Properties

Label 1920.1.db.a.29.1
Level $1920$
Weight $1$
Character 1920.29
Analytic conductor $0.958$
Analytic rank $0$
Dimension $32$
Projective image $D_{32}$
CM discriminant -15
Inner twists $8$

Related objects

Downloads

Learn more

Show commands: Magma / PariGP / SageMath

Newspace parameters

comment: Compute space of new eigenforms
 
[N,k,chi] = [1920,1,Mod(29,1920)]
 
mf = mfinit([N,k,chi],0)
 
lf = mfeigenbasis(mf)
 
from sage.modular.dirichlet import DirichletCharacter
 
H = DirichletGroup(1920, base_ring=CyclotomicField(32))
 
chi = DirichletCharacter(H, H._module([0, 27, 16, 16]))
 
N = Newforms(chi, 1, names="a")
 
//Please install CHIMP (https://github.com/edgarcosta/CHIMP) if you want to run this code
 
chi := DirichletCharacter("1920.29");
 
S:= CuspForms(chi, 1);
 
N := Newforms(S);
 
Level: \( N \) \(=\) \( 1920 = 2^{7} \cdot 3 \cdot 5 \)
Weight: \( k \) \(=\) \( 1 \)
Character orbit: \([\chi]\) \(=\) 1920.db (of order \(32\), degree \(16\), minimal)

Newform invariants

comment: select newform
 
sage: f = N[0] # Warning: the index may be different
 
gp: f = lf[1] \\ Warning: the index may be different
 
Self dual: no
Analytic conductor: \(0.958204824255\)
Analytic rank: \(0\)
Dimension: \(32\)
Relative dimension: \(2\) over \(\Q(\zeta_{32})\)
Coefficient field: \(\Q(\zeta_{64})\)
comment: defining polynomial
 
gp: f.mod \\ as an extension of the character field
 
Defining polynomial: \( x^{32} + 1 \) Copy content Toggle raw display
Coefficient ring: \(\Z[a_1, a_2]\)
Coefficient ring index: \( 1 \)
Twist minimal: yes
Projective image: \(D_{32}\)
Projective field: Galois closure of \(\mathbb{Q}[x]/(x^{32} + \cdots)\)

Embedding invariants

Embedding label 29.1
Root \(0.634393 - 0.773010i\) of defining polynomial
Character \(\chi\) \(=\) 1920.29
Dual form 1920.1.db.a.1589.1

$q$-expansion

comment: q-expansion
 
sage: f.q_expansion() # note that sage often uses an isomorphic number field
 
gp: mfcoefs(f, 20)
 
\(f(q)\) \(=\) \(q+(-0.290285 - 0.956940i) q^{2} +(-0.0980171 + 0.995185i) q^{3} +(-0.831470 + 0.555570i) q^{4} +(0.881921 - 0.471397i) q^{5} +(0.980785 - 0.195090i) q^{6} +(0.773010 + 0.634393i) q^{8} +(-0.980785 - 0.195090i) q^{9} +(-0.707107 - 0.707107i) q^{10} +(-0.471397 - 0.881921i) q^{12} +(0.382683 + 0.923880i) q^{15} +(0.382683 - 0.923880i) q^{16} +(0.360791 - 0.871028i) q^{17} +(0.0980171 + 0.995185i) q^{18} +(0.448786 + 1.47945i) q^{19} +(-0.471397 + 0.881921i) q^{20} +(1.59133 - 1.06330i) q^{23} +(-0.707107 + 0.707107i) q^{24} +(0.555570 - 0.831470i) q^{25} +(0.290285 - 0.956940i) q^{27} +(0.773010 - 0.634393i) q^{30} +(-1.17588 + 1.17588i) q^{31} +(-0.995185 - 0.0980171i) q^{32} +(-0.938254 - 0.0924099i) q^{34} +(0.923880 - 0.382683i) q^{36} +(1.28547 - 0.858923i) q^{38} +(0.980785 + 0.195090i) q^{40} +(-0.956940 + 0.290285i) q^{45} +(-1.47945 - 1.21415i) q^{46} +(1.83886 + 0.761681i) q^{47} +(0.881921 + 0.471397i) q^{48} +(-0.923880 + 0.382683i) q^{49} +(-0.956940 - 0.290285i) q^{50} +(0.831470 + 0.444430i) q^{51} +(0.301614 + 0.247528i) q^{53} -1.00000 q^{54} +(-1.51631 + 0.301614i) q^{57} +(-0.831470 - 0.555570i) q^{60} +(1.26268 + 0.124363i) q^{61} +(1.46658 + 0.783904i) q^{62} +(0.195090 + 0.980785i) q^{64} +(0.183930 + 0.924678i) q^{68} +(0.902197 + 1.68789i) q^{69} +(-0.634393 - 0.773010i) q^{72} +(0.773010 + 0.634393i) q^{75} +(-1.19509 - 0.980785i) q^{76} +(0.707107 - 0.292893i) q^{79} +(-0.0980171 - 0.995185i) q^{80} +(0.923880 + 0.382683i) q^{81} +(-1.87711 + 0.569414i) q^{83} +(-0.0924099 - 0.938254i) q^{85} +(0.555570 + 0.831470i) q^{90} +(-0.732410 + 1.76820i) q^{92} +(-1.05496 - 1.28547i) q^{93} +(0.195090 - 1.98079i) q^{94} +(1.09320 + 1.09320i) q^{95} +(0.195090 - 0.980785i) q^{96} +(0.634393 + 0.773010i) q^{98} +O(q^{100})\)
\(\operatorname{Tr}(f)(q)\) \(=\) \( 32 q - 32 q^{54} - 32 q^{76}+O(q^{100}) \) Copy content Toggle raw display

Character values

We give the values of \(\chi\) on generators for \(\left(\mathbb{Z}/1920\mathbb{Z}\right)^\times\).

\(n\) \(511\) \(641\) \(901\) \(1537\)
\(\chi(n)\) \(1\) \(-1\) \(e\left(\frac{27}{32}\right)\) \(-1\)

Coefficient data

For each \(n\) we display the coefficients of the \(q\)-expansion \(a_n\), the Satake parameters \(\alpha_p\), and the Satake angles \(\theta_p = \textrm{Arg}(\alpha_p)\).



Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))
Significant digits:
\(n\) \(a_n\) \(a_n / n^{(k-1)/2}\) \( \alpha_n \) \( \theta_n \)
\(p\) \(a_p\) \(a_p / p^{(k-1)/2}\) \( \alpha_p\) \( \theta_p \)
\(2\) −0.290285 0.956940i −0.290285 0.956940i
\(3\) −0.0980171 + 0.995185i −0.0980171 + 0.995185i
\(4\) −0.831470 + 0.555570i −0.831470 + 0.555570i
\(5\) 0.881921 0.471397i 0.881921 0.471397i
\(6\) 0.980785 0.195090i 0.980785 0.195090i
\(7\) 0 0 −0.195090 0.980785i \(-0.562500\pi\)
0.195090 + 0.980785i \(0.437500\pi\)
\(8\) 0.773010 + 0.634393i 0.773010 + 0.634393i
\(9\) −0.980785 0.195090i −0.980785 0.195090i
\(10\) −0.707107 0.707107i −0.707107 0.707107i
\(11\) 0 0 0.634393 0.773010i \(-0.281250\pi\)
−0.634393 + 0.773010i \(0.718750\pi\)
\(12\) −0.471397 0.881921i −0.471397 0.881921i
\(13\) 0 0 0.471397 0.881921i \(-0.343750\pi\)
−0.471397 + 0.881921i \(0.656250\pi\)
\(14\) 0 0
\(15\) 0.382683 + 0.923880i 0.382683 + 0.923880i
\(16\) 0.382683 0.923880i 0.382683 0.923880i
\(17\) 0.360791 0.871028i 0.360791 0.871028i −0.634393 0.773010i \(-0.718750\pi\)
0.995185 0.0980171i \(-0.0312500\pi\)
\(18\) 0.0980171 + 0.995185i 0.0980171 + 0.995185i
\(19\) 0.448786 + 1.47945i 0.448786 + 1.47945i 0.831470 + 0.555570i \(0.187500\pi\)
−0.382683 + 0.923880i \(0.625000\pi\)
\(20\) −0.471397 + 0.881921i −0.471397 + 0.881921i
\(21\) 0 0
\(22\) 0 0
\(23\) 1.59133 1.06330i 1.59133 1.06330i 0.634393 0.773010i \(-0.281250\pi\)
0.956940 0.290285i \(-0.0937500\pi\)
\(24\) −0.707107 + 0.707107i −0.707107 + 0.707107i
\(25\) 0.555570 0.831470i 0.555570 0.831470i
\(26\) 0 0
\(27\) 0.290285 0.956940i 0.290285 0.956940i
\(28\) 0 0
\(29\) 0 0 0.773010 0.634393i \(-0.218750\pi\)
−0.773010 + 0.634393i \(0.781250\pi\)
\(30\) 0.773010 0.634393i 0.773010 0.634393i
\(31\) −1.17588 + 1.17588i −1.17588 + 1.17588i −0.195090 + 0.980785i \(0.562500\pi\)
−0.980785 + 0.195090i \(0.937500\pi\)
\(32\) −0.995185 0.0980171i −0.995185 0.0980171i
\(33\) 0 0
\(34\) −0.938254 0.0924099i −0.938254 0.0924099i
\(35\) 0 0
\(36\) 0.923880 0.382683i 0.923880 0.382683i
\(37\) 0 0 −0.956940 0.290285i \(-0.906250\pi\)
0.956940 + 0.290285i \(0.0937500\pi\)
\(38\) 1.28547 0.858923i 1.28547 0.858923i
\(39\) 0 0
\(40\) 0.980785 + 0.195090i 0.980785 + 0.195090i
\(41\) 0 0 −0.555570 0.831470i \(-0.687500\pi\)
0.555570 + 0.831470i \(0.312500\pi\)
\(42\) 0 0
\(43\) 0 0 −0.0980171 0.995185i \(-0.531250\pi\)
0.0980171 + 0.995185i \(0.468750\pi\)
\(44\) 0 0
\(45\) −0.956940 + 0.290285i −0.956940 + 0.290285i
\(46\) −1.47945 1.21415i −1.47945 1.21415i
\(47\) 1.83886 + 0.761681i 1.83886 + 0.761681i 0.956940 + 0.290285i \(0.0937500\pi\)
0.881921 + 0.471397i \(0.156250\pi\)
\(48\) 0.881921 + 0.471397i 0.881921 + 0.471397i
\(49\) −0.923880 + 0.382683i −0.923880 + 0.382683i
\(50\) −0.956940 0.290285i −0.956940 0.290285i
\(51\) 0.831470 + 0.444430i 0.831470 + 0.444430i
\(52\) 0 0
\(53\) 0.301614 + 0.247528i 0.301614 + 0.247528i 0.773010 0.634393i \(-0.218750\pi\)
−0.471397 + 0.881921i \(0.656250\pi\)
\(54\) −1.00000 −1.00000
\(55\) 0 0
\(56\) 0 0
\(57\) −1.51631 + 0.301614i −1.51631 + 0.301614i
\(58\) 0 0
\(59\) 0 0 −0.471397 0.881921i \(-0.656250\pi\)
0.471397 + 0.881921i \(0.343750\pi\)
\(60\) −0.831470 0.555570i −0.831470 0.555570i
\(61\) 1.26268 + 0.124363i 1.26268 + 0.124363i 0.707107 0.707107i \(-0.250000\pi\)
0.555570 + 0.831470i \(0.312500\pi\)
\(62\) 1.46658 + 0.783904i 1.46658 + 0.783904i
\(63\) 0 0
\(64\) 0.195090 + 0.980785i 0.195090 + 0.980785i
\(65\) 0 0
\(66\) 0 0
\(67\) 0 0 −0.995185 0.0980171i \(-0.968750\pi\)
0.995185 + 0.0980171i \(0.0312500\pi\)
\(68\) 0.183930 + 0.924678i 0.183930 + 0.924678i
\(69\) 0.902197 + 1.68789i 0.902197 + 1.68789i
\(70\) 0 0
\(71\) 0 0 0.980785 0.195090i \(-0.0625000\pi\)
−0.980785 + 0.195090i \(0.937500\pi\)
\(72\) −0.634393 0.773010i −0.634393 0.773010i
\(73\) 0 0 0.195090 0.980785i \(-0.437500\pi\)
−0.195090 + 0.980785i \(0.562500\pi\)
\(74\) 0 0
\(75\) 0.773010 + 0.634393i 0.773010 + 0.634393i
\(76\) −1.19509 0.980785i −1.19509 0.980785i
\(77\) 0 0
\(78\) 0 0
\(79\) 0.707107 0.292893i 0.707107 0.292893i 1.00000i \(-0.5\pi\)
0.707107 + 0.707107i \(0.250000\pi\)
\(80\) −0.0980171 0.995185i −0.0980171 0.995185i
\(81\) 0.923880 + 0.382683i 0.923880 + 0.382683i
\(82\) 0 0
\(83\) −1.87711 + 0.569414i −1.87711 + 0.569414i −0.881921 + 0.471397i \(0.843750\pi\)
−0.995185 + 0.0980171i \(0.968750\pi\)
\(84\) 0 0
\(85\) −0.0924099 0.938254i −0.0924099 0.938254i
\(86\) 0 0
\(87\) 0 0
\(88\) 0 0
\(89\) 0 0 −0.831470 0.555570i \(-0.812500\pi\)
0.831470 + 0.555570i \(0.187500\pi\)
\(90\) 0.555570 + 0.831470i 0.555570 + 0.831470i
\(91\) 0 0
\(92\) −0.732410 + 1.76820i −0.732410 + 1.76820i
\(93\) −1.05496 1.28547i −1.05496 1.28547i
\(94\) 0.195090 1.98079i 0.195090 1.98079i
\(95\) 1.09320 + 1.09320i 1.09320 + 1.09320i
\(96\) 0.195090 0.980785i 0.195090 0.980785i
\(97\) 0 0 0.707107 0.707107i \(-0.250000\pi\)
−0.707107 + 0.707107i \(0.750000\pi\)
\(98\) 0.634393 + 0.773010i 0.634393 + 0.773010i
\(99\) 0 0
\(100\) 1.00000i 1.00000i
\(101\) 0 0 0.290285 0.956940i \(-0.406250\pi\)
−0.290285 + 0.956940i \(0.593750\pi\)
\(102\) 0.183930 0.924678i 0.183930 0.924678i
\(103\) 0 0 0.555570 0.831470i \(-0.312500\pi\)
−0.555570 + 0.831470i \(0.687500\pi\)
\(104\) 0 0
\(105\) 0 0
\(106\) 0.149316 0.360480i 0.149316 0.360480i
\(107\) 1.10579 0.108911i 1.10579 0.108911i 0.471397 0.881921i \(-0.343750\pi\)
0.634393 + 0.773010i \(0.281250\pi\)
\(108\) 0.290285 + 0.956940i 0.290285 + 0.956940i
\(109\) −0.0569057 0.187593i −0.0569057 0.187593i 0.923880 0.382683i \(-0.125000\pi\)
−0.980785 + 0.195090i \(0.937500\pi\)
\(110\) 0 0
\(111\) 0 0
\(112\) 0 0
\(113\) −0.761681 1.83886i −0.761681 1.83886i −0.471397 0.881921i \(-0.656250\pi\)
−0.290285 0.956940i \(-0.593750\pi\)
\(114\) 0.728789 + 1.36347i 0.728789 + 1.36347i
\(115\) 0.902197 1.68789i 0.902197 1.68789i
\(116\) 0 0
\(117\) 0 0
\(118\) 0 0
\(119\) 0 0
\(120\) −0.290285 + 0.956940i −0.290285 + 0.956940i
\(121\) −0.195090 0.980785i −0.195090 0.980785i
\(122\) −0.247528 1.24441i −0.247528 1.24441i
\(123\) 0 0
\(124\) 0.324423 1.63099i 0.324423 1.63099i
\(125\) 0.0980171 0.995185i 0.0980171 0.995185i
\(126\) 0 0
\(127\) 0 0 1.00000 \(0\)
−1.00000 \(\pi\)
\(128\) 0.881921 0.471397i 0.881921 0.471397i
\(129\) 0 0
\(130\) 0 0
\(131\) 0 0 0.0980171 0.995185i \(-0.468750\pi\)
−0.0980171 + 0.995185i \(0.531250\pi\)
\(132\) 0 0
\(133\) 0 0
\(134\) 0 0
\(135\) −0.195090 0.980785i −0.195090 0.980785i
\(136\) 0.831470 0.444430i 0.831470 0.444430i
\(137\) −0.192268 0.0382444i −0.192268 0.0382444i 0.0980171 0.995185i \(-0.468750\pi\)
−0.290285 + 0.956940i \(0.593750\pi\)
