Properties

Label 1920.1.bm.b.1889.1
Level 19201920
Weight 11
Character 1920.1889
Analytic conductor 0.9580.958
Analytic rank 00
Dimension 44
Projective image D4D_{4}
CM discriminant -15
Inner twists 88

Related objects

Downloads

Learn more

Show commands: Magma / PariGP / SageMath

Newspace parameters

comment: Compute space of new eigenforms
 
[N,k,chi] = [1920,1,Mod(929,1920)]
 
mf = mfinit([N,k,chi],0)
 
lf = mfeigenbasis(mf)
 
from sage.modular.dirichlet import DirichletCharacter
 
H = DirichletGroup(1920, base_ring=CyclotomicField(4))
 
chi = DirichletCharacter(H, H._module([0, 3, 2, 2]))
 
N = Newforms(chi, 1, names="a")
 
//Please install CHIMP (https://github.com/edgarcosta/CHIMP) if you want to run this code
 
chi := DirichletCharacter("1920.929");
 
S:= CuspForms(chi, 1);
 
N := Newforms(S);
 
Level: N N == 1920=2735 1920 = 2^{7} \cdot 3 \cdot 5
Weight: k k == 1 1
Character orbit: [χ][\chi] == 1920.bm (of order 44, degree 22, not minimal)

Newform invariants

comment: select newform
 
sage: f = N[0] # Warning: the index may be different
 
gp: f = lf[1] \\ Warning: the index may be different
 
Self dual: no
Analytic conductor: 0.9582048242550.958204824255
Analytic rank: 00
Dimension: 44
Relative dimension: 22 over Q(i)\Q(i)
Coefficient field: Q(ζ8)\Q(\zeta_{8})
comment: defining polynomial
 
gp: f.mod \\ as an extension of the character field
 
Defining polynomial: x4+1 x^{4} + 1 Copy content Toggle raw display
Coefficient ring: Z[a1,a2,a3]\Z[a_1, a_2, a_3]
Coefficient ring index: 1 1
Twist minimal: no (minimal twist has level 240)
Projective image: D4D_{4}
Projective field: Galois closure of 4.0.92160.2

Embedding invariants

Embedding label 1889.1
Root 0.7071070.707107i0.707107 - 0.707107i of defining polynomial
Character χ\chi == 1920.1889
Dual form 1920.1.bm.b.929.1

qq-expansion

comment: q-expansion
 
sage: f.q_expansion() # note that sage often uses an isomorphic number field
 
gp: mfcoefs(f, 20)
 
f(q)f(q) == q+(0.707107+0.707107i)q3+(0.7071070.707107i)q51.00000iq9+1.00000q151.41421q17+(1.00000+1.00000i)q19+1.41421iq23+1.00000iq25+(0.707107+0.707107i)q27+(0.707107+0.707107i)q451.41421q471.00000q49+(1.000001.00000i)q511.41421iq57+(1.00000+1.00000i)q61+(1.000001.00000i)q69+(0.7071070.707107i)q752.00000q791.00000q81+(1.00000+1.00000i)q85+1.41421q95+O(q100)q+(-0.707107 + 0.707107i) q^{3} +(-0.707107 - 0.707107i) q^{5} -1.00000i q^{9} +1.00000 q^{15} -1.41421 q^{17} +(-1.00000 + 1.00000i) q^{19} +1.41421i q^{23} +1.00000i q^{25} +(0.707107 + 0.707107i) q^{27} +(-0.707107 + 0.707107i) q^{45} -1.41421 q^{47} -1.00000 q^{49} +(1.00000 - 1.00000i) q^{51} -1.41421i q^{57} +(-1.00000 + 1.00000i) q^{61} +(-1.00000 - 1.00000i) q^{69} +(-0.707107 - 0.707107i) q^{75} -2.00000 q^{79} -1.00000 q^{81} +(1.00000 + 1.00000i) q^{85} +1.41421 q^{95} +O(q^{100})
Tr(f)(q)\operatorname{Tr}(f)(q) == 4q+4q154q194q49+4q514q614q698q794q81+4q85+O(q100) 4 q + 4 q^{15} - 4 q^{19} - 4 q^{49} + 4 q^{51} - 4 q^{61} - 4 q^{69} - 8 q^{79} - 4 q^{81} + 4 q^{85}+O(q^{100}) Copy content Toggle raw display

Character values

We give the values of χ\chi on generators for (Z/1920Z)×\left(\mathbb{Z}/1920\mathbb{Z}\right)^\times.

nn 511511 641641 901901 15371537
χ(n)\chi(n) 11 1-1 e(14)e\left(\frac{1}{4}\right) 1-1

Coefficient data

For each nn we display the coefficients of the qq-expansion ana_n, the Satake parameters αp\alpha_p, and the Satake angles θp=Arg(αp)\theta_p = \textrm{Arg}(\alpha_p).



