.274271\pi\)
−0.651188 + 0.758916i \(0.725729\pi\)
\(200\) 0 0
\(201\) 2.29554e8 1.99387
\(202\) 0 0
\(203\) 0 0
\(204\) 0 0
\(205\) 0 0
\(206\) 0 0
\(207\) 0 0
\(208\) 0 0
\(209\) 0 0
\(210\) 0 0
\(211\) − 1.60698e8i − 1.17766i −0.808256 0.588832i \(-0.799588\pi\)
0.808256 0.588832i \(-0.200412\pi\)
\(212\) 0 0
\(213\) 0 0
\(214\) 0 0
\(215\) 0 0
\(216\) 0 0
\(217\) −4.86761e8 −3.23375
\(218\) 0 0
\(219\) − 2.93444e8i − 1.88786i
\(220\) 0 0
\(221\) 0 0
\(222\) 0 0
\(223\) − 2.01450e8i − 1.21647i −0.793759 0.608233i \(-0.791879\pi\)
0.793759 0.608233i \(-0.208121\pi\)
\(224\) 0 0
\(225\) −1.70859e8 −1.00000
\(226\) 0 0
\(227\) 0 0 1.00000i \(-0.5\pi\)
1.00000i \(0.5\pi\)
\(228\) 0 0
\(229\) −2.01186e8 −1.10707 −0.553534 0.832827i \(-0.686721\pi\)
−0.553534 + 0.832827i \(0.686721\pi\)
\(230\) 0 0
\(231\) 0 0
\(232\) 0 0
\(233\) 0 0 1.00000 \(0\)
−1.00000 \(\pi\)
\(234\) 0 0
\(235\) 0 0
\(236\) 0 0
\(237\) 7.34913e6 0.0358605
\(238\) 0 0
\(239\) 0 0 1.00000i \(-0.5\pi\)
1.00000i \(0.5\pi\)
\(240\) 0 0
\(241\) −5.75871e7 −0.265012 −0.132506 0.991182i \(-0.542302\pi\)
−0.132506 + 0.991182i \(0.542302\pi\)
\(242\) 0 0
\(243\) − 2.23677e8i − 1.00000i
\(244\) 0 0
\(245\) 0 0
\(246\) 0 0
\(247\) − 2.42440e8i − 1.02368i
\(248\) 0 0
\(249\) 0 0
\(250\) 0 0
\(251\) 0 0 1.00000i \(-0.5\pi\)
1.00000i \(0.5\pi\)
\(252\) 0 0
\(253\) 0 0
\(254\) 0 0
\(255\) 0 0
\(256\) 0 0
\(257\) 0 0 1.00000 \(0\)
−1.00000 \(\pi\)
\(258\) 0 0
\(259\) 4.87379e8i 1.74308i
\(260\) 0 0
\(261\) 0 0
\(262\) 0 0
\(263\) 0 0 1.00000i \(-0.5\pi\)
1.00000i \(0.5\pi\)
\(264\) 0 0
\(265\) 0 0
\(266\) 0 0
\(267\) 0 0
\(268\) 0 0
\(269\) 0 0 1.00000 \(0\)
−1.00000 \(\pi\)
\(270\) 0 0
\(271\) − 4.40021e8i − 1.34302i −0.740998 0.671508i \(-0.765647\pi\)
0.740998 0.671508i \(-0.234353\pi\)
\(272\) 0 0
\(273\) 1.19084e9 3.54228
\(274\) 0 0
\(275\) 0 0
\(276\) 0 0
\(277\) 5.85096e6 0.0165405 0.00827024 0.999966i \(-0.497367\pi\)
0.00827024 + 0.999966i \(0.497367\pi\)
\(278\) 0 0
\(279\) 6.10951e8i 1.68419i
\(280\) 0 0
\(281\) 0 0 1.00000 \(0\)
−1.00000 \(\pi\)
\(282\) 0 0
\(283\) − 6.17390e8i − 1.61923i −0.586964 0.809613i \(-0.699677\pi\)
0.586964 0.809613i \(-0.300323\pi\)
\(284\) 0 0
\(285\) 0 0
\(286\) 0 0
\(287\) 0 0
\(288\) 0 0
\(289\) 4.10339e8 1.00000
\(290\) 0 0
\(291\) 5.72651e8i 1.36227i
\(292\) 0 0
\(293\) 0 0 1.00000 \(0\)
−1.00000 \(\pi\)
\(294\) 0 0
\(295\) 0 0
\(296\) 0 0
\(297\) 0 0
\(298\) 0 0
\(299\) 0 0
\(300\) 0 0
\(301\) −2.17531e8 −0.459769