\(138\) 1.35332 1.35332i 1.35332 1.35332i
\(139\) 0.368309 0.448786i 0.368309 0.448786i −0.555570 0.831470i \(-0.687500\pi\)
0.923880 + 0.382683i \(0.125000\pi\)
\(140\) 0 0
\(141\) −0.938254 + 1.75535i −0.938254 + 1.75535i
\(142\) 0 0
\(143\) 0 0
\(144\) −0.555570 + 0.831470i −0.555570 + 0.831470i
\(145\) 0 0
\(146\) 0 0
\(147\) −0.290285 0.956940i −0.290285 0.956940i
\(148\) 0 0
\(149\) 0 0 0.995185 0.0980171i \(-0.0312500\pi\)
−0.995185 + 0.0980171i \(0.968750\pi\)
\(150\) 0.382683 0.923880i 0.382683 0.923880i
\(151\) −1.63099 + 1.08979i −1.63099 + 1.08979i −0.707107 + 0.707107i \(0.750000\pi\)
−0.923880 + 0.382683i \(0.875000\pi\)
\(152\) −0.591637 + 1.42834i −0.591637 + 1.42834i
\(153\) −0.523788 + 0.783904i −0.523788 + 0.783904i
\(154\) 0 0
\(155\) −0.482726 + 1.59133i −0.482726 + 1.59133i
\(156\) 0 0
\(157\) 0 0 0.773010 0.634393i \(-0.218750\pi\)
−0.773010 + 0.634393i \(0.781250\pi\)
\(158\) −0.485544 0.591637i −0.485544 0.591637i
\(159\) −0.275899 + 0.275899i −0.275899 + 0.275899i
\(160\) −0.923880 + 0.382683i −0.923880 + 0.382683i
\(161\) 0 0
\(162\) 0.0980171 0.995185i 0.0980171 0.995185i
\(163\) 0 0 −0.634393 0.773010i \(-0.718750\pi\)
0.634393 + 0.773010i \(0.281250\pi\)
\(164\) 0 0
\(165\) 0 0
\(166\) 1.08979 + 1.63099i 1.08979 + 1.63099i
\(167\) −1.46658 0.979938i −1.46658 0.979938i −0.995185 0.0980171i \(-0.968750\pi\)
−0.471397 0.881921i \(-0.656250\pi\)
\(168\) 0 0
\(169\) −0.555570 0.831470i −0.555570 0.831470i
\(170\) −0.871028 + 0.360791i −0.871028 + 0.360791i
\(171\) −0.151537 1.53858i −0.151537 1.53858i
\(172\) 0 0
\(173\) −1.06330 + 0.322547i −1.06330 + 0.322547i −0.773010 0.634393i \(-0.781250\pi\)
−0.290285 + 0.956940i \(0.593750\pi\)
\(174\) 0 0
\(175\) 0 0
\(176\) 0 0
\(177\) 0 0
\(178\) 0 0
\(179\) 0 0 −0.881921 0.471397i \(-0.843750\pi\)
0.881921 + 0.471397i \(0.156250\pi\)
\(180\) 0.634393 0.773010i 0.634393 0.773010i
\(181\) 1.36347 + 1.11897i 1.36347 + 1.11897i 0.980785 + 0.195090i \(0.0625000\pi\)
0.382683 + 0.923880i \(0.375000\pi\)
\(182\) 0 0
\(183\) −0.247528 + 1.24441i −0.247528 + 1.24441i
\(184\) 1.90466 + 0.187593i 1.90466 + 0.187593i
\(185\) 0 0
\(186\) −0.923880 + 1.38268i −0.923880 + 1.38268i
\(187\) 0 0
\(188\) −1.95213 + 0.388302i −1.95213 + 0.388302i
\(189\) 0 0
\(190\) 0.728789 1.36347i 0.728789 1.36347i
\(191\) 0 0 1.00000i \(-0.5\pi\)
1.00000i \(0.5\pi\)
\(192\) −0.995185 + 0.0980171i −0.995185 + 0.0980171i
\(193\) 0 0 1.00000i \(-0.5\pi\)
1.00000i \(0.5\pi\)
\(194\) 0 0
\(195\) 0 0
\(196\) 0.555570 0.831470i 0.555570 0.831470i
\(197\) 0.871028 + 1.62958i 0.871028 + 1.62958i 0.773010 + 0.634393i \(0.218750\pi\)
0.0980171 + 0.995185i \(0.468750\pi\)
\(198\) 0 0
\(199\) −1.81225 + 0.360480i −1.81225 + 0.360480i −0.980785 0.195090i \(-0.937500\pi\)
−0.831470 + 0.555570i \(0.812500\pi\)
\(200\) 0.956940 0.290285i 0.956940 0.290285i
\(201\) 0 0
\(202\) 0 0
\(203\) 0 0
\(204\) −0.938254 + 0.0924099i −0.938254 + 0.0924099i
\(205\) 0 0
\(206\) 0 0
\(207\) −1.76820 + 0.732410i −1.76820 + 0.732410i
\(208\) 0 0
\(209\) 0 0
\(210\) 0 0
\(211\) −0.187593 + 0.0569057i −0.187593 + 0.0569057i −0.382683 0.923880i \(-0.625000\pi\)
0.195090 + 0.980785i \(0.437500\pi\)
\(212\) −0.388302 0.0382444i −0.388302 0.0382444i
\(213\) 0 0
\(214\) −0.425215 1.02656i −0.425215 1.02656i
\(215\) 0 0
\(216\) 0.831470 0.555570i 0.831470 0.555570i
\(217\) 0 0
\(218\) −0.162997 + 0.108911i −0.162997 + 0.108911i
\(219\) 0 0
\(220\) 0 0
\(221\) 0 0
\(222\) 0 0
\(223\) 0 0 −0.707107 0.707107i \(-0.750000\pi\)
0.707107 + 0.707107i \(0.250000\pi\)
\(224\) 0 0
\(225\) −0.707107 + 0.707107i −0.707107 + 0.707107i
\(226\) −1.53858 + 1.26268i −1.53858 + 1.26268i
\(227\) −0.301614 + 0.247528i −0.301614 + 0.247528i −0.773010 0.634393i \(-0.781250\pi\)
0.471397 + 0.881921i \(0.343750\pi\)
\(228\) 1.09320 1.09320i 1.09320 1.09320i
\(229\) −0.168530 + 0.555570i −0.168530 + 0.555570i 0.831470 + 0.555570i \(0.187500\pi\)
−1.00000 \(\pi\)
\(230\) −1.87711 0.373380i −1.87711 0.373380i
\(231\) 0 0
\(232\) 0 0
\(233\) −0.482726 + 0.322547i −0.482726 + 0.322547i −0.773010 0.634393i \(-0.781250\pi\)
0.290285 + 0.956940i \(0.406250\pi\)
\(234\) 0 0
\(235\) 1.98079 0.195090i 1.98079 0.195090i
\(236\) 0 0
\(237\) 0.222174 + 0.732410i 0.222174 + 0.732410i
\(238\) 0 0
\(239\) 0 0 0.382683 0.923880i \(-0.375000\pi\)
−0.382683 + 0.923880i \(0.625000\pi\)
\(240\) 1.00000 1.00000
\(241\) −0.636379 1.53636i −0.636379 1.53636i −0.831470 0.555570i \(-0.812500\pi\)
0.195090 0.980785i \(-0.437500\pi\)
\(242\) −0.881921 + 0.471397i −0.881921 + 0.471397i
\(243\) −0.471397 + 0.881921i −0.471397 + 0.881921i
\(244\) −1.11897 + 0.598102i −1.11897 + 0.598102i
\(245\) −0.634393 + 0.773010i −0.634393 + 0.773010i
\(246\) 0 0
\(247\) 0 0
\(248\) −1.65493 + 0.162997i −1.65493 + 0.162997i
\(249\) −0.382683 1.92388i −0.382683 1.92388i
\(250\) −0.980785 + 0.195090i −0.980785 + 0.195090i
\(251\) 0 0 0.881921 0.471397i \(-0.156250\pi\)
−0.881921 + 0.471397i \(0.843750\pi\)
\(252\) 0 0
\(253\) 0 0
\(254\) 0 0
\(255\) 0.942793 0.942793
\(256\) −0.707107 0.707107i −0.707107 0.707107i
\(257\) −1.91388 −1.91388 −0.956940 0.290285i \(-0.906250\pi\)
−0.956940 + 0.290285i \(0.906250\pi\)
\(258\) 0 0
\(259\) 0 0
\(260\) 0 0
\(261\) 0 0
\(262\) 0 0
\(263\) −0.183930 0.924678i −0.183930 0.924678i −0.956940 0.290285i \(-0.906250\pi\)
0.773010 0.634393i \(-0.218750\pi\)
\(264\) 0 0
\(265\) 0.382683 + 0.0761205i 0.382683 + 0.0761205i
\(266\) 0 0
\(267\) 0 0
\(268\) 0 0
\(269\) 0 0 0.471397 0.881921i \(-0.343750\pi\)
−0.471397 + 0.881921i \(0.656250\pi\)
\(270\) −0.881921 + 0.471397i −0.881921 + 0.471397i
\(271\) −0.541196 1.30656i −0.541196 1.30656i −0.923880 0.382683i \(-0.875000\pi\)
0.382683 0.923880i \(-0.375000\pi\)
\(272\) −0.666656 0.666656i −0.666656 0.666656i
\(273\) 0 0
\(274\) 0.0192147 + 0.195090i 0.0192147 + 0.195090i
\(275\) 0 0
\(276\) −1.68789 0.902197i −1.68789 0.902197i
\(277\) 0 0 0.995185 0.0980171i \(-0.0312500\pi\)
−0.995185 + 0.0980171i \(0.968750\pi\)
\(278\) −0.536376 0.222174i −0.536376 0.222174i
\(279\) 1.38268 0.923880i 1.38268 0.923880i
\(280\) 0 0
\(281\) 0 0 0.555570 0.831470i \(-0.312500\pi\)
−0.555570 + 0.831470i \(0.687500\pi\)
\(282\) 1.95213 + 0.388302i 1.95213 + 0.388302i
\(283\) 0 0 0.290285 0.956940i \(-0.406250\pi\)
−0.290285 + 0.956940i \(0.593750\pi\)
\(284\) 0 0
\(285\) −1.19509 + 0.980785i −1.19509 + 0.980785i
\(286\) 0 0
\(287\) 0 0
\(288\) 0.956940 + 0.290285i 0.956940 + 0.290285i
\(289\) 0.0785882 + 0.0785882i 0.0785882 + 0.0785882i
\(290\) 0 0
\(291\) 0 0
\(292\) 0 0
\(293\) −1.87711 0.569414i −1.87711 0.569414i −0.995185 0.0980171i \(-0.968750\pi\)