Display apa_p with pp up to: 50 250 1000 (See ana_n instead) (See ana_n instead) (See ana_n instead) Display ana_n with nn up to: 50 250 1000 (See only apa_p) (See only apa_p) (See only apa_p)
Significant digits:
nn ana_n an/n(k1)/2a_n / n^{(k-1)/2} αn \alpha_n θn \theta_n
pp apa_p ap/p(k1)/2a_p / p^{(k-1)/2} αp \alpha_p θp \theta_p
22 0 0
33 −0.707107 + 0.707107i −0.707107 + 0.707107i
44 0 0
55 −0.707107 0.707107i −0.707107 0.707107i
66 0 0
77 0 0 1.00000i 0.5π-0.5\pi
1.00000i 0.5π0.5\pi
88 0 0
99 1.00000i 1.00000i
1010 0 0
1111 0 0 −0.707107 0.707107i 0.750000π-0.750000\pi
0.707107 + 0.707107i 0.250000π0.250000\pi
1212 0 0
1313 0 0 0.707107 0.707107i 0.250000π-0.250000\pi
−0.707107 + 0.707107i 0.750000π0.750000\pi
1414 0 0
1515 1.00000 1.00000
1616 0 0
1717 −1.41421 −1.41421 −0.707107 0.707107i 0.750000π-0.750000\pi
−0.707107 + 0.707107i 0.750000π0.750000\pi
1818 0 0
1919 −1.00000 + 1.00000i −1.00000 + 1.00000i 1.00000i 0.5π0.5\pi
−1.00000 π\pi
2020 0 0
2121 0 0
2222 0 0
2323 1.41421i 1.41421i 0.707107 + 0.707107i 0.250000π0.250000\pi
−0.707107 + 0.707107i 0.750000π0.750000\pi
2424 0 0
2525 1.00000i 1.00000i
2626 0 0
2727 0.707107 + 0.707107i 0.707107 + 0.707107i
2828 0 0
2929 0 0 0.707107 0.707107i 0.250000π-0.250000\pi
−0.707107 + 0.707107i 0.750000π0.750000\pi
3030 0 0
3131 0 0 1.00000i 0.5π-0.5\pi
1.00000i 0.5π0.5\pi
3232 0 0
3333 0 0
3434 0 0
3535 0 0
3636 0 0
3737 0 0 −0.707107 0.707107i 0.750000π-0.750000\pi
0.707107 + 0.707107i 0.250000π0.250000\pi
3838 0 0
3939 0 0
4040 0 0
4141 0 0 1.00000i 0.5π-0.5\pi
1.00000i 0.5π0.5\pi
4242 0 0
4343 0 0 −0.707107 0.707107i 0.750000π-0.750000\pi
0.707107 + 0.707107i 0.250000π0.250000\pi
4444 0 0
4545 −0.707107 + 0.707107i −0.707107 + 0.707107i
4646 0 0
4747 −1.41421 −1.41421 −0.707107 0.707107i 0.750000π-0.750000\pi
−0.707107 + 0.707107i 0.750000π0.750000\pi
4848 0 0
4949 −1.00000 −1.00000
5050 0 0
5151 1.00000 1.00000i 1.00000 1.00000i
5252 0 0
5353 0 0 0.707107 0.707107i 0.250000π-0.250000\pi
−0.707107 + 0.707107i 0.750000π0.750000\pi
5454 0 0
5555 0 0
5656 0 0
5757 1.41421i 1.41421i
5858 0 0
5959 0 0 −0.707107 0.707107i 0.750000π-0.750000\pi
0.707107 + 0.707107i 0.250000π0.250000\pi
6060 0 0
6161 −1.00000 + 1.00000i −1.00000 + 1.00000i 1.00000i 0.5π0.5\pi
−1.00000 π\pi
6262 0 0
6363 0 0
6464 0 0
6565 0 0
6666 0 0
6767 0 0 0.707107 0.707107i 0.250000π-0.250000\pi
−0.707107 + 0.707107i 0.750000π0.750000\pi
6868 0 0
6969 −1.00000 1.00000i −1.00000 1.00000i
7070 0 0
7171 0 0 1.00000i 0.5π-0.5\pi
1.00000i 0.5π0.5\pi
7272 0 0
7373 0 0 1.00000i 0.5π-0.5\pi
1.00000i 0.5π0.5\pi
7474 0 0
7575 −0.707107 0.707107i −0.707107 0.707107i
7676 0 0
7777 0 0
7878 0 0
7979 −2.00000 −2.00000 −1.00000 π\pi
−1.00000 π\pi
8080 0 0
8181 −1.00000 −1.00000
8282 0 0
8383 0 0 −0.707107 0.707107i 0.750000π-0.750000\pi
0.707107 + 0.707107i 0.250000π0.250000\pi
8484 0 0
8585 1.00000 + 1.00000i 1.00000 + 1.00000i
8686 0 0
8787 0 0
8888 0 0
8989 0 0 1.00000i 0.5π-0.5\pi
1.00000i 0.5π0.5\pi
9090 0 0
9191 0 0
9292 0 0
9393 0 0
9494 0 0
9595 1.41421 1.41421
9696 0 0
9797 0 0 1.00000 00
−1.00000 π\pi
9898 0 0
9999 0 0
100100 0 0
101101 0 0 −0.707107 0.707107i 0.750000π-0.750000\pi
0.707107 + 0.707107i 0.250000π0.250000\pi
102102 0 0
103103 0 0 1.00000i 0.5π-0.5\pi
1.00000i 0.5π0.5\pi
104104 0 0
105105 0 0
106106 0 0
107107 0 0 0.707107 0.707107i 0.250000π-0.250000\pi
−0.707107 + 0.707107i 0.750000π0.750000\pi
108108 0 0
109109 1.00000 1.00000i 1.00000 1.00000i 1.00000i 0.5π-0.5\pi
1.00000 00
110110 0 0
111111 0 0
112112 0 0
113113 1.41421 1.41421 0.707107 0.707107i 0.250000π-0.250000\pi
0.707107 + 0.707107i 0.250000π0.250000\pi
114114 0 0
115115 1.00000 1.00000i 1.00000 1.00000i
116116 0 0
117117 0 0
118118 0 0
119119 0 0
120120 0 0
121121 1.00000i 1.00000i
122122 0 0
123123 0 0
124124 0 0
125125 0.707107 0.707107i 0.707107 0.707107i
126126 0 0
127127 0 0 1.00000 00
−1.00000 π\pi
128128 0 0
129129 0 0
130130 0 0
131131 0 0 0.707107 0.707107i 0.250000π-0.250000\pi
−0.707107 + 0.707107i 0.750000π0.750000\pi
132132 0 0
133133 0 0
134134 0 0
135135 1.00000i 1.00000i
136136 0 0
137137 1.41421i 1.41421i 0.707107 + 0.707107i 0.250000π0.250000\pi
