Properties

Label 1920.2.b.e.191.6
Level $1920$
Weight $2$
Character 1920.191
Analytic conductor $15.331$
Analytic rank $0$
Dimension $8$
Inner twists $4$

Related objects

Downloads

Learn more

Show commands: Magma / PariGP / SageMath

Newspace parameters

comment: Compute space of new eigenforms
 
[N,k,chi] = [1920,2,Mod(191,1920)]
 
mf = mfinit([N,k,chi],0)
 
lf = mfeigenbasis(mf)
 
from sage.modular.dirichlet import DirichletCharacter
 
H = DirichletGroup(1920, base_ring=CyclotomicField(2))
 
chi = DirichletCharacter(H, H._module([1, 1, 1, 0]))
 
N = Newforms(chi, 2, names="a")
 
//Please install CHIMP (https://github.com/edgarcosta/CHIMP) if you want to run this code
 
chi := DirichletCharacter("1920.191");
 
S:= CuspForms(chi, 2);
 
N := Newforms(S);
 
Level: \( N \) \(=\) \( 1920 = 2^{7} \cdot 3 \cdot 5 \)
Weight: \( k \) \(=\) \( 2 \)
Character orbit: \([\chi]\) \(=\) 1920.b (of order \(2\), degree \(1\), minimal)

Newform invariants

comment: select newform
 
sage: f = N[0] # Warning: the index may be different
 
gp: f = lf[1] \\ Warning: the index may be different
 
Self dual: no
Analytic conductor: \(15.3312771881\)
Analytic rank: \(0\)
Dimension: \(8\)
Coefficient field: 8.0.10070523904.11
comment: defining polynomial
 
gp: f.mod \\ as an extension of the character field
 
Defining polynomial: \( x^{8} - 10x^{4} + 81 \) Copy content Toggle raw display
Coefficient ring: \(\Z[a_1, \ldots, a_{7}]\)
Coefficient ring index: \( 2^{5}\cdot 3 \)
Twist minimal: yes
Sato-Tate group: $\mathrm{SU}(2)[C_{2}]$

Embedding invariants

Embedding label 191.6
Root \(-0.420861 - 1.68014i\) of defining polynomial
Character \(\chi\) \(=\) 1920.191
Dual form 1920.2.b.e.191.5

$q$-expansion

comment: q-expansion
 
sage: f.q_expansion() # note that sage often uses an isomorphic number field
 
gp: mfcoefs(f, 20)
 
\(f(q)\) \(=\) \(q+(0.420861 + 1.68014i) q^{3} +1.00000 q^{5} -2.16991i q^{7} +(-2.64575 + 1.41421i) q^{9} -5.15587i q^{13} +(0.420861 + 1.68014i) q^{15} +2.32744i q^{17} +3.06871 q^{19} +(3.64575 - 0.913230i) q^{21} +5.59388 q^{23} +1.00000 q^{25} +(-3.48957 - 3.85005i) q^{27} -1.29150 q^{29} +7.91094i q^{31} -2.16991i q^{35} -5.15587i q^{37} +(8.66259 - 2.16991i) q^{39} -7.48331i q^{41} +8.66259 q^{43} +(-2.64575 + 1.41421i) q^{45} +11.7313 q^{47} +2.29150 q^{49} +(-3.91044 + 0.979531i) q^{51} +8.58301 q^{53} +(1.29150 + 5.15587i) q^{57} +4.33981i q^{59} -8.48528i q^{61} +(3.06871 + 5.74103i) q^{63} -5.15587i q^{65} -8.66259 q^{67} +(2.35425 + 9.39851i) q^{69} +11.1878 q^{71} -2.00000 q^{73} +(0.420861 + 1.68014i) q^{75} +3.57113i q^{79} +(5.00000 - 7.48331i) q^{81} +5.74103i q^{83} +2.32744i q^{85} +(-0.543544 - 2.16991i) q^{87} -1.00197i q^{89} -11.1878 q^{91} +(-13.2915 + 3.32941i) q^{93} +3.06871 q^{95} -16.5830 q^{97} +O(q^{100})\)
\(\operatorname{Tr}(f)(q)\) \(=\) \( 8 q + 8 q^{5} + 8 q^{21} + 8 q^{25} + 32 q^{29} - 24 q^{49} - 16 q^{53} - 32 q^{57} + 40 q^{69} - 16 q^{73} + 40 q^{81} - 64 q^{93} - 48 q^{97}+O(q^{100}) \) Copy content Toggle raw display

Character values

We give the values of \(\chi\) on generators for \(\left(\mathbb{Z}/1920\mathbb{Z}\right)^\times\).

\(n\) \(511\) \(641\) \(901\) \(1537\)
\(\chi(n)\) \(-1\) \(-1\) \(-1\) \(1\)

Coefficient data

For each \(n\) we display the coefficients of the \(q\)-expansion \(a_n\), the Satake parameters \(\alpha_p\), and the Satake angles \(\theta_p = \textrm{Arg}(\alpha_p)\).



Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))
Significant digits:
\(n\) \(a_n\) \(a_n / n^{(k-1)/2}\) \( \alpha_n \) \( \theta_n \)
\(p\) \(a_p\) \(a_p / p^{(k-1)/2}\) \( \alpha_p\) \( \theta_p \)
\(2\) 0 0
\(3\) 0.420861 + 1.68014i 0.242984 + 0.970030i
\(4\) 0 0
\(5\) 1.00000 0.447214
\(6\) 0 0
\(7\) 2.16991i 0.820148i −0.912052 0.410074i \(-0.865503\pi\)
0.912052 0.410074i \(-0.134497\pi\)
\(8\) 0 0
\(9\) −2.64575 + 1.41421i −0.881917 + 0.471405i
\(10\) 0 0
\(11\) 0 0 1.00000 \(0\)
−1.00000 \(\pi\)
\(12\) 0 0
\(13\) 5.15587i 1.42998i −0.699134 0.714991i \(-0.746431\pi\)
0.699134 0.714991i \(-0.253569\pi\)
\(14\) 0 0
\(15\) 0.420861 + 1.68014i 0.108666 + 0.433811i
\(16\) 0 0
\(17\) 2.32744i 0.564488i 0.959343 + 0.282244i \(0.0910788\pi\)
−0.959343 + 0.282244i \(0.908921\pi\)
\(18\) 0 0
\(19\) 3.06871 0.704011 0.352005 0.935998i \(-0.385500\pi\)
0.352005 + 0.935998i \(0.385500\pi\)
\(20\) 0 0
\(21\) 3.64575 0.913230i 0.795568 0.199283i
\(22\) 0 0
\(23\) 5.59388 1.16640 0.583202 0.812327i \(-0.301799\pi\)
0.583202 + 0.812327i \(0.301799\pi\)
\(24\) 0 0
\(25\) 1.00000 0.200000
\(26\) 0 0
\(27\) −3.48957 3.85005i −0.671569 0.740942i
\(28\) 0 0
\(29\) −1.29150 −0.239826 −0.119913 0.992784i \(-0.538262\pi\)
−0.119913 + 0.992784i \(0.538262\pi\)
\(30\) 0 0
\(31\) 7.91094i 1.42085i 0.703774 + 0.710424i \(0.251497\pi\)
−0.703774 + 0.710424i \(0.748503\pi\)
\(32\) 0 0
\(33\) 0 0
\(34\) 0 0
\(35\) 2.16991i 0.366781i
\(36\) 0 0
\(37\) 5.15587i 0.847620i −0.905751 0.423810i \(-0.860692\pi\)
0.905751 0.423810i \(-0.139308\pi\)
\(38\) 0 0
\(39\) 8.66259 2.16991i 1.38713 0.347463i
\(40\) 0 0
\(41\) 7.48331i 1.16870i −0.811503 0.584349i \(-0.801350\pi\)
0.811503 0.584349i \(-0.198650\pi\)
\(42\) 0 0
\(43\) 8.66259 1.32103 0.660517 0.750812i \(-0.270337\pi\)
0.660517 + 0.750812i \(0.270337\pi\)
\(44\) 0 0
\(45\) −2.64575 + 1.41421i −0.394405 + 0.210819i
\(46\) 0 0
\(47\) 11.7313 1.71119 0.855593 0.517649i \(-0.173193\pi\)
0.855593 + 0.517649i \(0.173193\pi\)
\(48\) 0 0
\(49\) 2.29150 0.327358
\(50\) 0 0
\(51\) −3.91044 + 0.979531i −0.547570 + 0.137162i
\(52\) 0 0
\(53\) 8.58301 1.17897 0.589483 0.807781i \(-0.299331\pi\)
0.589483 + 0.807781i \(0.299331\pi\)
\(54\) 0 0
\(55\) 0 0
\(56\) 0 0
\(57\) 1.29150 + 5.15587i 0.171064 + 0.682912i
\(58\) 0 0
\(59\) 4.33981i 0.564996i 0.959268 + 0.282498i \(0.0911630\pi\)
−0.959268 + 0.282498i \(0.908837\pi\)
\(60\) 0 0
\(61\) 8.48528i 1.08643i −0.839594 0.543214i \(-0.817207\pi\)
0.839594 0.543214i \(-0.182793\pi\)
\(62\) 0 0
\(63\) 3.06871 + 5.74103i 0.386621 + 0.723302i
\(64\) 0 0
\(65\) 5.15587i 0.639507i
\(66\) 0 0
\(67\) −8.66259 −1.05830 −0.529152 0.848527i \(-0.677490\pi\)
−0.529152 + 0.848527i \(0.677490\pi\)
\(68\) 0 0
\(69\) 2.35425 + 9.39851i 0.283418 + 1.13145i
\(70\) 0 0
\(71\) 11.1878 1.32774 0.663872 0.747847i \(-0.268912\pi\)
0.663872 + 0.747847i \(0.268912\pi\)
\(72\) 0 0
\(73\) −2.00000 −0.234082 −0.117041 0.993127i \(-0.537341\pi\)
−0.117041 + 0.993127i \(0.537341\pi\)
\(74\) 0 0
\(75\) 0.420861 + 1.68014i 0.0485969 + 0.194006i
\(76\) 0 0
\(77\) 0 0
\(78\) 0 0
\(79\) 3.57113i 0.401783i 0.979613 + 0.200892i \(0.0643839\pi\)
−0.979613 + 0.200892i \(0.935616\pi\)
\(80\) 0 0
\(81\) 5.00000 7.48331i 0.555556 0.831479i
\(82\) 0 0
\(83\) 5.74103i 0.630160i 0.949065 + 0.315080i \(0.102031\pi\)
−0.949065 + 0.315080i \(0.897969\pi\)
\(84\) 0 0
\(85\) 2.32744i 0.252447i
\(86\) 0 0
\(87\) −0.543544 2.16991i −0.0582740 0.232638i
\(88\) 0 0
\(89\) 1.00197i 0.106208i −0.998589 0.0531041i \(-0.983088\pi\)
0.998589 0.0531041i \(-0.0169115\pi\)
\(90\) 0 0
\(91\) −11.1878 −1.17280
\(92\) 0 0
\(93\) −13.2915 + 3.32941i −1.37826 + 0.345244i
\(94\) 0 0
\(95\) 3.06871 0.314843
\(96\) 0 0
\(97\) −16.5830 −1.68375 −0.841875 0.539673i \(-0.818548\pi\)
−0.841875 + 0.539673i \(0.818548\pi\)
\(98\) 0 0
\(99\) 0 0
\(100\) 0 0
\(101\) −13.2915 −1.32255 −0.661277 0.750142i \(-0.729985\pi\)
−0.661277 + 0.750142i \(0.729985\pi\)
\(102\) 0 0
\(103\) 6.50972i 0.641422i −0.947177 0.320711i \(-0.896078\pi\)
0.947177 0.320711i \(-0.103922\pi\)
\(104\) 0 0
\(105\) 3.64575 0.913230i 0.355789 0.0891221i
\(106\) 0 0
\(107\) 5.74103i 0.555007i −0.960725 0.277503i \(-0.910493\pi\)
0.960725 0.277503i \(-0.0895070\pi\)
\(108\) 0 0
\(109\) 1.82646i 0.174943i 0.996167 + 0.0874716i \(0.0278787\pi\)
−0.996167 + 0.0874716i \(0.972121\pi\)
\(110\) 0 0
\(111\) 8.66259 2.16991i 0.822217 0.205958i
\(112\) 0 0
\(113\) 7.98430i 0.751100i 0.926802 + 0.375550i \(0.122546\pi\)
−0.926802 + 0.375550i \(0.877454\pi\)
\(114\) 0 0
\(115\) 5.59388 0.521632
\(116\) 0 0
\(117\) 7.29150 + 13.6412i 0.674100 + 1.26112i
\(118\) 0 0
\(119\) 5.05034 0.462964
\(120\) 0 0
\(121\) 11.0000 1.00000
\(122\) 0 0
\(123\) 12.5730 3.14944i 1.13367 0.283975i
\(124\) 0 0
\(125\) 1.00000 0.0894427
\(126\) 0 0
\(127\) 17.9918i 1.59651i 0.602317 + 0.798257i \(0.294244\pi\)
−0.602317 + 0.798257i \(0.705756\pi\)
\(128\) 0 0
\(129\) 3.64575 + 14.5544i 0.320991 + 1.28144i
\(130\) 0 0