−0.881921 0.471397i \(-0.843750\pi\)
\(294\) −0.831470 + 0.555570i −0.831470 + 0.555570i
\(295\) 0 0
\(296\) 0 0
\(297\) 0 0
\(298\) 0 0
\(299\) 0 0
\(300\) −0.995185 0.0980171i −0.995185 0.0980171i
\(301\) 0 0
\(302\) 1.51631 + 1.24441i 1.51631 + 1.24441i
\(303\) 0 0
\(304\) 1.53858 + 0.151537i 1.53858 + 0.151537i
\(305\) 1.17221 0.485544i 1.17221 0.485544i
\(306\) 0.902197 + 0.273678i 0.902197 + 0.273678i
\(307\) 0 0 −0.881921 0.471397i \(-0.843750\pi\)
0.881921 + 0.471397i \(0.156250\pi\)
\(308\) 0 0
\(309\) 0 0
\(310\) 1.66294 1.66294
\(311\) 0 0 0.195090 0.980785i \(-0.437500\pi\)
−0.195090 + 0.980785i \(0.562500\pi\)
\(312\) 0 0
\(313\) 0 0 0.980785 0.195090i \(-0.0625000\pi\)
−0.980785 + 0.195090i \(0.937500\pi\)
\(314\) 0 0
\(315\) 0 0
\(316\) −0.425215 + 0.636379i −0.425215 + 0.636379i
\(317\) 0.761681 + 0.0750191i 0.761681 + 0.0750191i 0.471397 0.881921i \(-0.343750\pi\)
0.290285 + 0.956940i \(0.406250\pi\)
\(318\) 0.344109 + 0.183930i 0.344109 + 0.183930i
\(319\) 0 0
\(320\) 0.634393 + 0.773010i 0.634393 + 0.773010i
\(321\) 1.11114i 1.11114i
\(322\) 0 0
\(323\) 1.45056 + 0.142868i 1.45056 + 0.142868i
\(324\) −0.980785 + 0.195090i −0.980785 + 0.195090i
\(325\) 0 0
\(326\) 0 0
\(327\) 0.192268 0.0382444i 0.192268 0.0382444i
\(328\) 0 0
\(329\) 0 0
\(330\) 0 0
\(331\) −1.36347 1.11897i −1.36347 1.11897i −0.980785 0.195090i \(-0.937500\pi\)
−0.382683 0.923880i \(-0.625000\pi\)
\(332\) 1.24441 1.51631i 1.24441 1.51631i
\(333\) 0 0
\(334\) −0.512016 + 1.68789i −0.512016 + 1.68789i
\(335\) 0 0
\(336\) 0 0
\(337\) 0 0 −0.923880 0.382683i \(-0.875000\pi\)
0.923880 + 0.382683i \(0.125000\pi\)
\(338\) −0.634393 + 0.773010i −0.634393 + 0.773010i
\(339\) 1.90466 0.577774i 1.90466 0.577774i
\(340\) 0.598102 + 0.728789i 0.598102 + 0.728789i
\(341\) 0 0
\(342\) −1.42834 + 0.591637i −1.42834 + 0.591637i
\(343\) 0 0
\(344\) 0 0
\(345\) 1.59133 + 1.06330i 1.59133 + 1.06330i
\(346\) 0.617317 + 0.923880i 0.617317 + 0.923880i
\(347\) 0.732410 + 0.222174i 0.732410 + 0.222174i 0.634393 0.773010i \(-0.281250\pi\)
0.0980171 + 0.995185i \(0.468750\pi\)
\(348\) 0 0
\(349\) 0.980785 + 1.19509i 0.980785 + 1.19509i 0.980785 + 0.195090i \(0.0625000\pi\)
1.00000i \(0.5\pi\)
\(350\) 0 0
\(351\) 0 0
\(352\) 0 0
\(353\) 0.897168 0.897168i 0.897168 0.897168i −0.0980171 0.995185i \(-0.531250\pi\)
0.995185 + 0.0980171i \(0.0312500\pi\)
\(354\) 0 0
\(355\) 0 0
\(356\) 0 0
\(357\) 0 0
\(358\) 0 0
\(359\) 0 0 0.555570 0.831470i \(-0.312500\pi\)
−0.555570 + 0.831470i \(0.687500\pi\)
\(360\) −0.923880 0.382683i −0.923880 0.382683i
\(361\) −1.15589 + 0.772343i −1.15589 + 0.772343i
\(362\) 0.674993 1.62958i 0.674993 1.62958i
\(363\) 0.995185 0.0980171i 0.995185 0.0980171i
\(364\) 0 0
\(365\) 0 0
\(366\) 1.26268 0.124363i 1.26268 0.124363i
\(367\) 0 0 0.382683 0.923880i \(-0.375000\pi\)
−0.382683 + 0.923880i \(0.625000\pi\)
\(368\) −0.373380 1.87711i −0.373380 1.87711i
\(369\) 0 0
\(370\) 0 0
\(371\) 0 0
\(372\) 1.59133 + 0.482726i 1.59133 + 0.482726i
\(373\) 0 0 0.634393 0.773010i \(-0.281250\pi\)
−0.634393 + 0.773010i \(0.718750\pi\)
\(374\) 0 0
\(375\) 0.980785 + 0.195090i 0.980785 + 0.195090i
\(376\) 0.938254 + 1.75535i 0.938254 + 1.75535i
\(377\) 0 0
\(378\) 0 0
\(379\) −1.55557 + 0.831470i −1.55557 + 0.831470i −0.555570 + 0.831470i \(0.687500\pi\)
−1.00000 \(\pi\)
\(380\) −1.51631 0.301614i −1.51631 0.301614i
\(381\) 0 0
\(382\) 0 0
\(383\) −1.26879 −1.26879 −0.634393 0.773010i \(-0.718750\pi\)
−0.634393 + 0.773010i \(0.718750\pi\)
\(384\) 0.382683 + 0.923880i 0.382683 + 0.923880i
\(385\) 0 0
\(386\) 0 0
\(387\) 0 0
\(388\) 0 0
\(389\) 0 0 0.881921 0.471397i \(-0.156250\pi\)
−0.881921 + 0.471397i \(0.843750\pi\)
\(390\) 0 0
\(391\) −0.352020 1.76972i −0.352020 1.76972i
\(392\) −0.956940 0.290285i −0.956940 0.290285i
\(393\) 0 0
\(394\) 1.30656 1.30656i 1.30656 1.30656i
\(395\) 0.485544 0.591637i 0.485544 0.591637i
\(396\) 0 0
\(397\) 0 0 0.471397 0.881921i \(-0.343750\pi\)
−0.471397 + 0.881921i \(0.656250\pi\)
\(398\) 0.871028 + 1.62958i 0.871028 + 1.62958i
\(399\) 0 0
\(400\) −0.555570 0.831470i −0.555570 0.831470i
\(401\) 0 0 0.382683 0.923880i \(-0.375000\pi\)
−0.382683 + 0.923880i \(0.625000\pi\)
\(402\) 0 0
\(403\) 0 0
\(404\) 0 0
\(405\) 0.995185 0.0980171i 0.995185 0.0980171i
\(406\) 0 0
\(407\) 0 0
\(408\) 0.360791 + 0.871028i 0.360791 + 0.871028i
\(409\) −1.08979 + 1.63099i −1.08979 + 1.63099i −0.382683 + 0.923880i \(0.625000\pi\)
−0.707107 + 0.707107i \(0.750000\pi\)
\(410\) 0 0
\(411\) 0.0569057 0.187593i 0.0569057 0.187593i
\(412\) 0 0
\(413\) 0 0
\(414\) 1.21415 + 1.47945i 1.21415 + 1.47945i
\(415\) −1.38704 + 1.38704i −1.38704 + 1.38704i
\(416\) 0 0
\(417\) 0.410525 + 0.410525i 0.410525 + 0.410525i
\(418\) 0 0
\(419\) 0 0 −0.634393 0.773010i \(-0.718750\pi\)
0.634393 + 0.773010i \(0.281250\pi\)
\(420\) 0 0
\(421\) −0.555570 0.168530i −0.555570 0.168530i 1.00000i \(-0.5\pi\)
−0.555570 + 0.831470i \(0.687500\pi\)
\(422\) 0.108911 + 0.162997i 0.108911 + 0.162997i
\(423\) −1.65493 1.10579i −1.65493 1.10579i
\(424\) 0.0761205 + 0.382683i 0.0761205 + 0.382683i
\(425\) −0.523788 0.783904i −0.523788 0.783904i
\(426\) 0 0
\(427\) 0 0
\(428\) −0.858923 + 0.704900i −0.858923 + 0.704900i
\(429\) 0 0
\(430\) 0 0
\(431\) 0 0 −0.923880 0.382683i \(-0.875000\pi\)
0.923880 + 0.382683i \(0.125000\pi\)
\(432\) −0.773010 0.634393i −0.773010 0.634393i
\(433\) 0 0 0.923880 0.382683i \(-0.125000\pi\)
−0.923880 + 0.382683i \(0.875000\pi\)
\(434\) 0 0
\(435\) 0 0
\(436\) 0.151537 + 0.124363i 0.151537 + 0.124363i
\(437\) 2.28726 + 1.87711i 2.28726 + 1.87711i
\(438\) 0 0
\(439\) −0.360480 + 1.81225i −0.360480 + 1.81225i 0.195090 + 0.980785i \(0.437500\pi\)
−0.555570 + 0.831470i \(0.687500\pi\)
\(440\) 0 0
\(441\) 0.980785 0.195090i 0.980785 0.195090i
\(442\) 0 0
\(443\) −0.783904 1.46658i −0.783904 1.46658i −0.881921 0.471397i \(-0.843750\pi\)
0.0980171 0.995185i \(-0.468750\pi\)
\(444\) 0 0
\(445\) 0 0
\(446\) 0 0
\(447\) 0 0
\(448\) 0 0
\(449\) 0 0 1.00000i \(-0.5\pi\)
1.00000i \(0.5\pi\)
\(450\) 0.881921 + 0.471397i 0.881921 + 0.471397i
\(451\) 0 0
\(452\) 1.65493 + 1.10579i 1.65493 + 1.10579i
\(453\) −0.924678 1.72995i −0.924678 1.72995i
\(454\) 0.324423 + 0.216773i 0.324423 + 0.216773i
\(455\) 0 0
\(456\) −1.36347 0.728789i −1.36347 0.728789i
\(457\) 0 0 0.195090 0.980785i \(-0.437500\pi\)
−0.195090 + 0.980785i \(0.562500\pi\)
\(458\) 0.580569 0.580569
\(459\) −0.728789 0.598102i −0.728789 0.598102i
\(460\) 0.187593 + 1.90466i 0.187593 + 1.90466i
\(461\) 0 0 −0.881921 0.471397i \(-0.843750\pi\)
0.881921 + 0.471397i \(0.156250\pi\)
\(462\) 0 0
\(463\) 0 0 0.923880 0.382683i \(-0.125000\pi\)