\(302\) 0 0
\(303\) 0 0
\(304\) 0 0
\(305\) 0 0
\(306\) 0 0
\(307\) 9.98019e8i 1.96859i 0.176541 + 0.984293i \(0.443509\pi\)
−0.176541 + 0.984293i \(0.556491\pi\)
\(308\) 0 0
\(309\) 9.66957e8 1.86446
\(310\) 0 0
\(311\) 0 0 1.00000i \(-0.5\pi\)
1.00000i \(0.5\pi\)
\(312\) 0 0
\(313\) −1.08488e9 −1.99976 −0.999880 0.0155022i \(-0.995065\pi\)
−0.999880 + 0.0155022i \(0.995065\pi\)
\(314\) 0 0
\(315\) 0 0
\(316\) 0 0
\(317\) 0 0 1.00000 \(0\)
−1.00000 \(\pi\)
\(318\) 0 0
\(319\) 0 0
\(320\) 0 0
\(321\) 0 0
\(322\) 0 0
\(323\) 0 0
\(324\) 0 0
\(325\) −1.14172e9 −1.84488
\(326\) 0 0
\(327\) 7.86782e8i 1.24433i
\(328\) 0 0
\(329\) 0 0
\(330\) 0 0
\(331\) − 4.29087e8i − 0.650351i −0.945654 0.325175i \(-0.894577\pi\)
0.945654 0.325175i \(-0.105423\pi\)
\(332\) 0 0
\(333\) 6.11726e8 0.907825
\(334\) 0 0
\(335\) 0 0
\(336\) 0 0
\(337\) −1.27571e9 −1.81571 −0.907854 0.419286i \(-0.862281\pi\)
−0.907854 + 0.419286i \(0.862281\pi\)
\(338\) 0 0
\(339\) 0 0
\(340\) 0 0
\(341\) 0 0
\(342\) 0 0
\(343\) 2.42029e9i 3.23846i
\(344\) 0 0
\(345\) 0 0
\(346\) 0 0
\(347\) 0 0 1.00000i \(-0.5\pi\)
1.00000i \(0.5\pi\)
\(348\) 0 0
\(349\) 6.95221e8 0.875455 0.437728 0.899108i \(-0.355783\pi\)
0.437728 + 0.899108i \(0.355783\pi\)
\(350\) 0 0
\(351\) − 1.49466e9i − 1.84488i
\(352\) 0 0
\(353\) 0 0 1.00000 \(0\)
−1.00000 \(\pi\)
\(354\) 0 0
\(355\) 0 0
\(356\) 0 0
\(357\) 0 0
\(358\) 0 0
\(359\) 0 0 1.00000i \(-0.5\pi\)
1.00000i \(0.5\pi\)
\(360\) 0 0
\(361\) 6.18657e8 0.692110
\(362\) 0 0
\(363\) 9.11325e8i 1.00000i
\(364\) 0 0
\(365\) 0 0
\(366\) 0 0
\(367\) 1.40861e9i 1.48751i 0.668454 + 0.743754i \(0.266956\pi\)
−0.668454 + 0.743754i \(0.733044\pi\)
\(368\) 0 0
\(369\) 0 0
\(370\) 0 0
\(371\) 0 0
\(372\) 0 0
\(373\) −6.08469e8 −0.607096 −0.303548 0.952816i \(-0.598171\pi\)
−0.303548 + 0.952816i \(0.598171\pi\)
\(374\) 0 0
\(375\) 0 0
\(376\) 0 0
\(377\) 0 0
\(378\) 0 0
\(379\) 2.58413e8i 0.243824i 0.992541 + 0.121912i \(0.0389026\pi\)
−0.992541 + 0.121912i \(0.961097\pi\)
\(380\) 0 0
\(381\) 4.56249e8 0.422634
\(382\) 0 0
\(383\) 0 0 1.00000i \(-0.5\pi\)
1.00000i \(0.5\pi\)
\(384\) 0 0
\(385\) 0 0
\(386\) 0 0
\(387\) 2.73031e8i 0.239455i
\(388\) 0 0
\(389\) 0 0 1.00000 \(0\)
−1.00000 \(\pi\)
\(390\) 0 0
\(391\) 0 0
\(392\) 0 0
\(393\) 0 0
\(394\) 0 0
\(395\) 0 0
\(396\) 0 0
\(397\) −1.90824e9 −1.53062 −0.765308 0.643665i \(-0.777413\pi\)
−0.765308 + 0.643665i \(0.777413\pi\)
\(398\) 0 0
\(399\) − 1.35182e9i − 1.06540i
\(400\) 0 0