\(131\) 15.8219i 1.38236i −0.722681 0.691182i \(-0.757090\pi\)
0.722681 0.691182i \(-0.242910\pi\)
\(132\) 0 0
\(133\) 6.65882i 0.577393i
\(134\) 0 0
\(135\) −3.48957 3.85005i −0.300335 0.331359i
\(136\) 0 0
\(137\) 18.2960i 1.56314i 0.623820 + 0.781568i \(0.285580\pi\)
−0.623820 + 0.781568i \(0.714420\pi\)
\(138\) 0 0
\(139\) −9.20614 −0.780854 −0.390427 0.920634i \(-0.627673\pi\)
−0.390427 + 0.920634i \(0.627673\pi\)
\(140\) 0 0
\(141\) 4.93725 + 19.7103i 0.415792 + 1.65990i
\(142\) 0 0
\(143\) 0 0
\(144\) 0 0
\(145\) −1.29150 −0.107253
\(146\) 0 0
\(147\) 0.964405 + 3.85005i 0.0795428 + 0.317547i
\(148\) 0 0
\(149\) −6.00000 −0.491539 −0.245770 0.969328i \(-0.579041\pi\)
−0.245770 + 0.969328i \(0.579041\pi\)
\(150\) 0 0
\(151\) 16.5906i 1.35012i −0.737762 0.675061i \(-0.764117\pi\)
0.737762 0.675061i \(-0.235883\pi\)
\(152\) 0 0
\(153\) −3.29150 6.15784i −0.266102 0.497832i
\(154\) 0 0
\(155\) 7.91094i 0.635422i
\(156\) 0 0
\(157\) 1.50295i 0.119948i −0.998200 0.0599742i \(-0.980898\pi\)
0.998200 0.0599742i \(-0.0191019\pi\)
\(158\) 0 0
\(159\) 3.61226 + 14.4207i 0.286471 + 1.14363i
\(160\) 0 0
\(161\) 12.1382i 0.956624i
\(162\) 0 0
\(163\) 19.8504 1.55480 0.777400 0.629007i \(-0.216538\pi\)
0.777400 + 0.629007i \(0.216538\pi\)
\(164\) 0 0
\(165\) 0 0
\(166\) 0 0
\(167\) 11.7313 0.907796 0.453898 0.891054i \(-0.350033\pi\)
0.453898 + 0.891054i \(0.350033\pi\)
\(168\) 0 0
\(169\) −13.5830 −1.04485
\(170\) 0 0
\(171\) −8.11905 + 4.33981i −0.620879 + 0.331874i
\(172\) 0 0
\(173\) 6.00000 0.456172 0.228086 0.973641i \(-0.426753\pi\)
0.228086 + 0.973641i \(0.426753\pi\)
\(174\) 0 0
\(175\) 2.16991i 0.164030i
\(176\) 0 0
\(177\) −7.29150 + 1.82646i −0.548063 + 0.137285i
\(178\) 0 0
\(179\) 4.33981i 0.324373i −0.986760 0.162186i \(-0.948145\pi\)
0.986760 0.162186i \(-0.0518546\pi\)
\(180\) 0 0
\(181\) 0 0 1.00000 \(0\)
−1.00000 \(\pi\)
\(182\) 0 0
\(183\) 14.2565 3.57113i 1.05387 0.263985i
\(184\) 0 0
\(185\) 5.15587i 0.379067i
\(186\) 0 0
\(187\) 0 0
\(188\) 0 0
\(189\) −8.35425 + 7.57205i −0.607682 + 0.550786i
\(190\) 0 0
\(191\) −5.05034 −0.365430 −0.182715 0.983166i \(-0.558488\pi\)
−0.182715 + 0.983166i \(0.558488\pi\)
\(192\) 0 0
\(193\) 12.5830 0.905745 0.452872 0.891575i \(-0.350399\pi\)
0.452872 + 0.891575i \(0.350399\pi\)
\(194\) 0 0
\(195\) 8.66259 2.16991i 0.620341 0.155390i
\(196\) 0 0
\(197\) −20.5830 −1.46648 −0.733239 0.679971i \(-0.761992\pi\)
−0.733239 + 0.679971i \(0.761992\pi\)
\(198\) 0 0
\(199\) 3.57113i 0.253151i −0.991957 0.126575i \(-0.959601\pi\)
0.991957 0.126575i \(-0.0403985\pi\)
\(200\) 0 0
\(201\) −3.64575 14.5544i −0.257151 1.02659i
\(202\) 0 0
\(203\) 2.80244i 0.196693i
\(204\) 0 0
\(205\) 7.48331i 0.522657i
\(206\) 0 0
\(207\) −14.8000 + 7.91094i −1.02867 + 0.549848i
\(208\) 0 0
\(209\) 0 0
\(210\) 0 0
\(211\) −26.5313 −1.82649 −0.913246 0.407409i \(-0.866432\pi\)
−0.913246 + 0.407409i \(0.866432\pi\)
\(212\) 0 0
\(213\) 4.70850 + 18.7970i 0.322621 + 1.28795i
\(214\) 0 0
\(215\) 8.66259 0.590784
\(216\) 0 0
\(217\) 17.1660 1.16530
\(218\) 0 0
\(219\) −0.841723 3.36028i −0.0568784 0.227067i
\(220\) 0 0
\(221\) 12.0000 0.807207
\(222\) 0 0
\(223\) 26.6714i 1.78605i 0.450007 + 0.893025i \(0.351422\pi\)
−0.450007 + 0.893025i \(0.648578\pi\)
\(224\) 0 0
\(225\) −2.64575 + 1.41421i −0.176383 + 0.0942809i
\(226\) 0 0
\(227\) 18.7605i 1.24518i 0.782550 + 0.622588i \(0.213919\pi\)
−0.782550 + 0.622588i \(0.786081\pi\)
\(228\) 0 0
\(229\) 27.2823i 1.80287i −0.432919 0.901433i \(-0.642516\pi\)
0.432919 0.901433i \(-0.357484\pi\)
\(230\) 0 0
\(231\) 0 0
\(232\) 0 0
\(233\) 8.98626i 0.588710i 0.955696 + 0.294355i \(0.0951048\pi\)
−0.955696 + 0.294355i \(0.904895\pi\)
\(234\) 0 0
\(235\) 11.7313 0.765266
\(236\) 0 0
\(237\) −6.00000 + 1.50295i −0.389742 + 0.0976271i
\(238\) 0 0
\(239\) −6.13742 −0.396997 −0.198498 0.980101i \(-0.563606\pi\)
−0.198498 + 0.980101i \(0.563606\pi\)
\(240\) 0 0
\(241\) 5.29150 0.340856 0.170428 0.985370i \(-0.445485\pi\)
0.170428 + 0.985370i \(0.445485\pi\)
\(242\) 0 0
\(243\) 14.6773 + 5.25127i 0.941551 + 0.336869i
\(244\) 0 0
\(245\) 2.29150 0.146399
\(246\) 0 0
\(247\) 15.8219i 1.00672i
\(248\) 0 0
\(249\) −9.64575 + 2.41618i −0.611275 + 0.153119i
\(250\) 0 0
\(251\) 17.3593i 1.09571i 0.836574 + 0.547853i \(0.184555\pi\)
−0.836574 + 0.547853i \(0.815445\pi\)
\(252\) 0 0
\(253\) 0 0
\(254\) 0 0
\(255\) −3.91044 + 0.979531i −0.244881 + 0.0613406i
\(256\) 0 0
\(257\) 1.32548i 0.0826810i 0.999145 + 0.0413405i \(0.0131628\pi\)
−0.999145 + 0.0413405i \(0.986837\pi\)
\(258\) 0 0
\(259\) −11.1878 −0.695174
\(260\) 0 0
\(261\) 3.41699 1.82646i 0.211507 0.113055i
\(262\) 0 0
\(263\) −17.8687 −1.10183 −0.550917 0.834560i \(-0.685722\pi\)
−0.550917 + 0.834560i \(0.685722\pi\)
\(264\) 0 0
\(265\) 8.58301 0.527250
\(266\) 0 0
\(267\) 1.68345 0.421689i 0.103025 0.0258070i
\(268\) 0 0
\(269\) 23.1660 1.41246 0.706228 0.707984i \(-0.250395\pi\)
0.706228 + 0.707984i \(0.250395\pi\)
\(270\) 0 0
\(271\) 0.768687i 0.0466944i 0.999727 + 0.0233472i \(0.00743232\pi\)