−0.923880 + 0.382683i \(0.875000\pi\)
\(464\) 0 0
\(465\) −1.53636 0.636379i −1.53636 0.636379i
\(466\) 0.448786 + 0.368309i 0.448786 + 0.368309i
\(467\) 1.76820 0.536376i 1.76820 0.536376i 0.773010 0.634393i \(-0.218750\pi\)
0.995185 + 0.0980171i \(0.0312500\pi\)
\(468\) 0 0
\(469\) 0 0
\(470\) −0.761681 1.83886i −0.761681 1.83886i
\(471\) 0 0
\(472\) 0 0
\(473\) 0 0
\(474\) 0.636379 0.425215i 0.636379 0.425215i
\(475\) 1.47945 + 0.448786i 1.47945 + 0.448786i
\(476\) 0 0
\(477\) −0.247528 0.301614i −0.247528 0.301614i
\(478\) 0 0
\(479\) 0 0 −0.707107 0.707107i \(-0.750000\pi\)
0.707107 + 0.707107i \(0.250000\pi\)
\(480\) −0.290285 0.956940i −0.290285 0.956940i
\(481\) 0 0
\(482\) −1.28547 + 1.05496i −1.28547 + 1.05496i
\(483\) 0 0
\(484\) 0.707107 + 0.707107i 0.707107 + 0.707107i
\(485\) 0 0
\(486\) 0.980785 + 0.195090i 0.980785 + 0.195090i
\(487\) 0 0 0.555570 0.831470i \(-0.312500\pi\)
−0.555570 + 0.831470i \(0.687500\pi\)
\(488\) 0.897168 + 0.897168i 0.897168 + 0.897168i
\(489\) 0 0
\(490\) 0.923880 + 0.382683i 0.923880 + 0.382683i
\(491\) 0 0 0.995185 0.0980171i \(-0.0312500\pi\)
−0.995185 + 0.0980171i \(0.968750\pi\)
\(492\) 0 0
\(493\) 0 0
\(494\) 0 0
\(495\) 0 0
\(496\) 0.636379 + 1.53636i 0.636379 + 1.53636i
\(497\) 0 0
\(498\) −1.72995 + 0.924678i −1.72995 + 0.924678i
\(499\) 0.273678 0.512016i 0.273678 0.512016i −0.707107 0.707107i \(-0.750000\pi\)
0.980785 + 0.195090i \(0.0625000\pi\)
\(500\) 0.471397 + 0.881921i 0.471397 + 0.881921i
\(501\) 1.11897 1.36347i 1.11897 1.36347i
\(502\) 0 0
\(503\) 0.192268 + 0.0382444i 0.192268 + 0.0382444i 0.290285 0.956940i \(-0.406250\pi\)
−0.0980171 + 0.995185i \(0.531250\pi\)
\(504\) 0 0
\(505\) 0 0
\(506\) 0 0
\(507\) 0.881921 0.471397i 0.881921 0.471397i
\(508\) 0 0
\(509\) 0 0 0.0980171 0.995185i \(-0.468750\pi\)
−0.0980171 + 0.995185i \(0.531250\pi\)
\(510\) −0.273678 0.902197i −0.273678 0.902197i
\(511\) 0 0
\(512\) −0.471397 + 0.881921i −0.471397 + 0.881921i
\(513\) 1.54602 1.54602
\(514\) 0.555570 + 1.83147i 0.555570 + 1.83147i
\(515\) 0 0
\(516\) 0 0
\(517\) 0 0
\(518\) 0 0
\(519\) −0.216773 1.08979i −0.216773 1.08979i
\(520\) 0 0
\(521\) 0 0 −0.980785 0.195090i \(-0.937500\pi\)
0.980785 + 0.195090i \(0.0625000\pi\)
\(522\) 0 0
\(523\) 0 0 0.634393 0.773010i \(-0.281250\pi\)
−0.634393 + 0.773010i \(0.718750\pi\)
\(524\) 0 0
\(525\) 0 0
\(526\) −0.831470 + 0.444430i −0.831470 + 0.444430i
\(527\) 0.599974 + 1.44847i 0.599974 + 1.44847i
\(528\) 0 0
\(529\) 1.01906 2.46024i 1.01906 2.46024i
\(530\) −0.0382444 0.388302i −0.0382444 0.388302i
\(531\) 0 0
\(532\) 0 0
\(533\) 0 0
\(534\) 0 0
\(535\) 0.923880 0.617317i 0.923880 0.617317i
\(536\) 0 0
\(537\) 0 0
\(538\) 0 0
\(539\) 0 0
\(540\) 0.707107 + 0.707107i 0.707107 + 0.707107i
\(541\) 1.36347 1.11897i 1.36347 1.11897i 0.382683 0.923880i \(-0.375000\pi\)
0.980785 0.195090i \(-0.0625000\pi\)
\(542\) −1.09320 + 0.897168i −1.09320 + 0.897168i
\(543\) −1.24723 + 1.24723i −1.24723 + 1.24723i
\(544\) −0.444430 + 0.831470i −0.444430 + 0.831470i
\(545\) −0.138617 0.138617i −0.138617 0.138617i
\(546\) 0 0
\(547\) 0 0 −0.634393 0.773010i \(-0.718750\pi\)
0.634393 + 0.773010i \(0.281250\pi\)
\(548\) 0.181112 0.0750191i 0.181112 0.0750191i
\(549\) −1.21415 0.368309i −1.21415 0.368309i
\(550\) 0 0
\(551\) 0 0
\(552\) −0.373380 + 1.87711i −0.373380 + 1.87711i
\(553\) 0 0
\(554\) 0 0
\(555\) 0 0
\(556\) −0.0569057 + 0.577774i −0.0569057 + 0.577774i
\(557\) −1.87711 + 0.569414i −1.87711 + 0.569414i −0.881921 + 0.471397i \(0.843750\pi\)
−0.995185 + 0.0980171i \(0.968750\pi\)
\(558\) −1.28547 1.05496i −1.28547 1.05496i
\(559\) 0 0
\(560\) 0 0
\(561\) 0 0
\(562\) 0 0
\(563\) −1.62958 0.871028i −1.62958 0.871028i −0.995185 0.0980171i \(-0.968750\pi\)
−0.634393 0.773010i \(-0.718750\pi\)
\(564\) −0.195090 1.98079i −0.195090 1.98079i
\(565\) −1.53858 1.26268i −1.53858 1.26268i
\(566\) 0 0
\(567\) 0 0
\(568\) 0 0
\(569\) 0 0 0.980785 0.195090i \(-0.0625000\pi\)
−0.980785 + 0.195090i \(0.937500\pi\)
\(570\) 1.28547 + 0.858923i 1.28547 + 0.858923i
\(571\) 0.902197 + 1.68789i 0.902197 + 1.68789i 0.707107 + 0.707107i \(0.250000\pi\)
0.195090 + 0.980785i \(0.437500\pi\)
\(572\) 0 0
\(573\) 0 0
\(574\) 0 0
\(575\) 1.91388i 1.91388i
\(576\) 1.00000i 1.00000i
\(577\) 0 0 1.00000i \(-0.5\pi\)
1.00000i \(0.5\pi\)
\(578\) 0.0523913 0.0980171i 0.0523913 0.0980171i
\(579\) 0 0
\(580\) 0 0
\(581\) 0 0
\(582\) 0 0
\(583\) 0 0
\(584\) 0 0
\(585\) 0 0
\(586\) 1.96157i 1.96157i
\(587\) −0.858923 0.704900i −0.858923 0.704900i 0.0980171 0.995185i \(-0.468750\pi\)
−0.956940 + 0.290285i \(0.906250\pi\)
\(588\) 0.773010 + 0.634393i 0.773010 + 0.634393i
\(589\) −2.26737 1.21193i −2.26737 1.21193i
\(590\) 0 0
\(591\) −1.70711 + 0.707107i −1.70711 + 0.707107i
\(592\) 0 0
\(593\) 0.536376 + 0.222174i 0.536376 + 0.222174i 0.634393 0.773010i \(-0.281250\pi\)
−0.0980171 + 0.995185i \(0.531250\pi\)
\(594\) 0 0
\(595\) 0 0
\(596\) 0 0
\(597\) −0.181112 1.83886i −0.181112 1.83886i
\(598\) 0 0
\(599\) 0 0 −0.555570 0.831470i \(-0.687500\pi\)
0.555570 + 0.831470i \(0.312500\pi\)
\(600\) 0.195090 + 0.980785i 0.195090 + 0.980785i
\(601\) 1.63099 + 1.08979i 1.63099 + 1.08979i 0.923880 + 0.382683i \(0.125000\pi\)
0.707107 + 0.707107i \(0.250000\pi\)
\(602\) 0 0
\(603\) 0 0
\(604\) 0.750661 1.81225i 0.750661 1.81225i
\(605\) −0.634393 0.773010i −0.634393 0.773010i
\(606\) 0 0
\(607\) 0 0 −0.707107 0.707107i \(-0.750000\pi\)
0.707107 + 0.707107i \(0.250000\pi\)
\(608\) −0.301614 1.51631i −0.301614 1.51631i
\(609\) 0 0
\(610\) −0.804910 0.980785i −0.804910 0.980785i
\(611\) 0 0
\(612\) 0.942793i 0.942793i
\(613\) 0 0 0.290285 0.956940i \(-0.406250\pi\)
−0.290285 + 0.956940i \(0.593750\pi\)
\(614\) 0 0
\(615\) 0 0
\(616\) 0 0
\(617\) 1.65493 1.10579i 1.65493 1.10579i 0.773010 0.634393i \(-0.218750\pi\)
0.881921 0.471397i \(-0.156250\pi\)
\(618\) 0 0
\(619\) −0.195090 + 0.0192147i −0.195090 + 0.0192147i −0.195090 0.980785i \(-0.562500\pi\)
1.00000i \(0.5\pi\)
\(620\) −0.482726 1.59133i −0.482726 1.59133i
\(621\) −0.555570 1.83147i −0.555570 1.83147i
\(622\) 0 0
\(623\) 0 0
\(624\) 0 0
\(625\) −0.382683 0.923880i −0.382683 0.923880i
\(626\) 0 0
\(627\) 0 0
\(628\) 0 0
\(629\) 0 0
\(630\) 0 0
\(631\) 1.38704 + 0.275899i 1.38704 + 0.275899i 0.831470 0.555570i \(-0.187500\pi\)
0.555570 + 0.831470i \(0.312500\pi\)
\(632\) 0.732410 + 0.222174i 0.732410 + 0.222174i
\(633\) −0.0382444 0.192268i −0.0382444 0.192268i
\(634\) −0.149316 0.750661i −0.149316 0.750661i
\(635\) 0 0
\(636\) 0.0761205 0.382683i 0.0761205 0.382683i
\(637\) 0 0
\(638\) 0 0
\(639\) 0 0
\(640\) 0.555570 0.831470i 0.555570 0.831470i
\(641\) 0 0 1.00000 \(0\)
−1.00000 \(\pi\)