−0.707107 + 0.707107i 0.750000π0.750000\pi
138138 0 0
139139 −1.00000 1.00000i −1.00000 1.00000i 1.00000i 0.5π-0.5\pi
−1.00000 π\pi
140140 0 0
141141 1.00000 1.00000i 1.00000 1.00000i
142142 0 0
143143 0 0
144144 0 0
145145 0 0
146146 0 0
147147 0.707107 0.707107i 0.707107 0.707107i
148148 0 0
149149 0 0 −0.707107 0.707107i 0.750000π-0.750000\pi
0.707107 + 0.707107i 0.250000π0.250000\pi
150150 0 0
151151 0 0 1.00000 00
−1.00000 π\pi
152152 0 0
153153 1.41421i 1.41421i
154154 0 0
155155 0 0
156156 0 0
157157 0 0 0.707107 0.707107i 0.250000π-0.250000\pi
−0.707107 + 0.707107i 0.750000π0.750000\pi
158158 0 0
159159 0 0
160160 0 0
161161 0 0
162162 0 0
163163 0 0 0.707107 0.707107i 0.250000π-0.250000\pi
−0.707107 + 0.707107i 0.750000π0.750000\pi
164164 0 0
165165 0 0
166166 0 0
167167 1.41421i 1.41421i −0.707107 0.707107i 0.750000π-0.750000\pi
0.707107 0.707107i 0.250000π-0.250000\pi
168168 0 0
169169 1.00000i 1.00000i
170170 0 0
171171 1.00000 + 1.00000i 1.00000 + 1.00000i
172172 0 0
173173 0 0 −0.707107 0.707107i 0.750000π-0.750000\pi
0.707107 + 0.707107i 0.250000π0.250000\pi
174174 0 0
175175 0 0
176176 0 0
177177 0 0
178178 0 0
179179 0 0 0.707107 0.707107i 0.250000π-0.250000\pi
−0.707107 + 0.707107i 0.750000π0.750000\pi
180180 0 0
181181 1.00000 + 1.00000i 1.00000 + 1.00000i 1.00000 00
1.00000i 0.5π0.5\pi
182182 0 0
183183 1.41421i 1.41421i
184184 0 0
185185 0 0
186186 0 0
187187 0 0
188188 0 0
189189 0 0
190190 0 0
191191 0 0 1.00000 00
−1.00000 π\pi
192192 0 0
193193 0 0 1.00000 00
−1.00000 π\pi
194194 0 0
195195 0 0
196196 0 0
197197 1.41421 + 1.41421i 1.41421 + 1.41421i 0.707107 + 0.707107i 0.250000π0.250000\pi
0.707107 + 0.707107i 0.250000π0.250000\pi
198198 0 0
199199 2.00000i 2.00000i 1.00000i 0.5π0.5\pi
1.00000i 0.5π0.5\pi
200200 0 0
201201 0 0
202202 0 0
203203 0 0
204204 0 0
205205 0 0
206206 0 0
207207 1.41421 1.41421
208208 0 0
209209 0 0
210210 0 0
211211 −1.00000 + 1.00000i −1.00000 + 1.00000i 1.00000i 0.5π0.5\pi
−1.00000 π\pi
212212 0 0
213213 0 0
214214 0 0
215215 0 0
216216 0 0
217217 0 0
218218 0 0
219219 0 0
220220 0 0
221221 0 0
222222 0 0
223223 0 0 1.00000 00
−1.00000 π\pi
224224 0 0
225225 1.00000 1.00000
226226 0 0
227227 0 0 −0.707107 0.707107i 0.750000π-0.750000\pi
0.707107 + 0.707107i 0.250000π0.250000\pi
228228 0 0
229229 −1.00000 1.00000i −1.00000 1.00000i 1.00000i 0.5π-0.5\pi
−1.00000 π\pi
230230 0 0
231231 0 0
232232 0 0
233233 1.41421i 1.41421i −0.707107 0.707107i 0.750000π-0.750000\pi
0.707107 0.707107i 0.250000π-0.250000\pi
234234 0 0
235235 1.00000 + 1.00000i 1.00000 + 1.00000i
236236 0 0
237237 1.41421 1.41421i 1.41421 1.41421i
238238 0 0
239239 0 0 1.00000 00
−1.00000 π\pi
240240 0 0
241241 0 0 1.00000i 0.5π-0.5\pi
1.00000i 0.5π0.5\pi
242242 0 0
243243 0.707107 0.707107i 0.707107 0.707107i
244244 0 0
245245 0.707107 + 0.707107i 0.707107 + 0.707107i
246246 0 0
247247 0 0
248248 0 0
249249 0 0
250250 0 0
251251 0 0 −0.707107 0.707107i 0.750000π-0.750000\pi
0.707107 + 0.707107i 0.250000π0.250000\pi
252252 0 0
253253 0 0
254254 0 0
255255 −1.41421 −1.41421
256256 0 0
257257 1.41421 1.41421 0.707107 0.707107i 0.250000π-0.250000\pi
0.707107 + 0.707107i 0.250000π0.250000\pi
258258 0 0
259259 0 0
260260 0 0
261261 0 0
262262 0 0
263263 1.41421i 1.41421i −0.707107 0.707107i 0.750000π-0.750000\pi
0.707107 0.707107i 0.250000π-0.250000\pi
264264 0 0
265265 0 0
266266 0 0
267267 0 0
268268 0 0
269269 0 0 0.707107 0.707107i 0.250000π-0.250000\pi
−0.707107 + 0.707107i 0.750000π0.750000\pi
270270 0 0
271271 2.00000 2.00000 1.00000 00
1.00000 00
272272 0 0
273273 0 0
274274 0 0
275275 0 0
276276 0 0
277277 0 0 −0.707107 0.707107i 0.750000π-0.750000\pi
0.707107 + 0.707107i 0.250000π0.250000\pi
278278 0 0
279279 0 0
280280 0 0
281281 0 0 1.00000i 0.5π-0.5\pi
1.00000i 0.5π0.5\pi
282282 0 0
283283 0 0 −0.707107 0.707107i 0.750000π-0.750000\pi
0.707107 + 0.707107i 0.250000π0.250000\pi
284284 0 0
285285 −1.00000 + 1.00000i −1.00000 + 1.00000i
286286 0 0
287287 0 0
288288 0 0
289289 1.00000 1.00000
290290 0 0
291291 0 0
292292 0 0
293293 0 0 0.707107 0.707107i 0.250000π-0.250000\pi
−0.707107 + 0.707107i 0.750000π0.750000\pi
294294 0 0
295295 0 0
296296 0 0
297297 0 0