−0.999727 + 0.0233472i \(0.992568\pi\)
\(272\) 0 0
\(273\) −4.70850 18.7970i −0.284971 1.13765i
\(274\) 0 0
\(275\) 0 0
\(276\) 0 0
\(277\) 22.1264i 1.32945i −0.747089 0.664724i \(-0.768549\pi\)
0.747089 0.664724i \(-0.231451\pi\)
\(278\) 0 0
\(279\) −11.1878 20.9304i −0.669794 1.25307i
\(280\) 0 0
\(281\) 3.83039i 0.228502i 0.993452 + 0.114251i \(0.0364468\pi\)
−0.993452 + 0.114251i \(0.963553\pi\)
\(282\) 0 0
\(283\) 24.9007 1.48019 0.740096 0.672501i \(-0.234780\pi\)
0.740096 + 0.672501i \(0.234780\pi\)
\(284\) 0 0
\(285\) 1.29150 + 5.15587i 0.0765020 + 0.305407i
\(286\) 0 0
\(287\) −16.2381 −0.958505
\(288\) 0 0
\(289\) 11.5830 0.681353
\(290\) 0 0
\(291\) −6.97915 27.8618i −0.409125 1.63329i
\(292\) 0 0
\(293\) −23.1660 −1.35337 −0.676686 0.736271i \(-0.736585\pi\)
−0.676686 + 0.736271i \(0.736585\pi\)
\(294\) 0 0
\(295\) 4.33981i 0.252674i
\(296\) 0 0
\(297\) 0 0
\(298\) 0 0
\(299\) 28.8413i 1.66794i
\(300\) 0 0
\(301\) 18.7970i 1.08344i
\(302\) 0 0
\(303\) −5.59388 22.3316i −0.321360 1.28292i
\(304\) 0 0
\(305\) 8.48528i 0.485866i
\(306\) 0 0
\(307\) −7.57551 −0.432357 −0.216178 0.976354i \(-0.569359\pi\)
−0.216178 + 0.976354i \(0.569359\pi\)
\(308\) 0 0
\(309\) 10.9373 2.73969i 0.622199 0.155856i
\(310\) 0 0
\(311\) −23.4626 −1.33044 −0.665221 0.746646i \(-0.731663\pi\)
−0.665221 + 0.746646i \(0.731663\pi\)
\(312\) 0 0
\(313\) −27.1660 −1.53551 −0.767757 0.640741i \(-0.778627\pi\)
−0.767757 + 0.640741i \(0.778627\pi\)
\(314\) 0 0
\(315\) 3.06871 + 5.74103i 0.172902 + 0.323471i
\(316\) 0 0
\(317\) 32.5830 1.83004 0.915022 0.403404i \(-0.132173\pi\)
0.915022 + 0.403404i \(0.132173\pi\)
\(318\) 0 0
\(319\) 0 0
\(320\) 0 0
\(321\) 9.64575 2.41618i 0.538373 0.134858i
\(322\) 0 0
\(323\) 7.14226i 0.397406i
\(324\) 0 0
\(325\) 5.15587i 0.285996i
\(326\) 0 0
\(327\) −3.06871 + 0.768687i −0.169700 + 0.0425085i
\(328\) 0 0
\(329\) 25.4558i 1.40343i
\(330\) 0 0
\(331\) −30.4946 −1.67613 −0.838067 0.545568i \(-0.816314\pi\)
−0.838067 + 0.545568i \(0.816314\pi\)
\(332\) 0 0
\(333\) 7.29150 + 13.6412i 0.399572 + 0.747531i
\(334\) 0 0
\(335\) −8.66259 −0.473288
\(336\) 0 0
\(337\) −12.5830 −0.685440 −0.342720 0.939438i \(-0.611348\pi\)
−0.342720 + 0.939438i \(0.611348\pi\)
\(338\) 0 0
\(339\) −13.4148 + 3.36028i −0.728589 + 0.182506i
\(340\) 0 0
\(341\) 0 0
\(342\) 0 0
\(343\) 20.1617i 1.08863i
\(344\) 0 0
\(345\) 2.35425 + 9.39851i 0.126748 + 0.505999i
\(346\) 0 0
\(347\) 30.2425i 1.62351i −0.584002 0.811753i \(-0.698514\pi\)
0.584002 0.811753i \(-0.301486\pi\)
\(348\) 0 0
\(349\) 30.9352i 1.65592i −0.560784 0.827962i \(-0.689500\pi\)
0.560784 0.827962i \(-0.310500\pi\)
\(350\) 0 0
\(351\) −19.8504 + 17.9918i −1.05953 + 0.960331i
\(352\) 0 0
\(353\) 24.9549i 1.32821i 0.747638 + 0.664107i \(0.231188\pi\)
−0.747638 + 0.664107i \(0.768812\pi\)
\(354\) 0 0
\(355\) 11.1878 0.593785
\(356\) 0 0
\(357\) 2.12549 + 8.48528i 0.112493 + 0.449089i
\(358\) 0 0
\(359\) −28.5129 −1.50486 −0.752428 0.658675i \(-0.771117\pi\)
−0.752428 + 0.658675i \(0.771117\pi\)
\(360\) 0 0
\(361\) −9.58301 −0.504369
\(362\) 0 0
\(363\) 4.62948 + 18.4816i 0.242984 + 0.970030i
\(364\) 0 0
\(365\) −2.00000 −0.104685
\(366\) 0 0
\(367\) 33.8137i 1.76506i −0.470257 0.882530i \(-0.655839\pi\)
0.470257 0.882530i \(-0.344161\pi\)
\(368\) 0 0
\(369\) 10.5830 + 19.7990i 0.550929 + 1.03069i
\(370\) 0 0
\(371\) 18.6243i 0.966927i
\(372\) 0 0
\(373\) 15.4676i 0.800883i −0.916322 0.400441i \(-0.868857\pi\)
0.916322 0.400441i \(-0.131143\pi\)
\(374\) 0 0
\(375\) 0.420861 + 1.68014i 0.0217332 + 0.0867621i
\(376\) 0 0
\(377\) 6.65882i 0.342947i
\(378\) 0 0
\(379\) 9.20614 0.472887 0.236444 0.971645i \(-0.424018\pi\)
0.236444 + 0.971645i \(0.424018\pi\)
\(380\) 0 0
\(381\) −30.2288 + 7.57205i −1.54867 + 0.387928i
\(382\) 0 0
\(383\) −10.6442 −0.543894 −0.271947 0.962312i \(-0.587668\pi\)
−0.271947 + 0.962312i \(0.587668\pi\)
\(384\) 0 0
\(385\) 0 0
\(386\) 0 0
\(387\) −22.9191 + 12.2508i −1.16504 + 0.622741i
\(388\) 0 0
\(389\) −18.0000 −0.912636 −0.456318 0.889817i \(-0.650832\pi\)
−0.456318 + 0.889817i \(0.650832\pi\)
\(390\) 0 0
\(391\) 13.0194i 0.658422i
\(392\) 0 0
\(393\) 26.5830 6.65882i 1.34094 0.335893i
\(394\) 0 0
\(395\) 3.57113i 0.179683i
\(396\) 0 0
\(397\) 1.50295i 0.0754309i 0.999289 + 0.0377154i \(0.0120080\pi\)
−0.999289 + 0.0377154i \(0.987992\pi\)
\(398\) 0 0
\(399\) 11.1878 2.80244i 0.560089 0.140298i
\(400\) 0 0
\(401\) 26.2803i 1.31238i 0.754597 + 0.656189i \(0.227832\pi\)
−0.754597 + 0.656189i \(0.772168\pi\)
\(402\) 0 0
\(403\) 40.7878 2.03178
\(404\) 0 0
\(405\) 5.00000 7.48331i 0.248452 0.371849i
\(406\) 0 0
\(407\) 0 0
\(408\) 0 0
\(409\) −7.87451 −0.389369 −0.194685 0.980866i \(-0.562368\pi\)
−0.194685 + 0.980866i \(0.562368\pi\)
\(410\) 0 0
\(411\) −30.7399 + 7.70010i −1.51629 + 0.379818i
\(412\) 0 0
\(413\) 9.41699 0.463380
\(414\) 0 0
\(415\) 5.74103i 0.281816i
\(416\) 0 0
\(417\) −3.87451 15.4676i −0.189735 0.757452i
\(418\) 0 0
\(419\) 37.5210i 1.83302i 0.400013 + 0.916509i \(0.369006\pi\)