\(401\) 0 0 1.00000 \(0\)
−1.00000 \(\pi\)
\(402\) 0 0
\(403\) 4.08250e9i 3.10713i
\(404\) 0 0
\(405\) 0 0
\(406\) 0 0
\(407\) 0 0
\(408\) 0 0
\(409\) 2.12727e9 1.53741 0.768707 0.639601i \(-0.220900\pi\)
0.768707 + 0.639601i \(0.220900\pi\)
\(410\) 0 0
\(411\) 0 0
\(412\) 0 0
\(413\) 0 0
\(414\) 0 0
\(415\) 0 0
\(416\) 0 0
\(417\) −1.44088e9 −0.973088
\(418\) 0 0
\(419\) 0 0 1.00000i \(-0.5\pi\)
1.00000i \(0.5\pi\)
\(420\) 0 0
\(421\) −2.23703e9 −1.46112 −0.730558 0.682850i \(-0.760740\pi\)
−0.730558 + 0.682850i \(0.760740\pi\)
\(422\) 0 0
\(423\) 0 0
\(424\) 0 0
\(425\) 0 0
\(426\) 0 0
\(427\) − 6.16049e9i − 3.82928i
\(428\) 0 0
\(429\) 0 0
\(430\) 0 0
\(431\) 0 0 1.00000i \(-0.5\pi\)
1.00000i \(0.5\pi\)
\(432\) 0 0
\(433\) −1.11566e9 −0.660424 −0.330212 0.943907i \(-0.607120\pi\)
−0.330212 + 0.943907i \(0.607120\pi\)
\(434\) 0 0
\(435\) 0 0
\(436\) 0 0
\(437\) 0 0
\(438\) 0 0
\(439\) − 1.41308e9i − 0.797151i −0.917135 0.398576i \(-0.869505\pi\)
0.917135 0.398576i \(-0.130495\pi\)
\(440\) 0 0
\(441\) 4.83888e9 2.68664
\(442\) 0 0
\(443\) 0 0 1.00000i \(-0.5\pi\)
1.00000i \(0.5\pi\)
\(444\) 0 0
\(445\) 0 0
\(446\) 0 0
\(447\) 0 0
\(448\) 0 0
\(449\) 0 0 1.00000 \(0\)
−1.00000 \(\pi\)
\(450\) 0 0
\(451\) 0 0
\(452\) 0 0
\(453\) 1.63663e9 0.827194
\(454\) 0 0
\(455\) 0 0
\(456\) 0 0
\(457\) −4.06709e9 −1.99332 −0.996661 0.0816509i \(-0.973981\pi\)
−0.996661 + 0.0816509i \(0.973981\pi\)
\(458\) 0 0
\(459\) 0 0
\(460\) 0 0
\(461\) 0 0 1.00000 \(0\)
−1.00000 \(\pi\)
\(462\) 0 0
\(463\) − 4.14708e9i − 1.94182i −0.239440 0.970911i \(-0.576964\pi\)
0.239440 0.970911i \(-0.423036\pi\)
\(464\) 0 0
\(465\) 0 0
\(466\) 0 0
\(467\) 0 0 1.00000i \(-0.5\pi\)
1.00000i \(0.5\pi\)
\(468\) 0 0
\(469\) 8.55299e9 3.82836
\(470\) 0 0
\(471\) 3.83529e9i 1.69132i
\(472\) 0 0
\(473\) 0 0
\(474\) 0 0
\(475\) 1.29606e9i 0.554878i
\(476\) 0 0
\(477\) 0 0
\(478\) 0 0
\(479\) 0 0 1.00000i \(-0.5\pi\)
1.00000i \(0.5\pi\)
\(480\) 0 0
\(481\) 4.08768e9 1.67482
\(482\) 0 0
\(483\) 0 0
\(484\) 0 0
\(485\) 0 0
\(486\) 0 0
\(487\) 2.66443e9i 1.04533i 0.852539 + 0.522664i \(0.175062\pi\)
−0.852539 + 0.522664i \(0.824938\pi\)
\(488\) 0 0
\(489\) −3.17027e9 −1.22607
\(490\) 0 0
\(491\) 0 0 1.00000i \(-0.5\pi\)
1.00000i \(0.5\pi\)
\(492\) 0 0
\(493\) 0 0
\(494\) 0 0
\(495\) 0 0
\(496\) 0 0
\(497\) 0 0
\(498\) 0 0
\(499\) − 4.26639e9i − 1.53712i −0.639775 0.768562i \(-0.720972\pi\)
0.639775 0.768562i \(-0.279028\pi\)
\(500\) 0 0
\(501\) 0 0
