Properties

Label 192.9.g.e
Level 192192
Weight 99
Character orbit 192.g
Analytic conductor 78.21778.217
Analytic rank 00
Dimension 88
Inner twists 22

Related objects

Downloads

Learn more

Show commands: Magma / PariGP / SageMath

Newspace parameters

comment: Compute space of new eigenforms
 
[N,k,chi] = [192,9,Mod(127,192)]
 
mf = mfinit([N,k,chi],0)
 
lf = mfeigenbasis(mf)
 
from sage.modular.dirichlet import DirichletCharacter
 
H = DirichletGroup(192, base_ring=CyclotomicField(2))
 
chi = DirichletCharacter(H, H._module([1, 0, 0]))
 
N = Newforms(chi, 9, names="a")
 
//Please install CHIMP (https://github.com/edgarcosta/CHIMP) if you want to run this code
 
chi := DirichletCharacter("192.127");
 
S:= CuspForms(chi, 9);
 
N := Newforms(S);
 
Level: N N == 192=263 192 = 2^{6} \cdot 3
Weight: k k == 9 9
Character orbit: [χ][\chi] == 192.g (of order 22, degree 11, not minimal)

Newform invariants

comment: select newform
 
sage: f = N[0] # Warning: the index may be different
 
gp: f = lf[1] \\ Warning: the index may be different
 
Self dual: no
Analytic conductor: 78.216693131778.2166931317
Analytic rank: 00
Dimension: 88
Coefficient field: Q[x]/(x8)\mathbb{Q}[x]/(x^{8} - \cdots)
comment: defining polynomial
 
gp: f.mod \\ as an extension of the character field
 
Defining polynomial: x83x740x6395x5+403x4+8998x3+74584x2+217224x+269328 x^{8} - 3x^{7} - 40x^{6} - 395x^{5} + 403x^{4} + 8998x^{3} + 74584x^{2} + 217224x + 269328 Copy content Toggle raw display
Coefficient ring: Z[a1,,a11]\Z[a_1, \ldots, a_{11}]
Coefficient ring index: 252310 2^{52}\cdot 3^{10}
Twist minimal: no (minimal twist has level 12)
Sato-Tate group: SU(2)[C2]\mathrm{SU}(2)[C_{2}]

qq-expansion

comment: q-expansion
 
sage: f.q_expansion() # note that sage often uses an isomorphic number field
 
gp: mfcoefs(f, 20)
 

Coefficients of the qq-expansion are expressed in terms of a basis 1,β1,,β71,\beta_1,\ldots,\beta_{7} for the coefficient ring described below. We also show the integral qq-expansion of the trace form.

f(q)f(q) == qβ1q3+(β2+42)q5+(β67β1)q72187q9+(β6+β353β1)q11+(β52β4+4β2+358)q13+(β7+2β6+41β1)q15++(2187β6++115911β1)q99+O(q100) q - \beta_1 q^{3} + (\beta_{2} + 42) q^{5} + ( - \beta_{6} - 7 \beta_1) q^{7} - 2187 q^{9} + (\beta_{6} + \beta_{3} - 53 \beta_1) q^{11} + (\beta_{5} - 2 \beta_{4} + 4 \beta_{2} + 358) q^{13} + ( - \beta_{7} + 2 \beta_{6} + \cdots - 41 \beta_1) q^{15}+ \cdots + ( - 2187 \beta_{6} + \cdots + 115911 \beta_1) q^{99}+O(q^{100}) Copy content Toggle raw display
Tr(f)(q)\operatorname{Tr}(f)(q) == 8q+336q517496q9+2864q13193200q17121824q21579048q252063472q29920160q337470352q378865456q41734832q4518923896q498706672q53+123291632q97+O(q100) 8 q + 336 q^{5} - 17496 q^{9} + 2864 q^{13} - 193200 q^{17} - 121824 q^{21} - 579048 q^{25} - 2063472 q^{29} - 920160 q^{33} - 7470352 q^{37} - 8865456 q^{41} - 734832 q^{45} - 18923896 q^{49} - 8706672 q^{53}+ \cdots - 123291632 q^{97}+O(q^{100}) Copy content Toggle raw display