298298 0 0
299299 0 0
300300 0 0
301301 0 0
302302 0 0
303303 0 0
304304 0 0
305305 1.41421 1.41421
306306 0 0
307307 0 0 0.707107 0.707107i 0.250000π-0.250000\pi
−0.707107 + 0.707107i 0.750000π0.750000\pi
308308 0 0
309309 0 0
310310 0 0
311311 0 0 1.00000i 0.5π-0.5\pi
1.00000i 0.5π0.5\pi
312312 0 0
313313 0 0 1.00000i 0.5π-0.5\pi
1.00000i 0.5π0.5\pi
314314 0 0
315315 0 0
316316 0 0
317317 −1.41421 + 1.41421i −1.41421 + 1.41421i −0.707107 + 0.707107i 0.750000π0.750000\pi
−0.707107 + 0.707107i 0.750000π0.750000\pi
318318 0 0
319319 0 0
320320 0 0
321321 0 0
322322 0 0
323323 1.41421 1.41421i 1.41421 1.41421i
324324 0 0
325325 0 0
326326 0 0
327327 1.41421i 1.41421i
328328 0 0
329329 0 0
330330 0 0
331331 −1.00000 1.00000i −1.00000 1.00000i 1.00000i 0.5π-0.5\pi
−1.00000 π\pi
332332 0 0
333333 0 0
334334 0 0
335335 0 0
336336 0 0
337337 0 0 1.00000 00
−1.00000 π\pi
338338 0 0
339339 −1.00000 + 1.00000i −1.00000 + 1.00000i
340340 0 0
341341 0 0
342342 0 0
343343 0 0
344344 0 0
345345 1.41421i 1.41421i
346346 0 0
347347 −1.41421 1.41421i −1.41421 1.41421i −0.707107 0.707107i 0.750000π-0.750000\pi
−0.707107 0.707107i 0.750000π-0.750000\pi
348348 0 0
349349 −1.00000 + 1.00000i −1.00000 + 1.00000i 1.00000i 0.5π0.5\pi
−1.00000 π\pi
350350 0 0
351351 0 0
352352 0 0
353353 −1.41421 −1.41421 −0.707107 0.707107i 0.750000π-0.750000\pi
−0.707107 + 0.707107i 0.750000π0.750000\pi
354354 0 0
355355 0 0
356356 0 0
357357 0 0
358358 0 0
359359 0 0 1.00000i 0.5π-0.5\pi
1.00000i 0.5π0.5\pi
360360 0 0
361361 1.00000i 1.00000i
362362 0 0
363363 −0.707107 0.707107i −0.707107 0.707107i
364364 0 0
365365 0 0
366366 0 0
367367 0 0 1.00000 00
−1.00000 π\pi
368368 0 0
369369 0 0
370370 0 0
371371 0 0
372372 0 0
373373 0 0 −0.707107 0.707107i 0.750000π-0.750000\pi
0.707107 + 0.707107i 0.250000π0.250000\pi
374374 0 0
375375 1.00000i 1.00000i
376376 0 0
377377 0 0
378378 0 0
379379 1.00000 + 1.00000i 1.00000 + 1.00000i 1.00000 00
1.00000i 0.5π0.5\pi
380380 0 0
381381 0 0
382382 0 0
383383 1.41421 1.41421 0.707107 0.707107i 0.250000π-0.250000\pi
0.707107 + 0.707107i 0.250000π0.250000\pi
384384 0 0
385385 0 0
386386 0 0
387387 0 0
388388 0 0
389389 0 0 −0.707107 0.707107i 0.750000π-0.750000\pi
0.707107 + 0.707107i 0.250000π0.250000\pi
390390 0 0
391391 2.00000i 2.00000i
392392 0 0
393393 0 0
394394 0 0
395395 1.41421 + 1.41421i 1.41421 + 1.41421i
396396 0 0
397397 0 0 0.707107 0.707107i 0.250000π-0.250000\pi
−0.707107 + 0.707107i 0.750000π0.750000\pi
398398 0 0
399399 0 0
400400 0 0
401401 0 0 1.00000 00
−1.00000 π\pi
402402 0 0
403403 0 0
404404 0 0
405405 0.707107 + 0.707107i 0.707107 + 0.707107i
406406 0 0
407407 0 0
408408 0 0
409409 0 0 1.00000 00
−1.00000 π\pi
410410 0 0
411411 −1.00000 1.00000i −1.00000 1.00000i
412412 0 0
413413 0 0
414414 0 0
415415 0 0
416416 0 0
417417 1.41421 1.41421
418418 0 0
419419 0 0 0.707107 0.707107i 0.250000π-0.250000\pi
−0.707107 + 0.707107i 0.750000π0.750000\pi
420420 0 0
421421 −1.00000 1.00000i −1.00000 1.00000i 1.00000i 0.5π-0.5\pi
−1.00000 π\pi
422422 0 0
423423 1.41421i 1.41421i
424424 0 0
425425 1.41421i 1.41421i
426426 0 0
427427 0 0
428428 0 0
429429 0 0
430430 0 0
431431 0 0 1.00000 00
−1.00000 π\pi
432432 0 0
433433 0 0 1.00000 00
−1.00000 π\pi
434434 0 0
435435 0 0
436436 0 0
437437 −1.41421 1.41421i −1.41421 1.41421i
438438 0 0
439439 2.00000i 2.00000i 1.00000i 0.5π-0.5\pi
1.00000i 0.5π-0.5\pi
440440 0 0
441441 1.00000i 1.00000i
442442 0 0
443443 0 0 0.707107 0.707107i 0.250000π-0.250000\pi
−0.707107 + 0.707107i 0.750000π0.750000\pi
444444 0 0
445445 0 0
446446 0 0
447447 0 0
448448 0 0
449449 0 0 1.00000 00
−1.00000 π\pi
450450 0 0
451451 0 0
452452 0 0
453453 0 0
454454 0 0
455455 0 0
456456 0 0
457457 0 0 1.00000i 0.5π-0.5\pi
1.00000i 0.5π0.5\pi
458458 0 0
459459 −1.00000 1.00000i −1.00000 1.00000i
460460 0 0
461461 0 0 0.707107 0.707107i 0.250000π-0.250000\pi
−0.707107 + 0.707107i 0.750000π0.750000\pi
462462 0 0
463463 0 0 1.00000 00
−1.00000 π\pi
464464 0 0
465465 0 0
466466 0 0
467467 −1.41421 + 1.41421i −1.41421 + 1.41421i −0.707107 + 0.707107i 0.750000π0.750000\pi
−0.707107 + 0.707107i 0.750000π0.750000\pi
468468 0 0
469469 0 0
470470 0 0