\(502\) 0 0
\(503\) 0 0 1.00000i \(-0.5\pi\)
1.00000i \(0.5\pi\)
\(504\) 0 0
\(505\) 0 0
\(506\) 0 0
\(507\) − 7.05318e9i − 2.40357i
\(508\) 0 0
\(509\) 0 0 1.00000 \(0\)
−1.00000 \(\pi\)
\(510\) 0 0
\(511\) − 1.09335e10i − 3.62482i
\(512\) 0 0
\(513\) −1.69671e9 −0.554878
\(514\) 0 0
\(515\) 0 0
\(516\) 0 0
\(517\) 0 0
\(518\) 0 0
\(519\) 0 0
\(520\) 0 0
\(521\) 0 0 1.00000 \(0\)
−1.00000 \(\pi\)
\(522\) 0 0
\(523\) − 2.18274e9i − 0.667185i −0.942717 0.333592i \(-0.891739\pi\)
0.942717 0.333592i \(-0.108261\pi\)
\(524\) 0 0
\(525\) −6.36609e9 −1.92006
\(526\) 0 0
\(527\) 0 0
\(528\) 0 0
\(529\) −3.40483e9 −1.00000
\(530\) 0 0
\(531\) 0 0
\(532\) 0 0
\(533\) 0 0
\(534\) 0 0
\(535\) 0 0
\(536\) 0 0
\(537\) 0 0
\(538\) 0 0
\(539\) 0 0
\(540\) 0 0
\(541\) −3.68782e9 −1.00134 −0.500668 0.865640i \(-0.666912\pi\)
−0.500668 + 0.865640i \(0.666912\pi\)
\(542\) 0 0
\(543\) 1.86142e9i 0.498936i
\(544\) 0 0
\(545\) 0 0
\(546\) 0 0
\(547\) 4.77362e9i 1.24707i 0.781793 + 0.623537i \(0.214305\pi\)
−0.781793 + 0.623537i \(0.785695\pi\)
\(548\) 0 0
\(549\) −7.73224e9 −1.99435
\(550\) 0 0
\(551\) 0 0
\(552\) 0 0
\(553\) 2.73823e8 0.0688545
\(554\) 0 0
\(555\) 0 0
\(556\) 0 0
\(557\) 0 0 1.00000 \(0\)
−1.00000 \(\pi\)
\(558\) 0 0
\(559\) 1.82445e9i 0.441765i
\(560\) 0 0
\(561\) 0 0
\(562\) 0 0
\(563\) 0 0 1.00000i \(-0.5\pi\)
1.00000i \(0.5\pi\)
\(564\) 0 0
\(565\) 0 0
\(566\) 0 0
\(567\) − 8.33405e9i − 1.92006i
\(568\) 0 0
\(569\) 0 0 1.00000 \(0\)
−1.00000 \(\pi\)
\(570\) 0 0
\(571\) 6.49838e9i 1.46076i 0.683042 + 0.730379i \(0.260657\pi\)
−0.683042 + 0.730379i \(0.739343\pi\)
\(572\) 0 0
\(573\) 0 0
\(574\) 0 0
\(575\) 0 0
\(576\) 0 0
\(577\) 4.23933e9 0.918718 0.459359 0.888251i \(-0.348079\pi\)
0.459359 + 0.888251i \(0.348079\pi\)
\(578\) 0 0
\(579\) 4.51370e9i 0.966402i
\(580\) 0 0
\(581\) 0 0
\(582\) 0 0
\(583\) 0 0
\(584\) 0 0
\(585\) 0 0
\(586\) 0 0
\(587\) 0 0 1.00000i \(-0.5\pi\)
1.00000i \(0.5\pi\)
\(588\) 0 0
\(589\) 4.63439e9 0.934521
\(590\) 0 0
\(591\) 0 0
\(592\) 0 0
\(593\) 0 0 1.00000 \(0\)
−1.00000 \(\pi\)
\(594\) 0 0
\(595\) 0 0
\(596\) 0 0
\(597\) 7.89103e9 1.51783
\(598\) 0 0
\(599\) 0 0 1.00000i \(-0.5\pi\)
1.00000i \(0.5\pi\)
\(600\) 0 0
\(601\) 7.41654e9 1.39361 0.696804 0.717262i \(-0.254605\pi\)
0.696804 + 0.717262i \(0.254605\pi\)
\(602\) 0 0
\(603\) − 1.07352e10i − 1.99387i
\(604\) 0 0
\(605\) 0 0
\(606\) 0 0
\(607\) 1.07643e10i 1.95355i 0.214270 + 0.976774i \(0.431263\pi\)
−0.214270 + 0.976774i \(0.568737\pi\)