−0.400013 + 0.916509i \(0.630994\pi\)
\(420\) 0 0
\(421\) 4.83236i 0.235515i −0.993042 0.117757i \(-0.962429\pi\)
0.993042 0.117757i \(-0.0375705\pi\)
\(422\) 0 0
\(423\) −31.0381 + 16.5906i −1.50912 + 0.806661i
\(424\) 0 0
\(425\) 2.32744i 0.112898i
\(426\) 0 0
\(427\) −18.4123 −0.891032
\(428\) 0 0
\(429\) 0 0
\(430\) 0 0
\(431\) −1.08709 −0.0523632 −0.0261816 0.999657i \(-0.508335\pi\)
−0.0261816 + 0.999657i \(0.508335\pi\)
\(432\) 0 0
\(433\) 7.41699 0.356438 0.178219 0.983991i \(-0.442966\pi\)
0.178219 + 0.983991i \(0.442966\pi\)
\(434\) 0 0
\(435\) −0.543544 2.16991i −0.0260609 0.104039i
\(436\) 0 0
\(437\) 17.1660 0.821162
\(438\) 0 0
\(439\) 5.10850i 0.243815i 0.992541 + 0.121908i \(0.0389012\pi\)
−0.992541 + 0.121908i \(0.961099\pi\)
\(440\) 0 0
\(441\) −6.06275 + 3.24067i −0.288702 + 0.154318i
\(442\) 0 0
\(443\) 1.40122i 0.0665740i 0.999446 + 0.0332870i \(0.0105975\pi\)
−0.999446 + 0.0332870i \(0.989402\pi\)
\(444\) 0 0
\(445\) 1.00197i 0.0474978i
\(446\) 0 0
\(447\) −2.52517 10.0808i −0.119436 0.476808i
\(448\) 0 0
\(449\) 19.7990i 0.934372i −0.884159 0.467186i \(-0.845268\pi\)
0.884159 0.467186i \(-0.154732\pi\)
\(450\) 0 0
\(451\) 0 0
\(452\) 0 0
\(453\) 27.8745 6.98233i 1.30966 0.328059i
\(454\) 0 0
\(455\) −11.1878 −0.524490
\(456\) 0 0
\(457\) 16.5830 0.775720 0.387860 0.921718i \(-0.373214\pi\)
0.387860 + 0.921718i \(0.373214\pi\)
\(458\) 0 0
\(459\) 8.96077 8.12179i 0.418253 0.379093i
\(460\) 0 0
\(461\) 13.2915 0.619047 0.309523 0.950892i \(-0.399830\pi\)
0.309523 + 0.950892i \(0.399830\pi\)
\(462\) 0 0
\(463\) 9.31216i 0.432773i −0.976308 0.216386i \(-0.930573\pi\)
0.976308 0.216386i \(-0.0694271\pi\)
\(464\) 0 0
\(465\) −13.2915 + 3.32941i −0.616379 + 0.154398i
\(466\) 0 0
\(467\) 5.74103i 0.265663i 0.991139 + 0.132832i \(0.0424070\pi\)
−0.991139 + 0.132832i \(0.957593\pi\)
\(468\) 0 0
\(469\) 18.7970i 0.867966i
\(470\) 0 0
\(471\) 2.52517 0.632534i 0.116354 0.0291456i
\(472\) 0 0
\(473\) 0 0
\(474\) 0 0
\(475\) 3.06871 0.140802
\(476\) 0 0
\(477\) −22.7085 + 12.1382i −1.03975 + 0.555770i
\(478\) 0 0
\(479\) −16.2381 −0.741938 −0.370969 0.928645i \(-0.620974\pi\)
−0.370969 + 0.928645i \(0.620974\pi\)
\(480\) 0 0
\(481\) −26.5830 −1.21208
\(482\) 0 0
\(483\) 20.3939 5.10850i 0.927955 0.232445i
\(484\) 0 0
\(485\) −16.5830 −0.752995
\(486\) 0 0
\(487\) 17.9918i 0.815286i 0.913141 + 0.407643i \(0.133649\pi\)
−0.913141 + 0.407643i \(0.866351\pi\)
\(488\) 0 0
\(489\) 8.35425 + 33.3514i 0.377792 + 1.50820i
\(490\) 0 0
\(491\) 24.5015i 1.10574i 0.833268 + 0.552869i \(0.186467\pi\)
−0.833268 + 0.552869i \(0.813533\pi\)
\(492\) 0 0
\(493\) 3.00590i 0.135379i
\(494\) 0 0
\(495\) 0 0
\(496\) 0 0
\(497\) 24.2764i 1.08895i
\(498\) 0 0
\(499\) −3.06871 −0.137374 −0.0686872 0.997638i \(-0.521881\pi\)
−0.0686872 + 0.997638i \(0.521881\pi\)
\(500\) 0 0
\(501\) 4.93725 + 19.7103i 0.220580 + 0.880589i
\(502\) 0 0
\(503\) 0.543544 0.0242354 0.0121177 0.999927i \(-0.496143\pi\)
0.0121177 + 0.999927i \(0.496143\pi\)
\(504\) 0 0
\(505\) −13.2915 −0.591464
\(506\) 0 0
\(507\) −5.71656 22.8214i −0.253881 1.01353i
\(508\) 0 0
\(509\) −3.87451 −0.171735 −0.0858673 0.996307i \(-0.527366\pi\)
−0.0858673 + 0.996307i \(0.527366\pi\)
\(510\) 0 0
\(511\) 4.33981i 0.191982i
\(512\) 0 0
\(513\) −10.7085 11.8147i −0.472792 0.521631i
\(514\) 0 0
\(515\) 6.50972i 0.286853i
\(516\) 0 0
\(517\) 0 0
\(518\) 0 0
\(519\) 2.52517 + 10.0808i 0.110843 + 0.442500i
\(520\) 0 0
\(521\) 18.6196i 0.815737i 0.913041 + 0.407869i \(0.133728\pi\)
−0.913041 + 0.407869i \(0.866272\pi\)
\(522\) 0 0
\(523\) 38.2626 1.67311 0.836554 0.547885i \(-0.184567\pi\)
0.836554 + 0.547885i \(0.184567\pi\)
\(524\) 0 0
\(525\) 3.64575 0.913230i 0.159114 0.0398566i
\(526\) 0 0
\(527\) −18.4123 −0.802051
\(528\) 0 0
\(529\) 8.29150 0.360500
\(530\) 0 0
\(531\) −6.13742 11.4821i −0.266342 0.498279i
\(532\) 0 0
\(533\) −38.5830 −1.67122
\(534\) 0 0
\(535\) 5.74103i 0.248207i
\(536\) 0 0
\(537\) 7.29150 1.82646i 0.314652 0.0788176i
\(538\) 0 0
\(539\) 0 0
\(540\) 0 0
\(541\) 16.9706i 0.729621i 0.931082 + 0.364811i \(0.118866\pi\)
−0.931082 + 0.364811i \(0.881134\pi\)
\(542\) 0 0
\(543\) 0 0
\(544\) 0 0
\(545\) 1.82646i 0.0782370i
\(546\) 0 0
\(547\) −24.9007 −1.06468 −0.532338 0.846532i \(-0.678687\pi\)
−0.532338 + 0.846532i \(0.678687\pi\)
\(548\) 0 0
\(549\) 12.0000 + 22.4499i 0.512148 + 0.958140i
\(550\) 0 0
\(551\) −3.96325 −0.168840
\(552\) 0 0
\(553\) 7.74902 0.329522
\(554\) 0 0
\(555\) 8.66259 2.16991i 0.367707 0.0921074i
\(556\) 0 0
\(557\) −37.7490 −1.59948 −0.799739 0.600348i \(-0.795029\pi\)
−0.799739 + 0.600348i \(0.795029\pi\)
\(558\) 0 0
\(559\) 44.6632i 1.88905i
\(560\) 0 0
\(561\) 0 0
\(562\) 0 0
\(563\) 8.54348i 0.360065i 0.983661 + 0.180032i \(0.0576202\pi\)
−0.983661 + 0.180032i \(0.942380\pi\)
\(564\) 0 0
\(565\) 7.98430i 0.335902i
\(566\) 0 0
\(567\) −16.2381 10.8495i −0.681936 0.455638i
\(568\) 0 0
\(569\) 34.7656i 1.45745i −0.684806 0.728725i \(-0.740113\pi\)
0.684806 0.728725i \(-0.259887\pi\)