471471 0 0
472472 0 0
473473 0 0
474474 0 0
475475 −1.00000 1.00000i −1.00000 1.00000i
476476 0 0
477477 0 0
478478 0 0
479479 0 0 1.00000 00
−1.00000 π\pi
480480 0 0
481481 0 0
482482 0 0
483483 0 0
484484 0 0
485485 0 0
486486 0 0
487487 0 0 1.00000i 0.5π-0.5\pi
1.00000i 0.5π0.5\pi
488488 0 0
489489 0 0
490490 0 0
491491 0 0 −0.707107 0.707107i 0.750000π-0.750000\pi
0.707107 + 0.707107i 0.250000π0.250000\pi
492492 0 0
493493 0 0
494494 0 0
495495 0 0
496496 0 0
497497 0 0
498498 0 0
499499 1.00000 1.00000i 1.00000 1.00000i 1.00000i 0.5π-0.5\pi
1.00000 00
500500 0 0
501501 1.00000 + 1.00000i 1.00000 + 1.00000i
502502 0 0
503503 1.41421i 1.41421i −0.707107 0.707107i 0.750000π-0.750000\pi
0.707107 0.707107i 0.250000π-0.250000\pi
504504 0 0
505505 0 0
506506 0 0
507507 0.707107 + 0.707107i 0.707107 + 0.707107i
508508 0 0
509509 0 0 0.707107 0.707107i 0.250000π-0.250000\pi
−0.707107 + 0.707107i 0.750000π0.750000\pi
510510 0 0
511511 0 0
512512 0 0
513513 −1.41421 −1.41421
514514 0 0
515515 0 0
516516 0 0
517517 0 0
518518 0 0
519519 0 0
520520 0 0
521521 0 0 1.00000i 0.5π-0.5\pi
1.00000i 0.5π0.5\pi
522522 0 0
523523 0 0 −0.707107 0.707107i 0.750000π-0.750000\pi
0.707107 + 0.707107i 0.250000π0.250000\pi
524524 0 0
525525 0 0
526526 0 0
527527 0 0
528528 0 0
529529 −1.00000 −1.00000
530530 0 0
531531 0 0
532532 0 0
533533 0 0
534534 0 0
535535 0 0
536536 0 0
537537 0 0
538538 0 0
539539 0 0
540540 0 0
541541 1.00000 1.00000i 1.00000 1.00000i 1.00000i 0.5π-0.5\pi
1.00000 00
542542 0 0
543543 −1.41421 −1.41421
544544 0 0
545545 −1.41421 −1.41421
546546 0 0
547547 0 0 0.707107 0.707107i 0.250000π-0.250000\pi
−0.707107 + 0.707107i 0.750000π0.750000\pi
548548 0 0
549549 1.00000 + 1.00000i 1.00000 + 1.00000i
550550 0 0
551551 0 0
552552 0 0
553553 0 0
554554 0 0
555555 0 0
556556 0 0
557557 0 0 −0.707107 0.707107i 0.750000π-0.750000\pi
0.707107 + 0.707107i 0.250000π0.250000\pi
558558 0 0
559559 0 0
560560 0 0
561561 0 0
562562 0 0
563563 −1.41421 + 1.41421i −1.41421 + 1.41421i −0.707107 + 0.707107i 0.750000π0.750000\pi
−0.707107 + 0.707107i 0.750000π0.750000\pi
564564 0 0
565565 −1.00000 1.00000i −1.00000 1.00000i
566566 0 0
567567 0 0
568568 0 0
569569 0 0 1.00000i 0.5π-0.5\pi
1.00000i 0.5π0.5\pi
570570 0 0
571571 1.00000 + 1.00000i 1.00000 + 1.00000i 1.00000 00
1.00000i 0.5π0.5\pi
572572 0 0
573573 0 0
574574 0 0
575575 −1.41421 −1.41421
576576 0 0
577577 0 0 1.00000 00
−1.00000 π\pi
578578 0 0
579579 0 0
580580 0 0
581581 0 0
582582 0 0
583583 0 0
584584 0 0
585585 0 0
586586 0 0
587587 0 0 0.707107 0.707107i 0.250000π-0.250000\pi
−0.707107 + 0.707107i 0.750000π0.750000\pi
588588 0 0
589589 0 0
590590 0 0
591591 −2.00000 −2.00000
592592 0 0
593593 −1.41421 −1.41421 −0.707107 0.707107i 0.750000π-0.750000\pi
−0.707107 + 0.707107i 0.750000π0.750000\pi
594594 0 0
595595 0 0
596596 0 0
597597 −1.41421 1.41421i −1.41421 1.41421i
598598 0 0
599599 0 0 1.00000i 0.5π-0.5\pi
1.00000i 0.5π0.5\pi
600600 0 0
601601 0 0 1.00000 00
−1.00000 π\pi
602602 0 0
603603 0 0
604604 0 0
605605 0.707107 0.707107i 0.707107 0.707107i
606606 0 0
607607 0 0 1.00000 00
−1.00000 π\pi
608608 0 0
609609 0 0
610610 0 0
611611 0 0
612612 0 0
613613 0 0 −0.707107 0.707107i 0.750000π-0.750000\pi
0.707107 + 0.707107i 0.250000π0.250000\pi
614614 0 0
615615 0 0
616616 0 0
617617 1.41421i 1.41421i 0.707107 + 0.707107i 0.250000π0.250000\pi
−0.707107 + 0.707107i 0.750000π0.750000\pi
618618 0 0
619619 1.00000 + 1.00000i 1.00000 + 1.00000i 1.00000 00
1.00000i 0.5π0.5\pi
620620 0 0
621621 −1.00000 + 1.00000i −1.00000 + 1.00000i
622622 0 0
623623 0 0
624624 0 0
625625 −1.00000 −1.00000
626626 0 0
627627 0 0
628628 0 0
629629 0 0
630630 0 0
631631 2.00000i 2.00000i 1.00000i 0.5π0.5\pi
1.00000i 0.5π0.5\pi
632632 0 0
633633 1.41421i 1.41421i
634634 0 0
635635 0 0
636636 0 0
637637 0 0
638638 0 0
639639 0 0
640640 0 0
641641 0 0 1.00000 00
−1.00000 π\pi
642642 0 0
643643 0 0 0.707107 0.707107i 0.250000π-0.250000\pi
−0.707107 + 0.707107i 0.750000π0.750000\pi
644644 0 0
645645 0 0
646646 0 0
647647 1.41421i 1.41421i 0.707107 + 0.707107i 0.250000π0.250000\pi
−0.707107 + 0.707107i 0.750000π0.750000\pi
648648 0 0
649649 0 0
650650 0 0