\(608\) 0 0
\(609\) 0 0
\(610\) 0 0
\(611\) 0 0
\(612\) 0 0
\(613\) −1.12826e10 −1.97832 −0.989161 0.146837i \(-0.953091\pi\)
−0.989161 + 0.146837i \(0.953091\pi\)
\(614\) 0 0
\(615\) 0 0
\(616\) 0 0
\(617\) 0 0 1.00000 \(0\)
−1.00000 \(\pi\)
\(618\) 0 0
\(619\) 2.08193e9i 0.352816i 0.984317 + 0.176408i \(0.0564478\pi\)
−0.984317 + 0.176408i \(0.943552\pi\)
\(620\) 0 0
\(621\) 0 0
\(622\) 0 0
\(623\) 0 0
\(624\) 0 0
\(625\) 6.10352e9 1.00000
\(626\) 0 0
\(627\) 0 0
\(628\) 0 0
\(629\) 0 0
\(630\) 0 0
\(631\) 4.73166e9i 0.749740i 0.927077 + 0.374870i \(0.122313\pi\)
−0.927077 + 0.374870i \(0.877687\pi\)
\(632\) 0 0
\(633\) −7.51509e9 −1.17766
\(634\) 0 0
\(635\) 0 0
\(636\) 0 0
\(637\) 3.23344e10 4.95652
\(638\) 0 0
\(639\) 0 0
\(640\) 0 0
\(641\) 0 0 1.00000 \(0\)
−1.00000 \(\pi\)
\(642\) 0 0
\(643\) − 1.34415e10i − 1.99393i −0.0778386 0.996966i \(-0.524802\pi\)
0.0778386 0.996966i \(-0.475198\pi\)
\(644\) 0 0
\(645\) 0 0
\(646\) 0 0
\(647\) 0 0 1.00000i \(-0.5\pi\)
1.00000i \(0.5\pi\)
\(648\) 0 0
\(649\) 0 0
\(650\) 0 0
\(651\) 2.27636e10i 3.23375i
\(652\) 0 0
\(653\) 0 0 1.00000 \(0\)
−1.00000 \(\pi\)
\(654\) 0 0
\(655\) 0 0
\(656\) 0 0
\(657\) −1.37230e10 −1.88786
\(658\) 0 0
\(659\) 0 0 1.00000i \(-0.5\pi\)
1.00000i \(0.5\pi\)
\(660\) 0 0
\(661\) −6.61860e9 −0.891376 −0.445688 0.895188i \(-0.647041\pi\)
−0.445688 + 0.895188i \(0.647041\pi\)
\(662\) 0 0
\(663\) 0 0
\(664\) 0 0
\(665\) 0 0
\(666\) 0 0
\(667\) 0 0
\(668\) 0 0
\(669\) −9.42087e9 −1.21647
\(670\) 0 0
\(671\) 0 0
\(672\) 0 0
\(673\) −4.99918e9 −0.632187 −0.316094 0.948728i \(-0.602371\pi\)
−0.316094 + 0.948728i \(0.602371\pi\)
\(674\) 0 0
\(675\) 7.99030e9i 1.00000i
\(676\) 0 0
\(677\) 0 0 1.00000 \(0\)
−1.00000 \(\pi\)
\(678\) 0 0
\(679\) 2.13366e10i 2.61565i
\(680\) 0 0
\(681\) 0 0
\(682\) 0 0
\(683\) 0 0 1.00000i \(-0.5\pi\)
1.00000i \(0.5\pi\)
\(684\) 0 0
\(685\) 0 0
\(686\) 0 0
\(687\) 9.40855e9i 1.10707i
\(688\) 0 0
\(689\) 0 0
\(690\) 0 0
\(691\) 8.33859e9i 0.961434i 0.876876 + 0.480717i \(0.159624\pi\)
−0.876876 + 0.480717i \(0.840376\pi\)
\(692\) 0 0
\(693\) 0 0
\(694\) 0 0
\(695\) 0 0
\(696\) 0 0
\(697\) 0 0
\(698\) 0 0
\(699\) 0 0
\(700\) 0 0
\(701\) 0 0 1.00000 \(0\)
−1.00000 \(\pi\)
\(702\) 0 0
\(703\) − 4.64027e9i − 0.503732i
\(704\) 0 0
\(705\) 0 0
\(706\) 0 0
\(707\) 0 0
\(708\) 0 0
\(709\) 3.03318e9 0.319622 0.159811 0.987148i \(-0.448912\pi\)
0.159811 + 0.987148i \(0.448912\pi\)
\(710\) 0 0
\(711\) − 3.43685e8i − 0.0358605i