\(570\) 0 0
\(571\) −30.4946 −1.27616 −0.638079 0.769971i \(-0.720271\pi\)
−0.638079 + 0.769971i \(0.720271\pi\)
\(572\) 0 0
\(573\) −2.12549 8.48528i −0.0887937 0.354478i
\(574\) 0 0
\(575\) 5.59388 0.233281
\(576\) 0 0
\(577\) 2.00000 0.0832611 0.0416305 0.999133i \(-0.486745\pi\)
0.0416305 + 0.999133i \(0.486745\pi\)
\(578\) 0 0
\(579\) 5.29570 + 21.1412i 0.220082 + 0.878600i
\(580\) 0 0
\(581\) 12.4575 0.516825
\(582\) 0 0
\(583\) 0 0
\(584\) 0 0
\(585\) 7.29150 + 13.6412i 0.301467 + 0.563992i
\(586\) 0 0
\(587\) 30.2425i 1.24824i −0.781327 0.624122i \(-0.785457\pi\)
0.781327 0.624122i \(-0.214543\pi\)
\(588\) 0 0
\(589\) 24.2764i 1.00029i
\(590\) 0 0
\(591\) −8.66259 34.5824i −0.356331 1.42253i
\(592\) 0 0
\(593\) 4.33138i 0.177868i 0.996038 + 0.0889342i \(0.0283461\pi\)
−0.996038 + 0.0889342i \(0.971654\pi\)
\(594\) 0 0
\(595\) 5.05034 0.207044
\(596\) 0 0
\(597\) 6.00000 1.50295i 0.245564 0.0615116i
\(598\) 0 0
\(599\) 6.13742 0.250768 0.125384 0.992108i \(-0.459984\pi\)
0.125384 + 0.992108i \(0.459984\pi\)
\(600\) 0 0
\(601\) 22.4575 0.916061 0.458031 0.888936i \(-0.348555\pi\)
0.458031 + 0.888936i \(0.348555\pi\)
\(602\) 0 0
\(603\) 22.9191 12.2508i 0.933337 0.498889i
\(604\) 0 0
\(605\) 11.0000 0.447214
\(606\) 0 0
\(607\) 31.0112i 1.25871i 0.777119 + 0.629354i \(0.216680\pi\)
−0.777119 + 0.629354i \(0.783320\pi\)
\(608\) 0 0
\(609\) −4.70850 + 1.17944i −0.190798 + 0.0477933i
\(610\) 0 0
\(611\) 60.4851i 2.44697i
\(612\) 0 0
\(613\) 28.7853i 1.16263i 0.813680 + 0.581313i \(0.197461\pi\)
−0.813680 + 0.581313i \(0.802539\pi\)
\(614\) 0 0
\(615\) 12.5730 3.14944i 0.506993 0.126998i
\(616\) 0 0
\(617\) 38.9195i 1.56684i −0.621492 0.783421i \(-0.713473\pi\)
0.621492 0.783421i \(-0.286527\pi\)
\(618\) 0 0
\(619\) 25.4442 1.02269 0.511345 0.859375i \(-0.329147\pi\)
0.511345 + 0.859375i \(0.329147\pi\)
\(620\) 0 0
\(621\) −19.5203 21.5367i −0.783321 0.864239i
\(622\) 0 0
\(623\) −2.17417 −0.0871065
\(624\) 0 0
\(625\) 1.00000 0.0400000
\(626\) 0 0
\(627\) 0 0
\(628\) 0 0
\(629\) 12.0000 0.478471
\(630\) 0 0
\(631\) 9.44832i 0.376132i −0.982156 0.188066i \(-0.939778\pi\)
0.982156 0.188066i \(-0.0602218\pi\)
\(632\) 0 0
\(633\) −11.1660 44.5764i −0.443809 1.77175i
\(634\) 0 0
\(635\) 17.9918i 0.713982i
\(636\) 0 0
\(637\) 11.8147i 0.468115i
\(638\) 0 0
\(639\) −29.6000 + 15.8219i −1.17096 + 0.625904i
\(640\) 0 0
\(641\) 28.1068i 1.11015i 0.831800 + 0.555076i \(0.187311\pi\)
−0.831800 + 0.555076i \(0.812689\pi\)
\(642\) 0 0
\(643\) 13.7129 0.540785 0.270393 0.962750i \(-0.412847\pi\)
0.270393 + 0.962750i \(0.412847\pi\)
\(644\) 0 0
\(645\) 3.64575 + 14.5544i 0.143551 + 0.573078i
\(646\) 0 0
\(647\) −29.0565 −1.14233 −0.571164 0.820836i \(-0.693508\pi\)
−0.571164 + 0.820836i \(0.693508\pi\)
\(648\) 0 0
\(649\) 0 0
\(650\) 0 0
\(651\) 7.22451 + 28.8413i 0.283151 + 1.13038i
\(652\) 0 0
\(653\) −0.833990 −0.0326365 −0.0163183 0.999867i \(-0.505194\pi\)
−0.0163183 + 0.999867i \(0.505194\pi\)
\(654\) 0 0
\(655\) 15.8219i 0.618212i
\(656\) 0 0
\(657\) 5.29150 2.82843i 0.206441 0.110347i
\(658\) 0 0
\(659\) 4.33981i 0.169055i 0.996421 + 0.0845276i \(0.0269381\pi\)
−0.996421 + 0.0845276i \(0.973062\pi\)
\(660\) 0 0
\(661\) 8.48528i 0.330039i −0.986290 0.165020i \(-0.947231\pi\)
0.986290 0.165020i \(-0.0527687\pi\)
\(662\) 0 0
\(663\) 5.05034 + 20.1617i 0.196139 + 0.783015i
\(664\) 0 0
\(665\) 6.65882i 0.258218i
\(666\) 0 0
\(667\) −7.22451 −0.279734
\(668\) 0 0
\(669\) −44.8118 + 11.2250i −1.73252 + 0.433982i
\(670\) 0 0
\(671\) 0 0
\(672\) 0 0
\(673\) 36.5830 1.41017 0.705086 0.709122i \(-0.250909\pi\)
0.705086 + 0.709122i \(0.250909\pi\)
\(674\) 0 0
\(675\) −3.48957 3.85005i −0.134314 0.148188i
\(676\) 0 0
\(677\) −0.833990 −0.0320528 −0.0160264 0.999872i \(-0.505102\pi\)
−0.0160264 + 0.999872i \(0.505102\pi\)
\(678\) 0 0
\(679\) 35.9836i 1.38092i
\(680\) 0 0
\(681\) −31.5203 + 7.89556i −1.20786 + 0.302559i
\(682\) 0 0
\(683\) 38.9222i 1.48932i 0.667446 + 0.744658i \(0.267387\pi\)
−0.667446 + 0.744658i \(0.732613\pi\)
\(684\) 0 0
\(685\) 18.2960i 0.699056i
\(686\) 0 0
\(687\) 45.8381 11.4821i 1.74883 0.438068i
\(688\) 0 0
\(689\) 44.2529i 1.68590i
\(690\) 0 0
\(691\) −10.2932 −0.391573 −0.195786 0.980647i \(-0.562726\pi\)
−0.195786 + 0.980647i \(0.562726\pi\)
\(692\) 0 0
\(693\) 0 0
\(694\) 0 0
\(695\) −9.20614 −0.349209
\(696\) 0 0
\(697\) 17.4170 0.659716
\(698\) 0 0
\(699\) −15.0982 + 3.78197i −0.571066 + 0.143047i
\(700\) 0 0
\(701\) 6.00000 0.226617 0.113308 0.993560i \(-0.463855\pi\)
0.113308 + 0.993560i \(0.463855\pi\)
\(702\) 0 0
\(703\) 15.8219i 0.596734i
\(704\) 0 0
\(705\) 4.93725 + 19.7103i 0.185948 + 0.742331i
\(706\) 0 0
\(707\) 28.8413i 1.08469i
\(708\) 0 0
\(709\) 10.3117i 0.387266i 0.981074 + 0.193633i \(0.0620270\pi\)
−0.981074 + 0.193633i \(0.937973\pi\)
\(710\) 0 0
\(711\) −5.05034 9.44832i −0.189402 0.354340i
\(712\) 0 0
\(713\) 44.2529i 1.65728i
\(714\) 0 0
\(715\) 0 0
\(716\) 0 0
\(717\) −2.58301 10.3117i −0.0964641 0.385099i
\(718\) 0 0