\(642\) 1.06330 0.322547i 1.06330 0.322547i
\(643\) 0 0 0.0980171 0.995185i \(-0.468750\pi\)
−0.0980171 + 0.995185i \(0.531250\pi\)
\(644\) 0 0
\(645\) 0 0
\(646\) −0.284359 1.42957i −0.284359 1.42957i
\(647\) 0.301614 + 1.51631i 0.301614 + 1.51631i 0.773010 + 0.634393i \(0.218750\pi\)
−0.471397 + 0.881921i \(0.656250\pi\)
\(648\) 0.471397 + 0.881921i 0.471397 + 0.881921i
\(649\) 0 0
\(650\) 0 0
\(651\) 0 0
\(652\) 0 0
\(653\) 0.523788 0.979938i 0.523788 0.979938i −0.471397 0.881921i \(-0.656250\pi\)
0.995185 0.0980171i \(-0.0312500\pi\)
\(654\) −0.0924099 0.172887i −0.0924099 0.172887i
\(655\) 0 0
\(656\) 0 0
\(657\) 0 0
\(658\) 0 0
\(659\) 0 0 −0.290285 0.956940i \(-0.593750\pi\)
0.290285 + 0.956940i \(0.406250\pi\)
\(660\) 0 0
\(661\) −0.195090 + 0.0192147i −0.195090 + 0.0192147i −0.195090 0.980785i \(-0.562500\pi\)
1.00000i \(0.5\pi\)
\(662\) −0.674993 + 1.62958i −0.674993 + 1.62958i
\(663\) 0 0
\(664\) −1.81225 0.750661i −1.81225 0.750661i
\(665\) 0 0
\(666\) 0 0
\(667\) 0 0
\(668\) 1.76384 1.76384
\(669\) 0 0
\(670\) 0 0
\(671\) 0 0
\(672\) 0 0
\(673\) 0 0 −0.707107 0.707107i \(-0.750000\pi\)
0.707107 + 0.707107i \(0.250000\pi\)
\(674\) 0 0
\(675\) −0.634393 0.773010i −0.634393 0.773010i
\(676\) 0.923880 + 0.382683i 0.923880 + 0.382683i
\(677\) 1.59133 + 0.482726i 1.59133 + 0.482726i 0.956940 0.290285i \(-0.0937500\pi\)
0.634393 + 0.773010i \(0.281250\pi\)
\(678\) −1.10579 1.65493i −1.10579 1.65493i
\(679\) 0 0
\(680\) 0.523788 0.783904i 0.523788 0.783904i
\(681\) −0.216773 0.324423i −0.216773 0.324423i
\(682\) 0 0
\(683\) −0.0750191 0.761681i −0.0750191 0.761681i −0.956940 0.290285i \(-0.906250\pi\)
0.881921 0.471397i \(-0.156250\pi\)
\(684\) 0.980785 + 1.19509i 0.980785 + 1.19509i
\(685\) −0.187593 + 0.0569057i −0.187593 + 0.0569057i
\(686\) 0 0
\(687\) −0.536376 0.222174i −0.536376 0.222174i
\(688\) 0 0
\(689\) 0 0
\(690\) 0.555570 1.83147i 0.555570 1.83147i
\(691\) −1.55557 0.831470i −1.55557 0.831470i −0.555570 0.831470i \(-0.687500\pi\)
−1.00000 \(\pi\)
\(692\) 0.704900 0.858923i 0.704900 0.858923i
\(693\) 0 0
\(694\) 0.765367i 0.765367i
\(695\) 0.113263 0.569414i 0.113263 0.569414i
\(696\) 0 0
\(697\) 0 0
\(698\) 0.858923 1.28547i 0.858923 1.28547i
\(699\) −0.273678 0.512016i −0.273678 0.512016i
\(700\) 0 0
\(701\) 0 0 −0.995185 0.0980171i \(-0.968750\pi\)
0.995185 + 0.0980171i \(0.0312500\pi\)
\(702\) 0 0
\(703\) 0 0
\(704\) 0 0
\(705\) 1.99037i 1.99037i
\(706\) −1.11897 0.598102i −1.11897 0.598102i
\(707\) 0 0
\(708\) 0 0
\(709\) 0.728789 + 1.36347i 0.728789 + 1.36347i 0.923880 + 0.382683i \(0.125000\pi\)
−0.195090 + 0.980785i \(0.562500\pi\)
\(710\) 0 0
\(711\) −0.750661 + 0.149316i −0.750661 + 0.149316i
\(712\) 0 0
\(713\) −0.620908 + 3.12151i −0.620908 + 3.12151i
\(714\) 0 0
\(715\) 0 0
\(716\) 0 0
\(717\) 0 0
\(718\) 0 0
\(719\) 0 0 0.923880 0.382683i \(-0.125000\pi\)
−0.923880 + 0.382683i \(0.875000\pi\)
\(720\) −0.0980171 + 0.995185i −0.0980171 + 0.995185i
\(721\) 0 0
\(722\) 1.07462 + 0.881921i 1.07462 + 0.881921i
\(723\) 1.59133 0.482726i 1.59133 0.482726i
\(724\) −1.75535 0.172887i −1.75535 0.172887i
\(725\) 0 0
\(726\) −0.382683 0.923880i −0.382683 0.923880i
\(727\) 0 0 −0.555570 0.831470i \(-0.687500\pi\)
0.555570 + 0.831470i \(0.312500\pi\)
\(728\) 0 0
\(729\) −0.831470 0.555570i −0.831470 0.555570i
\(730\) 0 0
\(731\) 0 0
\(732\) −0.485544 1.17221i −0.485544 1.17221i
\(733\) 0 0 −0.634393 0.773010i \(-0.718750\pi\)
0.634393 + 0.773010i \(0.281250\pi\)
\(734\) 0 0
\(735\) −0.707107 0.707107i −0.707107 0.707107i
\(736\) −1.68789 + 0.902197i −1.68789 + 0.902197i
\(737\) 0 0
\(738\) 0 0
\(739\) −1.53858 + 1.26268i −1.53858 + 1.26268i −0.707107 + 0.707107i \(0.750000\pi\)
−0.831470 + 0.555570i \(0.812500\pi\)
\(740\) 0 0
\(741\) 0 0
\(742\) 0 0
\(743\) 0.704900 1.05496i 0.704900 1.05496i −0.290285 0.956940i \(-0.593750\pi\)
0.995185 0.0980171i \(-0.0312500\pi\)
\(744\) 1.66294i 1.66294i
\(745\) 0 0
\(746\) 0 0
\(747\) 1.95213 0.192268i 1.95213 0.192268i
\(748\) 0 0
\(749\) 0 0
\(750\) −0.0980171 0.995185i −0.0980171 0.995185i
\(751\) 0.425215 1.02656i 0.425215 1.02656i −0.555570 0.831470i \(-0.687500\pi\)
0.980785 0.195090i \(-0.0625000\pi\)
\(752\) 1.40740 1.40740i 1.40740 1.40740i
\(753\) 0 0
\(754\) 0 0
\(755\) −0.924678 + 1.72995i −0.924678 + 1.72995i
\(756\) 0 0
\(757\) 0 0 0.634393 0.773010i \(-0.281250\pi\)
−0.634393 + 0.773010i \(0.718750\pi\)
\(758\) 1.24723 + 1.24723i 1.24723 + 1.24723i
\(759\) 0 0
\(760\) 0.151537 + 1.53858i 0.151537 + 1.53858i
\(761\) 0 0 −0.195090 0.980785i \(-0.562500\pi\)
0.195090 + 0.980785i \(0.437500\pi\)
\(762\) 0 0
\(763\) 0 0
\(764\) 0 0
\(765\) −0.0924099 + 0.938254i −0.0924099 + 0.938254i
\(766\) 0.368309 + 1.21415i 0.368309 + 1.21415i
\(767\) 0 0
\(768\) 0.773010 0.634393i 0.773010 0.634393i
\(769\) 1.11114 1.11114 0.555570 0.831470i \(-0.312500\pi\)
0.555570 + 0.831470i \(0.312500\pi\)
\(770\) 0 0
\(771\) 0.187593 1.90466i 0.187593 1.90466i
\(772\) 0 0
\(773\) 1.24723 0.666656i 1.24723 0.666656i 0.290285 0.956940i \(-0.406250\pi\)
0.956940 + 0.290285i \(0.0937500\pi\)
\(774\) 0 0
\(775\) 0.324423 + 1.63099i 0.324423 + 1.63099i
\(776\) 0 0
\(777\) 0 0
\(778\) 0 0
\(779\) 0 0
\(780\) 0 0
\(781\) 0 0
\(782\) −1.59133 + 0.850586i −1.59133 + 0.850586i
\(783\) 0 0
\(784\) 1.00000i 1.00000i
\(785\) 0 0
\(786\) 0 0
\(787\) 0 0 −0.290285 0.956940i \(-0.593750\pi\)
0.290285 + 0.956940i \(0.406250\pi\)
\(788\) −1.62958 0.871028i −1.62958 0.871028i
\(789\) 0.938254 0.0924099i 0.938254 0.0924099i
\(790\) −0.707107 0.292893i −0.707107 0.292893i
\(791\) 0 0
\(792\) 0 0
\(793\) 0 0
\(794\) 0 0
\(795\) −0.113263 + 0.373380i −0.113263 + 0.373380i
\(796\) 1.30656 1.30656i 1.30656 1.30656i
\(797\) 0.591637 0.485544i 0.591637 0.485544i −0.290285 0.956940i \(-0.593750\pi\)
0.881921 + 0.471397i \(0.156250\pi\)
\(798\) 0 0
\(799\) 1.32689 1.32689i 1.32689 1.32689i
\(800\) −0.634393 + 0.773010i −0.634393 + 0.773010i
\(801\) 0 0
\(802\) 0 0
\(803\) 0 0
\(804\) 0 0
\(805\) 0 0
\(806\) 0 0
\(807\) 0 0
\(808\) 0 0
\(809\) 0 0 −0.555570 0.831470i \(-0.687500\pi\)
0.555570 + 0.831470i \(0.312500\pi\)
\(810\) −0.382683 0.923880i −0.382683 0.923880i
\(811\) 0.124363 + 1.26268i 0.124363 + 1.26268i 0.831470 + 0.555570i \(0.187500\pi\)
−0.707107 + 0.707107i \(0.750000\pi\)
\(812\) 0 0
\(813\) 1.35332 0.410525i 1.35332 0.410525i
\(814\) 0 0
\(815\) 0 0
\(816\) 0.728789 0.598102i 0.728789 0.598102i
\(817\) 0 0
\(818\) 1.87711 + 0.569414i 1.87711 + 0.569414i
\(819\) 0 0
\(820\) 0 0
\(821\) 0 0 −0.773010 0.634393i \(-0.781250\pi\)
0.773010 + 0.634393i \(0.218750\pi\)
\(822\) −0.196034 −0.196034
\(823\) 0 0 0.195090 0.980785i \(-0.437500\pi\)