\(712\) 0 0
\(713\) 0 0
\(714\) 0 0
\(715\) 0 0
\(716\) 0 0
\(717\) 0 0
\(718\) 0 0
\(719\) 0 0 1.00000i \(-0.5\pi\)
1.00000i \(0.5\pi\)
\(720\) 0 0
\(721\) 3.60281e10 3.57988
\(722\) 0 0
\(723\) 2.69308e9i 0.265012i
\(724\) 0 0
\(725\) 0 0
\(726\) 0 0
\(727\) − 1.91072e10i − 1.84428i −0.386861 0.922138i \(-0.626441\pi\)
0.386861 0.922138i \(-0.373559\pi\)
\(728\) 0 0
\(729\) −1.04604e10 −1.00000
\(730\) 0 0
\(731\) 0 0
\(732\) 0 0
\(733\) −1.97732e10 −1.85445 −0.927223 0.374511i \(-0.877811\pi\)
−0.927223 + 0.374511i \(0.877811\pi\)
\(734\) 0 0
\(735\) 0 0
\(736\) 0 0
\(737\) 0 0
\(738\) 0 0
\(739\) − 1.09057e10i − 0.994026i −0.867743 0.497013i \(-0.834430\pi\)
0.867743 0.497013i \(-0.165570\pi\)
\(740\) 0 0
\(741\) −1.13378e10 −1.02368
\(742\) 0 0
\(743\) 0 0 1.00000i \(-0.5\pi\)
1.00000i \(0.5\pi\)
\(744\) 0 0
\(745\) 0 0
\(746\) 0 0
\(747\) 0 0
\(748\) 0 0
\(749\) 0 0
\(750\) 0 0
\(751\) 1.80528e10i 1.55527i 0.628718 + 0.777633i \(0.283580\pi\)
−0.628718 + 0.777633i \(0.716420\pi\)
\(752\) 0 0
\(753\) 0 0
\(754\) 0 0
\(755\) 0 0
\(756\) 0 0
\(757\) 7.12787e9 0.597206 0.298603 0.954377i \(-0.403479\pi\)
0.298603 + 0.954377i \(0.403479\pi\)
\(758\) 0 0
\(759\) 0 0
\(760\) 0 0
\(761\) 0 0 1.00000 \(0\)
−1.00000 \(\pi\)
\(762\) 0 0
\(763\) 2.93149e10i 2.38920i
\(764\) 0 0
\(765\) 0 0
\(766\) 0 0
\(767\) 0 0
\(768\) 0 0
\(769\) −6.30053e9 −0.499615 −0.249807 0.968296i \(-0.580367\pi\)
−0.249807 + 0.968296i \(0.580367\pi\)
\(770\) 0 0
\(771\) 0 0
\(772\) 0 0
\(773\) 0 0 1.00000 \(0\)
−1.00000 \(\pi\)
\(774\) 0 0
\(775\) − 2.18247e10i − 1.68419i
\(776\) 0 0
\(777\) 2.27924e10 1.74308
\(778\) 0 0
\(779\) 0 0
\(780\) 0 0
\(781\) 0 0
\(782\) 0 0
\(783\) 0 0
\(784\) 0 0
\(785\) 0 0
\(786\) 0 0
\(787\) 1.14622e10i 0.838214i 0.907937 + 0.419107i \(0.137657\pi\)
−0.907937 + 0.419107i \(0.862343\pi\)
\(788\) 0 0
\(789\) 0 0
\(790\) 0 0
\(791\) 0 0
\(792\) 0 0
\(793\) −5.16685e10 −3.67934
\(794\) 0 0
\(795\) 0 0
\(796\) 0 0
\(797\) 0 0 1.00000 \(0\)
−1.00000 \(\pi\)
\(798\) 0 0
\(799\) 0 0
\(800\) 0 0
\(801\) 0 0
\(802\) 0 0
\(803\) 0 0
\(804\) 0 0
\(805\) 0 0
\(806\) 0 0
\(807\) 0 0
\(808\) 0 0
\(809\) 0 0 1.00000 \(0\)
−1.00000 \(\pi\)
\(810\) 0 0
\(811\) − 2.91438e10i − 1.91855i −0.282472 0.959276i \(-0.591154\pi\)
0.282472 0.959276i \(-0.408846\pi\)
\(812\) 0 0
\(813\) −2.05777e10 −1.34302
\(814\) 0 0
\(815\) 0 0
\(816\) 0 0
\(817\) 2.07109e9 0.132868
\(818\) 0 0
\(819\) − 5.56899e10i − 3.54228i
\(820\) 0 0