\(719\) 22.3755 0.834466 0.417233 0.908800i \(-0.363000\pi\)
0.417233 + 0.908800i \(0.363000\pi\)
\(720\) 0 0
\(721\) −14.1255 −0.526061
\(722\) 0 0
\(723\) 2.22699 + 8.89047i 0.0828226 + 0.330640i
\(724\) 0 0
\(725\) −1.29150 −0.0479652
\(726\) 0 0
\(727\) 26.6714i 0.989188i 0.869124 + 0.494594i \(0.164683\pi\)
−0.869124 + 0.494594i \(0.835317\pi\)
\(728\) 0 0
\(729\) −2.64575 + 26.8701i −0.0979908 + 0.995187i
\(730\) 0 0
\(731\) 20.1617i 0.745707i
\(732\) 0 0
\(733\) 15.4676i 0.571309i −0.958333 0.285655i \(-0.907789\pi\)
0.958333 0.285655i \(-0.0922110\pi\)
\(734\) 0 0
\(735\) 0.964405 + 3.85005i 0.0355726 + 0.142011i
\(736\) 0 0
\(737\) 0 0
\(738\) 0 0
\(739\) −25.4442 −0.935981 −0.467991 0.883733i \(-0.655022\pi\)
−0.467991 + 0.883733i \(0.655022\pi\)
\(740\) 0 0
\(741\) 26.5830 6.65882i 0.976551 0.244618i
\(742\) 0 0
\(743\) 36.2810 1.33102 0.665510 0.746389i \(-0.268214\pi\)
0.665510 + 0.746389i \(0.268214\pi\)
\(744\) 0 0
\(745\) −6.00000 −0.219823
\(746\) 0 0
\(747\) −8.11905 15.1894i −0.297060 0.555749i
\(748\) 0 0
\(749\) −12.4575 −0.455188
\(750\) 0 0
\(751\) 41.0921i 1.49947i −0.661737 0.749736i \(-0.730181\pi\)
0.661737 0.749736i \(-0.269819\pi\)
\(752\) 0 0
\(753\) −29.1660 + 7.30584i −1.06287 + 0.266240i
\(754\) 0 0
\(755\) 16.5906i 0.603793i
\(756\) 0 0
\(757\) 53.0617i 1.92856i 0.264887 + 0.964279i \(0.414665\pi\)
−0.264887 + 0.964279i \(0.585335\pi\)
\(758\) 0 0
\(759\) 0 0
\(760\) 0 0
\(761\) 48.9078i 1.77290i 0.462820 + 0.886452i \(0.346838\pi\)
−0.462820 + 0.886452i \(0.653162\pi\)
\(762\) 0 0
\(763\) 3.96325 0.143479
\(764\) 0 0
\(765\) −3.29150 6.15784i −0.119005 0.222637i
\(766\) 0 0
\(767\) 22.3755 0.807933
\(768\) 0 0
\(769\) −4.58301 −0.165267 −0.0826337 0.996580i \(-0.526333\pi\)
−0.0826337 + 0.996580i \(0.526333\pi\)
\(770\) 0 0
\(771\) −2.22699 + 0.557842i −0.0802031 + 0.0200902i
\(772\) 0 0
\(773\) 13.7490 0.494518 0.247259 0.968949i \(-0.420470\pi\)
0.247259 + 0.968949i \(0.420470\pi\)
\(774\) 0 0
\(775\) 7.91094i 0.284169i
\(776\) 0 0
\(777\) −4.70850 18.7970i −0.168916 0.674339i
\(778\) 0 0
\(779\) 22.9641i 0.822776i
\(780\) 0 0
\(781\) 0 0
\(782\) 0 0
\(783\) 4.50679 + 4.97235i 0.161060 + 0.177697i
\(784\) 0 0
\(785\) 1.50295i 0.0536426i
\(786\) 0 0
\(787\) −7.57551 −0.270038 −0.135019 0.990843i \(-0.543109\pi\)
−0.135019 + 0.990843i \(0.543109\pi\)
\(788\) 0 0
\(789\) −7.52026 30.0220i −0.267728 1.06881i
\(790\) 0 0
\(791\) 17.3252 0.616013
\(792\) 0 0
\(793\) −43.7490 −1.55357
\(794\) 0 0
\(795\) 3.61226 + 14.4207i 0.128114 + 0.511448i
\(796\) 0 0
\(797\) 32.5830 1.15415 0.577075 0.816691i \(-0.304194\pi\)
0.577075 + 0.816691i \(0.304194\pi\)
\(798\) 0 0
\(799\) 27.3040i 0.965944i
\(800\) 0 0
\(801\) 1.41699 + 2.65095i 0.0500670 + 0.0936669i
\(802\) 0 0
\(803\) 0 0
\(804\) 0 0
\(805\) 12.1382i 0.427815i
\(806\) 0 0
\(807\) 9.74968 + 38.9222i 0.343205 + 1.37013i
\(808\) 0 0
\(809\) 36.5921i 1.28651i −0.765652 0.643255i \(-0.777584\pi\)
0.765652 0.643255i \(-0.222416\pi\)
\(810\) 0 0
\(811\) −36.6320 −1.28632 −0.643162 0.765730i \(-0.722378\pi\)
−0.643162 + 0.765730i \(0.722378\pi\)
\(812\) 0 0
\(813\) −1.29150 + 0.323511i −0.0452950 + 0.0113460i
\(814\) 0 0
\(815\) 19.8504 0.695328
\(816\) 0 0
\(817\) 26.5830 0.930022
\(818\) 0 0
\(819\) 29.6000 15.8219i 1.03431 0.552861i
\(820\) 0 0
\(821\) −6.00000 −0.209401 −0.104701 0.994504i \(-0.533388\pi\)
−0.104701 + 0.994504i \(0.533388\pi\)
\(822\) 0 0
\(823\) 33.8137i 1.17867i 0.807889 + 0.589335i \(0.200610\pi\)
−0.807889 + 0.589335i \(0.799390\pi\)
\(824\) 0 0
\(825\) 0 0
\(826\) 0 0
\(827\) 8.54348i 0.297086i −0.988906 0.148543i \(-0.952542\pi\)
0.988906 0.148543i \(-0.0474583\pi\)
\(828\) 0 0
\(829\) 32.1147i 1.11539i 0.830046 + 0.557694i \(0.188314\pi\)
−0.830046 + 0.557694i \(0.811686\pi\)
\(830\) 0 0
\(831\) 37.1755 9.31216i 1.28961 0.323035i
\(832\) 0 0
\(833\) 5.33334i 0.184789i
\(834\) 0 0
\(835\) 11.7313 0.405979
\(836\) 0 0
\(837\) 30.4575 27.6058i 1.05277 0.954197i
\(838\) 0 0
\(839\) 53.0626 1.83193 0.915963 0.401263i \(-0.131429\pi\)
0.915963 + 0.401263i \(0.131429\pi\)
\(840\) 0 0
\(841\) −27.3320 −0.942483
\(842\) 0 0
\(843\) −6.43560 + 1.61206i −0.221654 + 0.0555225i
\(844\) 0 0
\(845\) −13.5830 −0.467270
\(846\) 0 0
\(847\) 23.8690i 0.820148i
\(848\) 0 0
\(849\) 10.4797 + 41.8367i 0.359664 + 1.43583i
\(850\) 0 0
\(851\) 28.8413i 0.988668i
\(852\) 0 0
\(853\) 46.4028i 1.58880i −0.607393 0.794401i \(-0.707785\pi\)
0.607393 0.794401i \(-0.292215\pi\)
\(854\) 0 0
\(855\) −8.11905 + 4.33981i −0.277666 + 0.148419i
\(856\) 0 0
\(857\) 18.2960i 0.624981i 0.949921 + 0.312490i \(0.101163\pi\)
−0.949921 + 0.312490i \(0.898837\pi\)
\(858\) 0 0
\(859\) −25.4442 −0.868146 −0.434073 0.900878i \(-0.642924\pi\)
−0.434073 + 0.900878i \(0.642924\pi\)
\(860\) 0 0
\(861\) −6.83399 27.2823i −0.232902 0.929778i
\(862\) 0 0
\(863\) 12.8184 0.436343 0.218172 0.975910i \(-0.429991\pi\)
0.218172 + 0.975910i \(0.429991\pi\)
\(864\) 0 0
\(865\) 6.00000 0.204006
\(866\) 0 0
\(867\) 4.87484 + 19.4611i 0.165558 + 0.660933i
