gp: [N,k,chi] = [1920,1,Mod(449,1920)]
mf = mfinit([N,k,chi],0)
lf = mfeigenbasis(mf)
sage: from sage.modular.dirichlet import DirichletCharacter
H = DirichletGroup(1920, base_ring=CyclotomicField(2))
chi = DirichletCharacter(H, H._module([0, 1, 1, 1]))
N = Newforms(chi, 1, names="a")
magma: //Please install CHIMP (https://github.com/edgarcosta/CHIMP) if you want to run this code
chi := DirichletCharacter("1920.449");
S:= CuspForms(chi, 1);
N := Newforms(S);
Newform invariants
sage: traces = [1,0,1,0,1]
f = next(g for g in N if [g.coefficient(i+1).trace() for i in range(5)] == traces)
gp: f = lf[1] \\ Warning: the index may be different
sage: f.q_expansion() # note that sage often uses an isomorphic number field
gp: mfcoefs(f, 20)
Character values
We give the values of χ \chi χ on generators for ( Z / 1920 Z ) × \left(\mathbb{Z}/1920\mathbb{Z}\right)^\times ( Z / 1 9 2 0 Z ) × .
n n n
511 511 5 1 1
641 641 6 4 1
901 901 9 0 1
1537 1537 1 5 3 7
χ ( n ) \chi(n) χ ( n )
1 1 1
− 1 -1 − 1
− 1 -1 − 1
− 1 -1 − 1
For each embedding ι m \iota_m ι m of the coefficient field, the values ι m ( a n ) \iota_m(a_n) ι m ( a n ) are shown below.
For more information on an embedded modular form you can click on its label.
gp: mfembed(f)
Refresh table
This newform subspace can be constructed as the intersection of the kernels of the following linear operators acting on S 1 n e w ( 1920 , [ χ ] ) S_{1}^{\mathrm{new}}(1920, [\chi]) S 1 n e w ( 1 9 2 0 , [ χ ] ) :
T 7 T_{7} T 7
T7
T 23 + 2 T_{23} + 2 T 2 3 + 2
T23 + 2
T 29 + 2 T_{29} + 2 T 2 9 + 2
T29 + 2
p p p
F p ( T ) F_p(T) F p ( T )
2 2 2
T T T
T
3 3 3
T − 1 T - 1 T − 1
T - 1
5 5 5
T − 1 T - 1 T − 1
T - 1
7 7 7
T T T
T
11 11 1 1
T T T
T
13 13 1 3
T T T
T
17 17 1 7
T T T
T
19 19 1 9
T T T
T
23 23 2 3
T + 2 T + 2 T + 2
T + 2
29 29 2 9
T + 2 T + 2 T + 2
T + 2
31 31 3 1
T T T
T
37 37 3 7
T T T
T
41 41 4 1
T T T
T
43 43 4 3
T + 2 T + 2 T + 2
T + 2
47 47 4 7
T − 2 T - 2 T − 2
T - 2
53 53 5 3
T T T
T
59 59 5 9
T T T
T
61 61 6 1
T T T
T
67 67 6 7
T + 2 T + 2 T + 2
T + 2
71 71 7 1
T T T
T
73 73 7 3
T T T
T
79 79 7 9
T T T
T
83 83 8 3
T T T
T
89 89 8 9
T T T
T
97 97 9 7
T T T
T
show more
show less