−0.195090 + 0.980785i \(0.562500\pi\)
\(824\) 0 0
\(825\) 0 0
\(826\) 0 0
\(827\) 0.360791 + 0.674993i 0.360791 + 0.674993i 0.995185 0.0980171i \(-0.0312500\pi\)
−0.634393 + 0.773010i \(0.718750\pi\)
\(828\) 1.06330 1.59133i 1.06330 1.59133i
\(829\) 0.938254 + 0.0924099i 0.938254 + 0.0924099i 0.555570 0.831470i \(-0.312500\pi\)
0.382683 + 0.923880i \(0.375000\pi\)
\(830\) 1.72995 + 0.924678i 1.72995 + 0.924678i
\(831\) 0 0
\(832\) 0 0
\(833\) 0.942793i 0.942793i
\(834\) 0.273678 0.512016i 0.273678 0.512016i
\(835\) −1.75535 0.172887i −1.75535 0.172887i
\(836\) 0 0
\(837\) 0.783904 + 1.46658i 0.783904 + 1.46658i
\(838\) 0 0
\(839\) 0 0 0.980785 0.195090i \(-0.0625000\pi\)
−0.980785 + 0.195090i \(0.937500\pi\)
\(840\) 0 0
\(841\) 0.195090 0.980785i 0.195090 0.980785i
\(842\) 0.580569i 0.580569i
\(843\) 0 0
\(844\) 0.124363 0.151537i 0.124363 0.151537i
\(845\) −0.881921 0.471397i −0.881921 0.471397i
\(846\) −0.577774 + 1.90466i −0.577774 + 1.90466i
\(847\) 0 0
\(848\) 0.344109 0.183930i 0.344109 0.183930i
\(849\) 0 0
\(850\) −0.598102 + 0.728789i −0.598102 + 0.728789i
\(851\) 0 0
\(852\) 0 0
\(853\) 0 0 −0.0980171 0.995185i \(-0.531250\pi\)
0.0980171 + 0.995185i \(0.468750\pi\)
\(854\) 0 0
\(855\) −0.858923 1.28547i −0.858923 1.28547i
\(856\) 0.923880 + 0.617317i 0.923880 + 0.617317i
\(857\) −1.05496 0.704900i −1.05496 0.704900i −0.0980171 0.995185i \(-0.531250\pi\)
−0.956940 + 0.290285i \(0.906250\pi\)
\(858\) 0 0
\(859\) 1.21415 + 0.368309i 1.21415 + 0.368309i 0.831470 0.555570i \(-0.187500\pi\)
0.382683 + 0.923880i \(0.375000\pi\)
\(860\) 0 0
\(861\) 0 0
\(862\) 0 0
\(863\) 0.410525 + 0.410525i 0.410525 + 0.410525i 0.881921 0.471397i \(-0.156250\pi\)
−0.471397 + 0.881921i \(0.656250\pi\)
\(864\) −0.382683 + 0.923880i −0.382683 + 0.923880i
\(865\) −0.785695 + 0.785695i −0.785695 + 0.785695i
\(866\) 0 0
\(867\) −0.0859127 + 0.0705068i −0.0859127 + 0.0705068i
\(868\) 0 0
\(869\) 0 0
\(870\) 0 0
\(871\) 0 0
\(872\) 0.0750191 0.181112i 0.0750191 0.181112i
\(873\) 0 0
\(874\) 1.13232 2.73367i 1.13232 2.73367i
\(875\) 0 0
\(876\) 0 0
\(877\) 0 0 −0.290285 0.956940i \(-0.593750\pi\)
0.290285 + 0.956940i \(0.406250\pi\)
\(878\) 1.83886 0.181112i 1.83886 0.181112i
\(879\) 0.750661 1.81225i 0.750661 1.81225i
\(880\) 0 0
\(881\) 0 0 −0.382683 0.923880i \(-0.625000\pi\)
0.382683 + 0.923880i \(0.375000\pi\)
\(882\) −0.471397 0.881921i −0.471397 0.881921i
\(883\) 0 0 0.471397 0.881921i \(-0.343750\pi\)
−0.471397 + 0.881921i \(0.656250\pi\)
\(884\) 0 0
\(885\) 0 0
\(886\) −1.17588 + 1.17588i −1.17588 + 1.17588i
\(887\) −0.569414 0.113263i −0.569414 0.113263i −0.0980171 0.995185i \(-0.531250\pi\)
−0.471397 + 0.881921i \(0.656250\pi\)
\(888\) 0 0
\(889\) 0 0
\(890\) 0 0
\(891\) 0 0
\(892\) 0 0
\(893\) −0.301614 + 3.06234i −0.301614 + 3.06234i
\(894\) 0 0
\(895\) 0 0
\(896\) 0 0
\(897\) 0 0
\(898\) 0 0
\(899\) 0 0
\(900\) 0.195090 0.980785i 0.195090 0.980785i
\(901\) 0.324423 0.173408i 0.324423 0.173408i
\(902\) 0 0
\(903\) 0 0
\(904\) 0.577774 1.90466i 0.577774 1.90466i
\(905\) 1.72995 + 0.344109i 1.72995 + 0.344109i
\(906\) −1.38704 + 1.38704i −1.38704 + 1.38704i
\(907\) 0 0 0.634393 0.773010i \(-0.281250\pi\)
−0.634393 + 0.773010i \(0.718750\pi\)
\(908\) 0.113263 0.373380i 0.113263 0.373380i
\(909\) 0 0
\(910\) 0 0
\(911\) 0 0 −0.382683 0.923880i \(-0.625000\pi\)
0.382683 + 0.923880i \(0.375000\pi\)
\(912\) −0.301614 + 1.51631i −0.301614 + 1.51631i
\(913\) 0 0
\(914\) 0 0
\(915\) 0.368309 + 1.21415i 0.368309 + 1.21415i
\(916\) −0.168530 0.555570i −0.168530 0.555570i
\(917\) 0 0
\(918\) −0.360791 + 0.871028i −0.360791 + 0.871028i
\(919\) −0.324423 + 0.216773i −0.324423 + 0.216773i −0.707107 0.707107i \(-0.750000\pi\)
0.382683 + 0.923880i \(0.375000\pi\)
\(920\) 1.76820 0.732410i 1.76820 0.732410i
\(921\) 0 0
\(922\) 0 0
\(923\) 0 0
\(924\) 0 0
\(925\) 0 0
\(926\) 0 0
\(927\) 0 0
\(928\) 0 0
\(929\) 0 0 −0.707107 0.707107i \(-0.750000\pi\)
0.707107 + 0.707107i \(0.250000\pi\)
\(930\) −0.162997 + 1.65493i −0.162997 + 1.65493i
\(931\) −0.980785 1.19509i −0.980785 1.19509i
\(932\) 0.222174 0.536376i 0.222174 0.536376i
\(933\) 0 0
\(934\) −1.02656 1.53636i −1.02656 1.53636i
\(935\) 0 0
\(936\) 0 0
\(937\) 0 0 −0.555570 0.831470i \(-0.687500\pi\)
0.555570 + 0.831470i \(0.312500\pi\)
\(938\) 0 0
\(939\) 0 0
\(940\) −1.53858 + 1.26268i −1.53858 + 1.26268i
\(941\) 0 0 0.956940 0.290285i \(-0.0937500\pi\)
−0.956940 + 0.290285i \(0.906250\pi\)
\(942\) 0 0
\(943\) 0 0
\(944\) 0 0
\(945\) 0 0
\(946\) 0 0
\(947\) −1.72995 0.924678i −1.72995 0.924678i −0.956940 0.290285i \(-0.906250\pi\)
−0.773010 0.634393i \(-0.781250\pi\)
\(948\) −0.591637 0.485544i −0.591637 0.485544i
\(949\) 0 0
\(950\) 1.54602i 1.54602i
\(951\) −0.149316 + 0.750661i −0.149316 + 0.750661i
\(952\) 0 0
\(953\) −1.72995 + 0.344109i −1.72995 + 0.344109i −0.956940 0.290285i \(-0.906250\pi\)
−0.773010 + 0.634393i \(0.781250\pi\)
\(954\) −0.216773 + 0.324423i −0.216773 + 0.324423i
\(955\) 0 0
\(956\) 0 0
\(957\) 0 0
\(958\) 0 0
\(959\) 0 0
\(960\) −0.831470 + 0.555570i −0.831470 + 0.555570i
\(961\) 1.76537i 1.76537i
\(962\) 0 0
\(963\) −1.10579 0.108911i −1.10579 0.108911i
\(964\) 1.38268 + 0.923880i 1.38268 + 0.923880i
\(965\) 0 0
\(966\) 0 0
\(967\) 0 0 0.980785 0.195090i \(-0.0625000\pi\)
−0.980785 + 0.195090i \(0.937500\pi\)
\(968\) 0.471397 0.881921i 0.471397 0.881921i
\(969\) −0.284359 + 1.42957i −0.284359 + 1.42957i
\(970\) 0 0
\(971\) 0 0 −0.773010 0.634393i \(-0.781250\pi\)
0.773010 + 0.634393i \(0.218750\pi\)
\(972\) −0.0980171 0.995185i −0.0980171 0.995185i
\(973\) 0 0
\(974\) 0 0
\(975\) 0 0
\(976\) 0.598102 1.11897i 0.598102 1.11897i
\(977\) 1.76820 + 0.732410i 1.76820 + 0.732410i 0.995185 + 0.0980171i \(0.0312500\pi\)
0.773010 + 0.634393i \(0.218750\pi\)
\(978\) 0 0
\(979\) 0 0
\(980\) 0.0980171 0.995185i 0.0980171 0.995185i
\(981\) 0.0192147 + 0.195090i 0.0192147 + 0.195090i
\(982\) 0 0
\(983\) −0.523788 0.783904i −0.523788 0.783904i 0.471397 0.881921i \(-0.343750\pi\)
−0.995185 + 0.0980171i \(0.968750\pi\)
\(984\) 0 0
\(985\) 1.53636 + 1.02656i 1.53636 + 1.02656i
\(986\) 0 0
\(987\) 0 0
\(988\) 0 0
\(989\) 0 0
\(990\) 0 0
\(991\) 1.00000 + 1.00000i 1.00000 + 1.00000i 1.00000 \(0\)
1.00000i \(0.5\pi\)
\(992\) 1.28547 1.05496i 1.28547 1.05496i
\(993\) 1.24723 1.24723i 1.24723 1.24723i
\(994\) 0 0
\(995\) −1.42834 + 1.17221i −1.42834 + 1.17221i
\(996\) 1.38704 + 1.38704i 1.38704 + 1.38704i
\(997\) 0 0 0.290285 0.956940i \(-0.406250\pi\)
−0.290285 + 0.956940i \(0.593750\pi\)
\(998\) −0.569414 0.113263i −0.569414 0.113263i
\(999\) 0 0
Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))