651651 0 0
652652 0 0
653653 0 0 −0.707107 0.707107i 0.750000π-0.750000\pi
0.707107 + 0.707107i 0.250000π0.250000\pi
654654 0 0
655655 0 0
656656 0 0
657657 0 0
658658 0 0
659659 0 0 0.707107 0.707107i 0.250000π-0.250000\pi
−0.707107 + 0.707107i 0.750000π0.750000\pi
660660 0 0
661661 −1.00000 1.00000i −1.00000 1.00000i 1.00000i 0.5π-0.5\pi
−1.00000 π\pi
662662 0 0
663663 0 0
664664 0 0
665665 0 0
666666 0 0
667667 0 0
668668 0 0
669669 0 0
670670 0 0
671671 0 0
672672 0 0
673673 0 0 1.00000 00
−1.00000 π\pi
674674 0 0
675675 −0.707107 + 0.707107i −0.707107 + 0.707107i
676676 0 0
677677 0 0 0.707107 0.707107i 0.250000π-0.250000\pi
−0.707107 + 0.707107i 0.750000π0.750000\pi
678678 0 0
679679 0 0
680680 0 0
681681 0 0
682682 0 0
683683 1.41421 + 1.41421i 1.41421 + 1.41421i 0.707107 + 0.707107i 0.250000π0.250000\pi
0.707107 + 0.707107i 0.250000π0.250000\pi
684684 0 0
685685 1.00000 1.00000i 1.00000 1.00000i
686686 0 0
687687 1.41421 1.41421
688688 0 0
689689 0 0
690690 0 0
691691 1.00000 1.00000i 1.00000 1.00000i 1.00000i 0.5π-0.5\pi
1.00000 00
692692 0 0
693693 0 0
694694 0 0
695695 1.41421i 1.41421i
696696 0 0
697697 0 0
698698 0 0
699699 1.00000 + 1.00000i 1.00000 + 1.00000i
700700 0 0
701701 0 0 0.707107 0.707107i 0.250000π-0.250000\pi
−0.707107 + 0.707107i 0.750000π0.750000\pi
702702 0 0
703703 0 0
704704 0 0
705705 −1.41421 −1.41421
706706 0 0
707707 0 0
708708 0 0
709709 1.00000 + 1.00000i 1.00000 + 1.00000i 1.00000 00
1.00000i 0.5π0.5\pi
710710 0 0
711711 2.00000i 2.00000i
712712 0 0
713713 0 0
714714 0 0
715715 0 0
716716 0 0
717717 0 0
718718 0 0
719719 0 0 1.00000 00
−1.00000 π\pi
720720 0 0
721721 0 0
722722 0 0
723723 0 0
724724 0 0
725725 0 0
726726 0 0
727727 0 0 1.00000i 0.5π-0.5\pi
1.00000i 0.5π0.5\pi
728728 0 0
729729 1.00000i 1.00000i
730730 0 0
731731 0 0
732732 0 0
733733 0 0 0.707107 0.707107i 0.250000π-0.250000\pi
−0.707107 + 0.707107i 0.750000π0.750000\pi
734734 0 0
735735 −1.00000 −1.00000
736736 0 0
737737 0 0
738738 0 0
739739 1.00000 1.00000i 1.00000 1.00000i 1.00000i 0.5π-0.5\pi
1.00000 00
740740 0 0
741741 0 0
742742 0 0
743743 1.41421i 1.41421i 0.707107 + 0.707107i 0.250000π0.250000\pi
−0.707107 + 0.707107i 0.750000π0.750000\pi
744744 0 0
745745 0 0
746746 0 0
747747 0 0
748748 0 0
749749 0 0
750750 0 0
751751 0 0 1.00000i 0.5π-0.5\pi
1.00000i 0.5π0.5\pi
752752 0 0
753753 0 0
754754 0 0
755755 0 0
756756 0 0
757757 0 0 −0.707107 0.707107i 0.750000π-0.750000\pi
0.707107 + 0.707107i 0.250000π0.250000\pi
758758 0 0
759759 0 0
760760 0 0
761761 0 0 1.00000i 0.5π-0.5\pi
1.00000i 0.5π0.5\pi
762762 0 0
763763 0 0
764764 0 0
765765 1.00000 1.00000i 1.00000 1.00000i
766766 0 0
767767 0 0
768768 0 0
769769 0 0 1.00000i 0.5π-0.5\pi
1.00000i 0.5π0.5\pi
770770 0 0
771771 −1.00000 + 1.00000i −1.00000 + 1.00000i
772772 0 0
773773 −1.41421 1.41421i −1.41421 1.41421i −0.707107 0.707107i 0.750000π-0.750000\pi
−0.707107 0.707107i 0.750000π-0.750000\pi
774774 0 0
775775 0 0
776776 0 0
777777 0 0
778778 0 0
779779 0 0
780780 0 0
781781 0 0
782782 0 0
783783 0 0
784784 0 0
785785 0 0
786786 0 0
787787 0 0 0.707107 0.707107i 0.250000π-0.250000\pi
−0.707107 + 0.707107i 0.750000π0.750000\pi
788788 0 0
789789 1.00000 + 1.00000i 1.00000 + 1.00000i
790790 0 0
791791 0 0
792792 0 0
793793 0 0
794794 0 0
795795 0 0
796796 0 0
797797 −1.41421 + 1.41421i −1.41421 + 1.41421i −0.707107 + 0.707107i 0.750000π0.750000\pi
−0.707107 + 0.707107i 0.750000π0.750000\pi
798798 0 0
799799 2.00000 2.00000
800800 0 0
801801 0 0
802802 0 0
803803 0 0
804804 0 0
805805 0 0
806806 0 0
807807 0 0
808808 0 0
809809 0 0 1.00000i 0.5π-0.5\pi
1.00000i 0.5π0.5\pi
810810 0 0
811811 1.00000 + 1.00000i 1.00000 + 1.00000i 1.00000 00
1.00000i 0.5π0.5\pi
812812 0 0
813813 −1.41421 + 1.41421i −1.41421 + 1.41421i
814814 0 0
815815 0 0
816816 0 0
817817 0 0
818818 0 0
819819 0 0
820820 0 0
821821 0 0 −0.707107 0.707107i 0.750000π-0.750000\pi
0.707107 + 0.707107i 0.250000π0.250000\pi
822822 0 0
823823 0 0 1.00000i 0.5π-0.5\pi
1.00000i 0.5π0.5\pi
824824 0 0
825825 0 0
826826 0 0
827827 −1.41421 1.41421i −1.41421 1.41421i −0.707107 0.707107i 0.750000π-0.750000\pi
−0.707107 0.707107i 0.750000π-0.750000\pi