Basis of coefficient ring in terms of a root ν\nu of x83x740x6395x5+403x4+8998x3+74584x2+217224x+269328 x^{8} - 3x^{7} - 40x^{6} - 395x^{5} + 403x^{4} + 8998x^{3} + 74584x^{2} + 217224x + 269328 : Copy content Toggle raw display

β1\beta_{1}== (132651ν71870587ν611854782ν535450757ν4+699206391ν3++27533830392)/288974000 ( 132651 \nu^{7} - 1870587 \nu^{6} - 11854782 \nu^{5} - 35450757 \nu^{4} + 699206391 \nu^{3} + \cdots + 27533830392 ) / 288974000 Copy content Toggle raw display
β2\beta_{2}== (45295091ν7142748667ν62981454662ν55512648637ν4++7731529798072)/13999758250 ( 45295091 \nu^{7} - 142748667 \nu^{6} - 2981454662 \nu^{5} - 5512648637 \nu^{4} + \cdots + 7731529798072 ) / 13999758250 Copy content Toggle raw display
β3\beta_{3}== (2560781331ν7371896053747ν6505291504542ν5+723699624483ν4++41 ⁣ ⁣52)/195996615500 ( 2560781331 \nu^{7} - 371896053747 \nu^{6} - 505291504542 \nu^{5} + 723699624483 \nu^{4} + \cdots + 41\!\cdots\!52 ) / 195996615500 Copy content Toggle raw display
β4\beta_{4}== (400898393ν78193891441ν6+15030256174ν5+271224370249ν4+100807526678744)/13999758250 ( 400898393 \nu^{7} - 8193891441 \nu^{6} + 15030256174 \nu^{5} + 271224370249 \nu^{4} + \cdots - 100807526678744 ) / 13999758250 Copy content Toggle raw display
β5\beta_{5}== (450113942ν72257851546ν6+42760953644ν5+243321179594ν4+224223260670064)/6999879125 ( - 450113942 \nu^{7} - 2257851546 \nu^{6} + 42760953644 \nu^{5} + 243321179594 \nu^{4} + \cdots - 224223260670064 ) / 6999879125 Copy content Toggle raw display
β6\beta_{6}== (16710368107ν723662158459ν6300166613374ν55698255258949ν4++816278663265144)/156797292400 ( 16710368107 \nu^{7} - 23662158459 \nu^{6} - 300166613374 \nu^{5} - 5698255258949 \nu^{4} + \cdots + 816278663265144 ) / 156797292400 Copy content Toggle raw display
β7\beta_{7}== (50408211761ν7329076666657ν61378090939802ν513686907413727ν4++31 ⁣ ⁣12)/156797292400 ( 50408211761 \nu^{7} - 329076666657 \nu^{6} - 1378090939802 \nu^{5} - 13686907413727 \nu^{4} + \cdots + 31\!\cdots\!12 ) / 156797292400 Copy content Toggle raw display
ν\nu== (38β7+103β6+42β527β4+25β3+1209β2++82944)/221184 ( - 38 \beta_{7} + 103 \beta_{6} + 42 \beta_{5} - 27 \beta_{4} + 25 \beta_{3} + 1209 \beta_{2} + \cdots + 82944 ) / 221184 Copy content Toggle raw display
ν2\nu^{2}== (182β7391β6+210β5351β425β3+6693β2++2460672)/221184 ( 182 \beta_{7} - 391 \beta_{6} + 210 \beta_{5} - 351 \beta_{4} - 25 \beta_{3} + 6693 \beta_{2} + \cdots + 2460672 ) / 221184 Copy content Toggle raw display
ν3\nu^{3}== (10β7+101β6+594β5423β4181β3+6525β2++10865664)/55296 ( - 10 \beta_{7} + 101 \beta_{6} + 594 \beta_{5} - 423 \beta_{4} - 181 \beta_{3} + 6525 \beta_{2} + \cdots + 10865664 ) / 55296 Copy content Toggle raw display
ν4\nu^{4}== (3242β7+7969β6+18846β512321β4+1375β3++217009152)/221184 ( - 3242 \beta_{7} + 7969 \beta_{6} + 18846 \beta_{5} - 12321 \beta_{4} + 1375 \beta_{3} + \cdots + 217009152 ) / 221184 Copy content Toggle raw display
ν5\nu^{5}== (21066β7+8439β6+144942β5146097β4+10473β3++2084189184)/221184 ( 21066 \beta_{7} + 8439 \beta_{6} + 144942 \beta_{5} - 146097 \beta_{4} + 10473 \beta_{3} + \cdots + 2084189184 ) / 221184 Copy content Toggle raw display
ν6\nu^{6}== (17266β7+88721β6+308556β5273546β448001β3++4497527808)/55296 ( - 17266 \beta_{7} + 88721 \beta_{6} + 308556 \beta_{5} - 273546 \beta_{4} - 48001 \beta_{3} + \cdots + 4497527808 ) / 55296 Copy content Toggle raw display
ν7\nu^{7}== (231486β7+2673645β6+10260582β58117037β4484653β3++135172979712)/221184 ( 231486 \beta_{7} + 2673645 \beta_{6} + 10260582 \beta_{5} - 8117037 \beta_{4} - 484653 \beta_{3} + \cdots + 135172979712 ) / 221184 Copy content Toggle raw display