\(868\) 0 0
\(869\) 0 0
\(870\) 0 0
\(871\) 44.6632i 1.51336i
\(872\) 0 0
\(873\) 43.8745 23.4519i 1.48493 0.793727i
\(874\) 0 0
\(875\) 2.16991i 0.0733563i
\(876\) 0 0
\(877\) 29.4323i 0.993857i −0.867791 0.496929i \(-0.834461\pi\)
0.867791 0.496929i \(-0.165539\pi\)
\(878\) 0 0
\(879\) −9.74968 38.9222i −0.328849 1.31281i
\(880\) 0 0
\(881\) 13.1402i 0.442704i 0.975194 + 0.221352i \(0.0710469\pi\)
−0.975194 + 0.221352i \(0.928953\pi\)
\(882\) 0 0
\(883\) −14.8000 −0.498060 −0.249030 0.968496i \(-0.580112\pi\)
−0.249030 + 0.968496i \(0.580112\pi\)
\(884\) 0 0
\(885\) −7.29150 + 1.82646i −0.245101 + 0.0613958i
\(886\) 0 0
\(887\) −6.68097 −0.224325 −0.112162 0.993690i \(-0.535778\pi\)
−0.112162 + 0.993690i \(0.535778\pi\)
\(888\) 0 0
\(889\) 39.0405 1.30938
\(890\) 0 0
\(891\) 0 0
\(892\) 0 0
\(893\) 36.0000 1.20469
\(894\) 0 0
\(895\) 4.33981i 0.145064i
\(896\) 0 0
\(897\) 48.4575 12.1382i 1.61795 0.405283i
\(898\) 0 0
\(899\) 10.2170i 0.340756i
\(900\) 0 0
\(901\) 19.9765i 0.665512i
\(902\) 0 0
\(903\) 31.5817 7.91094i 1.05097 0.263260i
\(904\) 0 0
\(905\) 0 0
\(906\) 0 0
\(907\) 13.7129 0.455330 0.227665 0.973739i \(-0.426891\pi\)
0.227665 + 0.973739i \(0.426891\pi\)
\(908\) 0 0
\(909\) 35.1660 18.7970i 1.16638 0.623458i
\(910\) 0 0
\(911\) 45.8381 1.51869 0.759343 0.650691i \(-0.225521\pi\)
0.759343 + 0.650691i \(0.225521\pi\)
\(912\) 0 0
\(913\) 0 0
\(914\) 0 0
\(915\) 14.2565 3.57113i 0.471304 0.118058i
\(916\) 0 0
\(917\) −34.3320 −1.13374
\(918\) 0 0
\(919\) 12.2508i 0.404115i 0.979374 + 0.202058i \(0.0647628\pi\)
−0.979374 + 0.202058i \(0.935237\pi\)
\(920\) 0 0
\(921\) −3.18824 12.7279i −0.105056 0.419399i
\(922\) 0 0
\(923\) 57.6827i 1.89865i
\(924\) 0 0
\(925\) 5.15587i 0.169524i
\(926\) 0 0
\(927\) 9.20614 + 17.2231i 0.302369 + 0.565681i
\(928\) 0 0
\(929\) 16.1461i 0.529735i −0.964285 0.264868i \(-0.914672\pi\)
0.964285 0.264868i \(-0.0853283\pi\)
\(930\) 0 0
\(931\) 7.03196 0.230463
\(932\) 0 0
\(933\) −9.87451 39.4205i −0.323277 1.29057i
\(934\) 0 0
\(935\) 0 0
\(936\) 0 0
\(937\) −36.3320 −1.18692 −0.593458 0.804865i \(-0.702238\pi\)
−0.593458 + 0.804865i \(0.702238\pi\)
\(938\) 0 0
\(939\) −11.4331 45.6427i −0.373106 1.48949i
\(940\) 0 0
\(941\) −42.4575 −1.38408 −0.692038 0.721861i \(-0.743287\pi\)
−0.692038 + 0.721861i \(0.743287\pi\)
\(942\) 0 0
\(943\) 41.8608i 1.36317i
\(944\) 0 0
\(945\) −8.35425 + 7.57205i −0.271764 + 0.246319i
\(946\) 0 0
\(947\) 38.9222i 1.26480i 0.774642 + 0.632400i \(0.217930\pi\)
−0.774642 + 0.632400i \(0.782070\pi\)
\(948\) 0 0
\(949\) 10.3117i 0.334733i
\(950\) 0 0
\(951\) 13.7129 + 54.7441i 0.444672 + 1.77520i
\(952\) 0 0
\(953\) 28.6078i 0.926697i 0.886176 + 0.463348i \(0.153352\pi\)
−0.886176 + 0.463348i \(0.846648\pi\)
\(954\) 0 0
\(955\) −5.05034 −0.163425
\(956\) 0 0
\(957\) 0 0
\(958\) 0 0
\(959\) 39.7007 1.28200
\(960\) 0 0
\(961\) −31.5830 −1.01881
\(962\) 0 0
\(963\) 8.11905 + 15.1894i 0.261633 + 0.489470i
\(964\) 0 0
\(965\) 12.5830 0.405061
\(966\) 0 0
\(967\) 32.5486i 1.04669i −0.852120 0.523346i \(-0.824683\pi\)
0.852120 0.523346i \(-0.175317\pi\)
\(968\) 0 0
\(969\) −12.0000 + 3.00590i −0.385496 + 0.0965634i
\(970\) 0 0
\(971\) 49.0030i 1.57258i 0.617856 + 0.786291i \(0.288001\pi\)
−0.617856 + 0.786291i \(0.711999\pi\)
\(972\) 0 0
\(973\) 19.9765i 0.640416i
\(974\) 0 0
\(975\) 8.66259 2.16991i 0.277425 0.0694926i
\(976\) 0 0
\(977\) 1.32548i 0.0424058i −0.999775 0.0212029i \(-0.993250\pi\)
0.999775 0.0212029i \(-0.00674959\pi\)
\(978\) 0 0
\(979\) 0 0
\(980\) 0 0
\(981\) −2.58301 4.83236i −0.0824690 0.154285i
\(982\) 0 0
\(983\) −35.1939 −1.12251 −0.561256 0.827642i \(-0.689682\pi\)
−0.561256 + 0.827642i \(0.689682\pi\)
\(984\) 0 0
\(985\) −20.5830 −0.655829
\(986\) 0 0
\(987\) 42.7694 10.7134i 1.36137 0.341011i
\(988\) 0 0
\(989\) 48.4575 1.54086
\(990\) 0 0
\(991\) 23.7328i 0.753898i 0.926234 + 0.376949i \(0.123027\pi\)
−0.926234 + 0.376949i \(0.876973\pi\)
\(992\) 0 0
\(993\) −12.8340 51.2352i −0.407274 1.62590i
\(994\) 0 0
\(995\) 3.57113i 0.113212i
\(996\) 0 0
\(997\) 5.15587i 0.163288i 0.996662 + 0.0816440i \(0.0260171\pi\)
−0.996662 + 0.0816440i \(0.973983\pi\)
\(998\) 0 0
\(999\) −19.8504 + 17.9918i −0.628037 + 0.569235i
Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))

Twists

       By twisting character
Char Parity Ord Type Twist Min Dim
1.1 even 1 trivial 1920.2.b.e.191.6 yes 8
3.2 odd 2 1920.2.b.c.191.5 yes 8
4.3 odd 2 inner 1920.2.b.e.191.3 yes 8
8.3 odd 2 1920.2.b.c.191.6 yes 8
8.5 even 2 1920.2.b.c.191.3 8
12.11 even 2 1920.2.b.c.191.4 yes 8
24.5 odd 2 inner 1920.2.b.e.191.4 yes 8
24.11 even 2 inner 1920.2.b.e.191.5 yes 8
    
        By twisted newform
Twist Min Dim Char Parity Ord Type
1920.2.b.c.191.3 8 8.5 even 2
1920.2.b.c.191.4 yes 8 12.11 even 2
1920.2.b.c.191.5 yes 8 3.2 odd 2
1920.2.b.c.191.6 yes 8 8.3 odd 2
1920.2.b.e.191.3 yes 8 4.3 odd 2 inner
1920.2.b.e.191.4 yes 8 24.5 odd 2 inner
1920.2.b.e.191.5 yes 8 24.11 even 2 inner
1920.2.b.e.191.6 yes 8 1.1 even 1 trivial