\(821\) 0 0 1.00000 \(0\)
−1.00000 \(\pi\)
\(822\) 0 0
\(823\) − 2.78506e9i − 0.174154i −0.996202 0.0870772i \(-0.972247\pi\)
0.996202 0.0870772i \(-0.0277527\pi\)
\(824\) 0 0
\(825\) 0 0
\(826\) 0 0
\(827\) 0 0 1.00000i \(-0.5\pi\)
1.00000i \(0.5\pi\)
\(828\) 0 0
\(829\) 6.33017e9 0.385900 0.192950 0.981209i \(-0.438195\pi\)
0.192950 + 0.981209i \(0.438195\pi\)
\(830\) 0 0
\(831\) − 2.73622e8i − 0.0165405i
\(832\) 0 0
\(833\) 0 0
\(834\) 0 0
\(835\) 0 0
\(836\) 0 0
\(837\) 2.85713e10 1.68419
\(838\) 0 0
\(839\) 0 0 1.00000i \(-0.5\pi\)
1.00000i \(0.5\pi\)
\(840\) 0 0
\(841\) 1.72499e10 1.00000
\(842\) 0 0
\(843\) 0 0
\(844\) 0 0
\(845\) 0 0
\(846\) 0 0
\(847\) 3.39553e10i 1.92006i
\(848\) 0 0
\(849\) −2.88725e10 −1.61923
\(850\) 0 0
\(851\) 0 0
\(852\) 0 0
\(853\) 2.44073e10 1.34647 0.673237 0.739427i \(-0.264904\pi\)
0.673237 + 0.739427i \(0.264904\pi\)
\(854\) 0 0
\(855\) 0 0
\(856\) 0 0
\(857\) 0 0 1.00000 \(0\)
−1.00000 \(\pi\)
\(858\) 0 0
\(859\) 3.20767e10i 1.72669i 0.504617 + 0.863343i \(0.331634\pi\)
−0.504617 + 0.863343i \(0.668366\pi\)
\(860\) 0 0
\(861\) 0 0
\(862\) 0 0
\(863\) 0 0 1.00000i \(-0.5\pi\)
1.00000i \(0.5\pi\)
\(864\) 0 0
\(865\) 0 0
\(866\) 0 0
\(867\) − 1.91896e10i − 1.00000i
\(868\) 0 0
\(869\) 0 0
\(870\) 0 0
\(871\) − 7.17346e10i − 3.67845i
\(872\) 0 0
\(873\) 2.67802e10 1.36227
\(874\) 0 0
\(875\) 0 0
\(876\) 0 0
\(877\) 3.62759e10 1.81602 0.908008 0.418953i \(-0.137603\pi\)
0.908008 + 0.418953i \(0.137603\pi\)
\(878\) 0 0
\(879\) 0 0
\(880\) 0 0
\(881\) 0 0 1.00000 \(0\)
−1.00000 \(\pi\)
\(882\) 0 0
\(883\) − 2.39614e10i − 1.17125i −0.810581 0.585626i \(-0.800849\pi\)
0.810581 0.585626i \(-0.199151\pi\)
\(884\) 0 0
\(885\) 0 0
\(886\) 0 0
\(887\) 0 0 1.00000i \(-0.5\pi\)
1.00000i \(0.5\pi\)
\(888\) 0 0
\(889\) 1.69995e10 0.811483
\(890\) 0 0
\(891\) 0 0
\(892\) 0 0
\(893\) 0 0
\(894\) 0 0
\(895\) 0 0
\(896\) 0 0
\(897\) 0 0
\(898\) 0 0
\(899\) 0 0
\(900\) 0 0
\(901\) 0 0
\(902\) 0 0
\(903\) 1.01729e10i 0.459769i
\(904\) 0 0
\(905\) 0 0
\(906\) 0 0
\(907\) − 1.63161e10i − 0.726092i −0.931771 0.363046i \(-0.881737\pi\)
0.931771 0.363046i \(-0.118263\pi\)
\(908\) 0 0
\(909\) 0 0
\(910\) 0 0
\(911\) 0 0 1.00000i \(-0.5\pi\)
1.00000i \(0.5\pi\)
\(912\) 0 0
\(913\) 0 0
\(914\) 0 0
\(915\) 0 0
\(916\) 0 0
\(917\) 0 0
\(918\) 0 0
\(919\) − 2.80673e10i − 1.19288i −0.802658 0.596440i \(-0.796581\pi\)
0.802658 0.596440i \(-0.203419\pi\)
\(920\) 0 0
\(921\) 4.66727e10 1.96859
\(922\) 0 0