Character values

We give the values of χ\chi on generators for (Z/192Z)×\left(\mathbb{Z}/192\mathbb{Z}\right)^\times.

nn 6565 127127 133133
χ(n)\chi(n) 11 1-1 11

Embeddings

For each embedding ιm\iota_m of the coefficient field, the values ιm(an)\iota_m(a_n) are shown below.

For more information on an embedded modular form you can click on its label.

comment: embeddings in the coefficient field
 
gp: mfembed(f)
 
Label   ιm(ν)\iota_m(\nu) a2 a_{2} a3 a_{3} a4 a_{4} a5 a_{5} a6 a_{6} a7 a_{7} a8 a_{8} a9 a_{9} a10 a_{10}
127.1
−3.64622 + 4.31154i
−1.11858 4.64627i
−1.97054 + 1.25304i
8.23534 0.0522875i
−3.64622 4.31154i
−1.11858 + 4.64627i
−1.97054 1.25304i
8.23534 + 0.0522875i
0 46.7654i 0 −904.196 0 888.085i 0 −2187.00 0
127.2 0 46.7654i 0 159.249 0 707.133i 0 −2187.00 0
127.3 0 46.7654i 0 374.901 0 4472.52i 0 −2187.00 0
127.4 0 46.7654i 0 538.046 0 3350.97i 0 −2187.00 0
127.5 0 46.7654i 0 −904.196 0 888.085i 0 −2187.00 0
127.6 0 46.7654i 0 159.249 0 707.133i 0 −2187.00 0
127.7 0 46.7654i 0 374.901 0 4472.52i 0 −2187.00 0
127.8 0 46.7654i 0 538.046 0 3350.97i 0 −2187.00 0
nn: e.g. 2-40 or 990-1000
Embeddings: e.g. 1-3 or 127.8
Significant digits:
Format:

Inner twists

Char Parity Ord Mult Type
1.a even 1 1 trivial
4.b odd 2 1 inner

Twists

       By twisting character orbit
Char Parity Ord Mult Type Twist Min Dim
1.a even 1 1 trivial 192.9.g.e 8
4.b odd 2 1 inner 192.9.g.e 8
8.b even 2 1 12.9.d.a 8
8.d odd 2 1 12.9.d.a 8
24.f even 2 1 36.9.d.c 8
24.h odd 2 1 36.9.d.c 8
    
        By twisted newform orbit
Twist Min Dim Char Parity Ord Mult Type
12.9.d.a 8 8.b even 2 1
12.9.d.a 8 8.d odd 2 1
36.9.d.c 8 24.f even 2 1
36.9.d.c 8 24.h odd 2 1
192.9.g.e 8 1.a even 1 1 trivial
192.9.g.e 8 4.b odd 2 1 inner