828828 0 0
829829 1.00000 1.00000i 1.00000 1.00000i 1.00000i 0.5π-0.5\pi
1.00000 00
830830 0 0
831831 0 0
832832 0 0
833833 1.41421 1.41421
834834 0 0
835835 −1.00000 + 1.00000i −1.00000 + 1.00000i
836836 0 0
837837 0 0
838838 0 0
839839 0 0 1.00000i 0.5π-0.5\pi
1.00000i 0.5π0.5\pi
840840 0 0
841841 1.00000i 1.00000i
842842 0 0
843843 0 0
844844 0 0
845845 −0.707107 + 0.707107i −0.707107 + 0.707107i
846846 0 0
847847 0 0
848848 0 0
849849 0 0
850850 0 0
851851 0 0
852852 0 0
853853 0 0 −0.707107 0.707107i 0.750000π-0.750000\pi
0.707107 + 0.707107i 0.250000π0.250000\pi
854854 0 0
855855 1.41421i 1.41421i
856856 0 0
857857 1.41421i 1.41421i −0.707107 0.707107i 0.750000π-0.750000\pi
0.707107 0.707107i 0.250000π-0.250000\pi
858858 0 0
859859 −1.00000 1.00000i −1.00000 1.00000i 1.00000i 0.5π-0.5\pi
−1.00000 π\pi
860860 0 0
861861 0 0
862862 0 0
863863 −1.41421 −1.41421 −0.707107 0.707107i 0.750000π-0.750000\pi
−0.707107 + 0.707107i 0.750000π0.750000\pi
864864 0 0
865865 0 0
866866 0 0
867867 −0.707107 + 0.707107i −0.707107 + 0.707107i
868868 0 0
869869 0 0
870870 0 0
871871 0 0
872872 0 0
873873 0 0
874874 0 0
875875 0 0
876876 0 0
877877 0 0 0.707107 0.707107i 0.250000π-0.250000\pi
−0.707107 + 0.707107i 0.750000π0.750000\pi
878878 0 0
879879 0 0
880880 0 0
881881 0 0 1.00000 00
−1.00000 π\pi
882882 0 0
883883 0 0 0.707107 0.707107i 0.250000π-0.250000\pi
−0.707107 + 0.707107i 0.750000π0.750000\pi
884884 0 0
885885 0 0
886886 0 0
887887 1.41421i 1.41421i 0.707107 + 0.707107i 0.250000π0.250000\pi
−0.707107 + 0.707107i 0.750000π0.750000\pi
888888 0 0
889889 0 0
890890 0 0
891891 0 0
892892 0 0
893893 1.41421 1.41421i 1.41421 1.41421i
894894 0 0
895895 0 0
896896 0 0
897897 0 0
898898 0 0
899899 0 0
900900 0 0
901901 0 0
902902 0 0
903903 0 0
904904 0 0
905905 1.41421i 1.41421i
906906 0 0
907907 0 0 −0.707107 0.707107i 0.750000π-0.750000\pi
0.707107 + 0.707107i 0.250000π0.250000\pi
908908 0 0
909909 0 0
910910 0 0
911911 0 0 1.00000 00
−1.00000 π\pi
912912 0 0
913913 0 0
914914 0 0
915915 −1.00000 + 1.00000i −1.00000 + 1.00000i
916916 0 0
917917 0 0
918918 0 0
919919 0 0 1.00000 00
−1.00000 π\pi
920920 0 0
921921 0 0
922922 0 0
923923 0 0
924924 0 0
925925 0 0
926926 0 0
927927 0 0
928928 0 0
929929 0 0 1.00000 00
−1.00000 π\pi
930930 0 0
931931 1.00000 1.00000i 1.00000 1.00000i
932932 0 0
933933 0 0
934934 0 0
935935 0 0
936936 0 0
937937 0 0 1.00000i 0.5π-0.5\pi
1.00000i 0.5π0.5\pi
938938 0 0
939939 0 0
940940 0 0
941941 0 0 0.707107 0.707107i 0.250000π-0.250000\pi
−0.707107 + 0.707107i 0.750000π0.750000\pi
942942 0 0
943943 0 0
944944 0 0
945945 0 0
946946 0 0
947947 0 0 −0.707107 0.707107i 0.750000π-0.750000\pi
0.707107 + 0.707107i 0.250000π0.250000\pi
948948 0 0
949949 0 0
950950 0 0
951951 2.00000i 2.00000i
952952 0 0
953953 1.41421i 1.41421i 0.707107 + 0.707107i 0.250000π0.250000\pi
−0.707107 + 0.707107i 0.750000π0.750000\pi
954954 0 0
955955 0 0
956956 0 0
957957 0 0
958958 0 0
959959 0 0
960960 0 0
961961 −1.00000 −1.00000
962962 0 0
963963 0 0
964964 0 0
965965 0 0
966966 0 0
967967 0 0 1.00000i 0.5π-0.5\pi
1.00000i 0.5π0.5\pi
968968 0 0
969969 2.00000i 2.00000i
970970 0 0
971971 0 0 −0.707107 0.707107i 0.750000π-0.750000\pi
0.707107 + 0.707107i 0.250000π0.250000\pi
972972 0 0
973973 0 0
974974 0 0
975975 0 0
976976 0 0
977977 −1.41421 −1.41421 −0.707107 0.707107i 0.750000π-0.750000\pi
−0.707107 + 0.707107i 0.750000π0.750000\pi
978978 0 0
979979 0 0
980980 0 0
981981 −1.00000 1.00000i −1.00000 1.00000i
982982 0 0
983983 1.41421i 1.41421i 0.707107 + 0.707107i 0.250000π0.250000\pi
−0.707107 + 0.707107i 0.750000π0.750000\pi
984984 0 0
985985 2.00000i 2.00000i
986986 0 0
987987 0 0
988988 0 0
989989 0 0
990990 0 0
991991 −2.00000 −2.00000 −1.00000 π\pi
−1.00000 π\pi
992992 0 0
993993 1.41421 1.41421
994994 0 0
995995 1.41421 1.41421i 1.41421 1.41421i
996996 0 0
997997 0 0 −0.707107 0.707107i 0.750000π-0.750000\pi
0.707107 + 0.707107i 0.250000π0.250000\pi
998998 0 0
999999 0 0
Display apa_p with pp up to: 50 250 1000 (See ana_n instead) (See ana_n instead) (See ana_n instead) Display ana_n with nn up to: 50 250 1000 (See only apa_p) (See only apa_p) (See only apa_p)