Twists

       By twisting character
Char Parity Ord Type Twist Min Dim
1.1 even 1 trivial 1920.1.db.a.29.1 32
3.2 odd 2 inner 1920.1.db.a.29.2 yes 32
5.4 even 2 inner 1920.1.db.a.29.2 yes 32
15.14 odd 2 CM 1920.1.db.a.29.1 32
128.53 even 32 inner 1920.1.db.a.1589.1 yes 32
384.53 odd 32 inner 1920.1.db.a.1589.2 yes 32
640.309 even 32 inner 1920.1.db.a.1589.2 yes 32
1920.1589 odd 32 inner 1920.1.db.a.1589.1 yes 32
    
        By twisted newform
Twist Min Dim Char Parity Ord Type
1920.1.db.a.29.1 32 1.1 even 1 trivial
1920.1.db.a.29.1 32 15.14 odd 2 CM
1920.1.db.a.29.2 yes 32 3.2 odd 2 inner
1920.1.db.a.29.2 yes 32 5.4 even 2 inner
1920.1.db.a.1589.1 yes 32 128.53 even 32 inner
1920.1.db.a.1589.1 yes 32 1920.1589 odd 32 inner
1920.1.db.a.1589.2 yes 32 384.53 odd 32 inner
1920.1.db.a.1589.2 yes 32 640.309 even 32 inner