Hecke kernels

This newform subspace can be constructed as the kernel of the linear operator T54168T53622376T52+281724000T529045327600 T_{5}^{4} - 168T_{5}^{3} - 622376T_{5}^{2} + 281724000T_{5} - 29045327600 acting on S9new(192,[χ])S_{9}^{\mathrm{new}}(192, [\chi]). Copy content Toggle raw display

Hecke characteristic polynomials

pp Fp(T)F_p(T)
22 T8 T^{8} Copy content Toggle raw display
33 (T2+2187)4 (T^{2} + 2187)^{4} Copy content Toggle raw display
55 (T4168T3+29045327600)2 (T^{4} - 168 T^{3} + \cdots - 29045327600)^{2} Copy content Toggle raw display
77 T8++88 ⁣ ⁣36 T^{8} + \cdots + 88\!\cdots\!36 Copy content Toggle raw display
1111 T8++71 ⁣ ⁣04 T^{8} + \cdots + 71\!\cdots\!04 Copy content Toggle raw display
1313 (T4++46 ⁣ ⁣76)2 (T^{4} + \cdots + 46\!\cdots\!76)^{2} Copy content Toggle raw display
1717 (T4++31 ⁣ ⁣00)2 (T^{4} + \cdots + 31\!\cdots\!00)^{2} Copy content Toggle raw display
1919 T8++20 ⁣ ⁣56 T^{8} + \cdots + 20\!\cdots\!56 Copy content Toggle raw display
2323 T8++83 ⁣ ⁣76 T^{8} + \cdots + 83\!\cdots\!76 Copy content Toggle raw display
2929 (T4+15 ⁣ ⁣24)2 (T^{4} + \cdots - 15\!\cdots\!24)^{2} Copy content Toggle raw display
3131 T8++17 ⁣ ⁣64 T^{8} + \cdots + 17\!\cdots\!64 Copy content Toggle raw display
3737 (T4+48 ⁣ ⁣84)2 (T^{4} + \cdots - 48\!\cdots\!84)^{2} Copy content Toggle raw display
4141 (T4+44 ⁣ ⁣92)2 (T^{4} + \cdots - 44\!\cdots\!92)^{2} Copy content Toggle raw display
4343 T8++21 ⁣ ⁣16 T^{8} + \cdots + 21\!\cdots\!16 Copy content Toggle raw display
4747 T8++26 ⁣ ⁣00 T^{8} + \cdots + 26\!\cdots\!00 Copy content Toggle raw display
5353 (T4+39 ⁣ ⁣44)2 (T^{4} + \cdots - 39\!\cdots\!44)^{2} Copy content Toggle raw display
5959 T8++15 ⁣ ⁣96 T^{8} + \cdots + 15\!\cdots\!96 Copy content Toggle raw display
6161 (T4++34 ⁣ ⁣04)2 (T^{4} + \cdots + 34\!\cdots\!04)^{2} Copy content Toggle raw display
6767 T8++10 ⁣ ⁣76 T^{8} + \cdots + 10\!\cdots\!76 Copy content Toggle raw display
7171 T8++30 ⁣ ⁣00 T^{8} + \cdots + 30\!\cdots\!00 Copy content Toggle raw display
7373 (T4++42 ⁣ ⁣28)2 (T^{4} + \cdots + 42\!\cdots\!28)^{2} Copy content Toggle raw display
7979 T8++29 ⁣ ⁣24 T^{8} + \cdots + 29\!\cdots\!24 Copy content Toggle raw display
8383 T8++25 ⁣ ⁣84 T^{8} + \cdots + 25\!\cdots\!84 Copy content Toggle raw display
8989 (T4+16 ⁣ ⁣88)2 (T^{4} + \cdots - 16\!\cdots\!88)^{2} Copy content Toggle raw display
9797 (T4++30 ⁣ ⁣48)2 (T^{4} + \cdots + 30\!\cdots\!48)^{2} Copy content Toggle raw display
show more
show less