Twists

       By twisting character
Char Parity Ord Type Twist Min Dim
1.1 even 1 trivial 1920.1.bm.b.1889.1 4
3.2 odd 2 inner 1920.1.bm.b.1889.2 4
4.3 odd 2 1920.1.bm.a.1889.2 4
5.4 even 2 inner 1920.1.bm.b.1889.2 4
8.3 odd 2 240.1.bm.a.149.2 yes 4
8.5 even 2 960.1.bm.a.689.2 4
12.11 even 2 1920.1.bm.a.1889.1 4
15.14 odd 2 CM 1920.1.bm.b.1889.1 4
16.3 odd 4 1920.1.bm.a.929.2 4
16.5 even 4 960.1.bm.a.209.2 4
16.11 odd 4 240.1.bm.a.29.2 yes 4
16.13 even 4 inner 1920.1.bm.b.929.1 4
20.19 odd 2 1920.1.bm.a.1889.1 4
24.5 odd 2 960.1.bm.a.689.1 4
24.11 even 2 240.1.bm.a.149.1 yes 4
40.3 even 4 1200.1.r.a.101.1 4
40.19 odd 2 240.1.bm.a.149.1 yes 4
40.27 even 4 1200.1.r.a.101.2 4
40.29 even 2 960.1.bm.a.689.1 4
48.5 odd 4 960.1.bm.a.209.1 4
48.11 even 4 240.1.bm.a.29.1 4
48.29 odd 4 inner 1920.1.bm.b.929.2 4
48.35 even 4 1920.1.bm.a.929.1 4
60.59 even 2 1920.1.bm.a.1889.2 4
80.19 odd 4 1920.1.bm.a.929.1 4
80.27 even 4 1200.1.r.a.701.1 4
80.29 even 4 inner 1920.1.bm.b.929.2 4
80.43 even 4 1200.1.r.a.701.2 4
80.59 odd 4 240.1.bm.a.29.1 4
80.69 even 4 960.1.bm.a.209.1 4
120.29 odd 2 960.1.bm.a.689.2 4
120.59 even 2 240.1.bm.a.149.2 yes 4
120.83 odd 4 1200.1.r.a.101.2 4
120.107 odd 4 1200.1.r.a.101.1 4
240.29 odd 4 inner 1920.1.bm.b.929.1 4
240.59 even 4 240.1.bm.a.29.2 yes 4
240.107 odd 4 1200.1.r.a.701.2 4
240.149 odd 4 960.1.bm.a.209.2 4
240.179 even 4 1920.1.bm.a.929.2 4
240.203 odd 4 1200.1.r.a.701.1 4
    
        By twisted newform
Twist Min Dim Char Parity Ord Type
240.1.bm.a.29.1 4 48.11 even 4
240.1.bm.a.29.1 4 80.59 odd 4
240.1.bm.a.29.2 yes 4 16.11 odd 4
240.1.bm.a.29.2 yes 4 240.59 even 4
240.1.bm.a.149.1 yes 4 24.11 even 2
240.1.bm.a.149.1 yes 4 40.19 odd 2
240.1.bm.a.149.2 yes 4 8.3 odd 2
240.1.bm.a.149.2 yes 4 120.59 even 2
960.1.bm.a.209.1 4 48.5 odd 4
960.1.bm.a.209.1 4 80.69 even 4
960.1.bm.a.209.2 4 16.5 even 4
960.1.bm.a.209.2 4 240.149 odd 4
960.1.bm.a.689.1 4 24.5 odd 2
960.1.bm.a.689.1 4 40.29 even 2
960.1.bm.a.689.2 4 8.5 even 2
960.1.bm.a.689.2 4 120.29 odd 2
1200.1.r.a.101.1 4 40.3 even 4
1200.1.r.a.101.1 4 120.107 odd 4
1200.1.r.a.101.2 4 40.27 even 4
1200.1.r.a.101.2 4 120.83 odd 4
1200.1.r.a.701.1 4 80.27 even 4
1200.1.r.a.701.1 4 240.203 odd 4
1200.1.r.a.701.2 4 80.43 even 4
1200.1.r.a.701.2 4 240.107 odd 4
1920.1.bm.a.929.1 4 48.35 even 4
1920.1.bm.a.929.1 4 80.19 odd 4
1920.1.bm.a.929.2 4 16.3 odd 4
1920.1.bm.a.929.2 4 240.179 even 4
1920.1.bm.a.1889.1 4 12.11 even 2
1920.1.bm.a.1889.1 4 20.19 odd 2
1920.1.bm.a.1889.2 4 4.3 odd 2
1920.1.bm.a.1889.2 4 60.59 even 2
1920.1.bm.b.929.1 4 16.13 even 4 inner
1920.1.bm.b.929.1 4 240.29 odd 4 inner
1920.1.bm.b.929.2 4 48.29 odd 4 inner
1920.1.bm.b.929.2 4 80.29 even 4 inner
1920.1.bm.b.1889.1 4 1.1 even 1 trivial
1920.1.bm.b.1889.1 4 15.14 odd 2 CM
1920.1.bm.b.1889.2 4 3.2 odd 2 inner
1920.1.bm.b.1889.2 4 5.4 even 2 inner