\(923\) 0 0
\(924\) 0 0
\(925\) −2.18523e10 −0.907825
\(926\) 0 0
\(927\) − 4.52201e10i − 1.86446i
\(928\) 0 0
\(929\) 0 0 1.00000 \(0\)
−1.00000 \(\pi\)
\(930\) 0 0
\(931\) − 3.67055e10i − 1.49076i
\(932\) 0 0
\(933\) 0 0
\(934\) 0 0
\(935\) 0 0
\(936\) 0 0
\(937\) −3.58514e9 −0.142370 −0.0711848 0.997463i \(-0.522678\pi\)
−0.0711848 + 0.997463i \(0.522678\pi\)
\(938\) 0 0
\(939\) 5.07350e10i 1.99976i
\(940\) 0 0
\(941\) 0 0 1.00000 \(0\)
−1.00000 \(\pi\)
\(942\) 0 0
\(943\) 0 0
\(944\) 0 0
\(945\) 0 0
\(946\) 0 0
\(947\) 0 0 1.00000i \(-0.5\pi\)
1.00000i \(0.5\pi\)
\(948\) 0 0
\(949\) −9.17001e10 −3.48288
\(950\) 0 0
\(951\) 0 0
\(952\) 0 0
\(953\) 0 0 1.00000 \(0\)
−1.00000 \(\pi\)
\(954\) 0 0
\(955\) 0 0
\(956\) 0 0
\(957\) 0 0
\(958\) 0 0
\(959\) 0 0
\(960\) 0 0
\(961\) −5.05269e10 −1.83650
\(962\) 0 0
\(963\) 0 0
\(964\) 0 0
\(965\) 0 0
\(966\) 0 0
\(967\) 3.71231e10i 1.32023i 0.751163 + 0.660117i \(0.229493\pi\)
−0.751163 + 0.660117i \(0.770507\pi\)
\(968\) 0 0
\(969\) 0 0
\(970\) 0 0
\(971\) 0 0 1.00000i \(-0.5\pi\)
1.00000i \(0.5\pi\)
\(972\) 0 0
\(973\) −5.36862e10 −1.86839
\(974\) 0 0
\(975\) 5.33929e10i 1.84488i
\(976\) 0 0
\(977\) 0 0 1.00000 \(0\)
−1.00000 \(\pi\)
\(978\) 0 0
\(979\) 0 0
\(980\) 0 0
\(981\) 3.67941e10 1.24433
\(982\) 0 0
\(983\) 0 0 1.00000i \(-0.5\pi\)
1.00000i \(0.5\pi\)
\(984\) 0 0
\(985\) 0 0
\(986\) 0 0
\(987\) 0 0
\(988\) 0 0
\(989\) 0 0
\(990\) 0 0
\(991\) − 3.96695e10i − 1.29479i −0.762156 0.647394i \(-0.775859\pi\)
0.762156 0.647394i \(-0.224141\pi\)
\(992\) 0 0
\(993\) −2.00664e10 −0.650351
\(994\) 0 0
\(995\) 0 0
\(996\) 0 0
\(997\) −5.61437e10 −1.79419 −0.897093 0.441841i \(-0.854326\pi\)
−0.897093 + 0.441841i \(0.854326\pi\)
\(998\) 0 0
\(999\) − 2.86076e10i − 0.907825i
Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))

Twists

       By twisting character
Char Parity Ord Type Twist Min Dim
1.1 even 1 trivial 192.8.c.a.191.1 2
3.2 odd 2 CM 192.8.c.a.191.1 2
4.3 odd 2 inner 192.8.c.a.191.2 2
8.3 odd 2 48.8.c.a.47.1 2
8.5 even 2 48.8.c.a.47.2 yes 2
12.11 even 2 inner 192.8.c.a.191.2 2
24.5 odd 2 48.8.c.a.47.2 yes 2
24.11 even 2 48.8.c.a.47.1 2
    
        By twisted newform
Twist Min Dim Char Parity Ord Type
48.8.c.a.47.1 2 8.3 odd 2
48.8.c.a.47.1 2 24.11 even 2
48.8.c.a.47.2 yes 2 8.5 even 2
48.8.c.a.47.2 yes 2 24.5 odd 2
192.8.c.a.191.1 2 1.1 even 1 trivial
192.8.c.a.191.1 2 3.2 odd 2 CM
192.8.c.a.191.2 2 4.3 odd 2 inner
192.8.c.a.191.2 2 12.11 even 2 inner