Newspace parameters
comment: Compute space of new eigenforms
[N,k,chi] = [192,9,Mod(127,192)]
mf = mfinit([N,k,chi],0)
lf = mfeigenbasis(mf)
from sage.modular.dirichlet import DirichletCharacter
H = DirichletGroup(192, base_ring=CyclotomicField(2))
chi = DirichletCharacter(H, H._module([1, 0, 0]))
N = Newforms(chi, 9, names="a")
//Please install CHIMP (https://github.com/edgarcosta/CHIMP) if you want to run this code
chi := DirichletCharacter("192.127");
S:= CuspForms(chi, 9);
N := Newforms(S);
Level: | |||
Weight: | |||
Character orbit: | 192.g (of order , degree , not minimal) |
Newform invariants
comment: select newform
sage: f = N[0] # Warning: the index may be different
gp: f = lf[1] \\ Warning: the index may be different
Self dual: | no |
Analytic conductor: | |
Analytic rank: | |
Dimension: | |
Coefficient field: | |
comment: defining polynomial
gp: f.mod \\ as an extension of the character field
|
|
Defining polynomial: |
|
Coefficient ring: | |
Coefficient ring index: | |
Twist minimal: | no (minimal twist has level 12) |
Sato-Tate group: |
-expansion
comment: q-expansion
sage: f.q_expansion() # note that sage often uses an isomorphic number field
gp: mfcoefs(f, 20)
Coefficients of the -expansion are expressed in terms of a basis for the coefficient ring described below. We also show the integral -expansion of the trace form.
Basis of coefficient ring in terms of a root of
:
Character values
We give the values of on generators for .
Embeddings
For each embedding of the coefficient field, the values are shown below.
For more information on an embedded modular form you can click on its label.
comment: embeddings in the coefficient field
gp: mfembed(f)
Label | ||||||||||||||||||||||||||||||||||||||||||||||||||||
---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
127.1 |
|
0 | − | 46.7654i | 0 | −904.196 | 0 | − | 888.085i | 0 | −2187.00 | 0 | ||||||||||||||||||||||||||||||||||||||||
127.2 | 0 | − | 46.7654i | 0 | 159.249 | 0 | 707.133i | 0 | −2187.00 | 0 | ||||||||||||||||||||||||||||||||||||||||||
127.3 | 0 | − | 46.7654i | 0 | 374.901 | 0 | − | 4472.52i | 0 | −2187.00 | 0 | |||||||||||||||||||||||||||||||||||||||||
127.4 | 0 | − | 46.7654i | 0 | 538.046 | 0 | 3350.97i | 0 | −2187.00 | 0 | ||||||||||||||||||||||||||||||||||||||||||
127.5 | 0 | 46.7654i | 0 | −904.196 | 0 | 888.085i | 0 | −2187.00 | 0 | |||||||||||||||||||||||||||||||||||||||||||
127.6 | 0 | 46.7654i | 0 | 159.249 | 0 | − | 707.133i | 0 | −2187.00 | 0 | ||||||||||||||||||||||||||||||||||||||||||
127.7 | 0 | 46.7654i | 0 | 374.901 | 0 | 4472.52i | 0 | −2187.00 | 0 | |||||||||||||||||||||||||||||||||||||||||||
127.8 | 0 | 46.7654i | 0 | 538.046 | 0 | − | 3350.97i | 0 | −2187.00 | 0 | ||||||||||||||||||||||||||||||||||||||||||
Inner twists
Char | Parity | Ord | Mult | Type |
---|---|---|---|---|
1.a | even | 1 | 1 | trivial |
4.b | odd | 2 | 1 | inner |
Twists
By twisting character orbit | |||||||
---|---|---|---|---|---|---|---|
Char | Parity | Ord | Mult | Type | Twist | Min | Dim |
1.a | even | 1 | 1 | trivial | 192.9.g.e | 8 | |
4.b | odd | 2 | 1 | inner | 192.9.g.e | 8 | |
8.b | even | 2 | 1 | 12.9.d.a | ✓ | 8 | |
8.d | odd | 2 | 1 | 12.9.d.a | ✓ | 8 | |
24.f | even | 2 | 1 | 36.9.d.c | 8 | ||
24.h | odd | 2 | 1 | 36.9.d.c | 8 |
By twisted newform orbit | |||||||
---|---|---|---|---|---|---|---|
Twist | Min | Dim | Char | Parity | Ord | Mult | Type |
12.9.d.a | ✓ | 8 | 8.b | even | 2 | 1 | |
12.9.d.a | ✓ | 8 | 8.d | odd | 2 | 1 | |
36.9.d.c | 8 | 24.f | even | 2 | 1 | ||
36.9.d.c | 8 | 24.h | odd | 2 | 1 | ||
192.9.g.e | 8 | 1.a | even | 1 | 1 | trivial | |
192.9.g.e | 8 | 4.b | odd | 2 | 1 | inner |
Hecke kernels
This newform subspace can be constructed as the kernel of the linear operator
acting on .