Properties

Label 1920.2.b.f.191.3
Level $1920$
Weight $2$
Character 1920.191
Analytic conductor $15.331$
Analytic rank $0$
Dimension $8$
Inner twists $4$

Related objects

Downloads

Learn more

Show commands: Magma / PariGP / SageMath

Newspace parameters

comment: Compute space of new eigenforms
 
[N,k,chi] = [1920,2,Mod(191,1920)]
 
mf = mfinit([N,k,chi],0)
 
lf = mfeigenbasis(mf)
 
from sage.modular.dirichlet import DirichletCharacter
 
H = DirichletGroup(1920, base_ring=CyclotomicField(2))
 
chi = DirichletCharacter(H, H._module([1, 1, 1, 0]))
 
N = Newforms(chi, 2, names="a")
 
//Please install CHIMP (https://github.com/edgarcosta/CHIMP) if you want to run this code
 
chi := DirichletCharacter("1920.191");
 
S:= CuspForms(chi, 2);
 
N := Newforms(S);
 
Level: \( N \) \(=\) \( 1920 = 2^{7} \cdot 3 \cdot 5 \)
Weight: \( k \) \(=\) \( 2 \)
Character orbit: \([\chi]\) \(=\) 1920.b (of order \(2\), degree \(1\), minimal)

Newform invariants

comment: select newform
 
sage: f = N[0] # Warning: the index may be different
 
gp: f = lf[1] \\ Warning: the index may be different
 
Self dual: no
Analytic conductor: \(15.3312771881\)
Analytic rank: \(0\)
Dimension: \(8\)
Coefficient field: 8.0.3288334336.2
comment: defining polynomial
 
gp: f.mod \\ as an extension of the character field
 
Defining polynomial: \( x^{8} + 8x^{6} - 8x^{5} + 14x^{4} + 8x^{3} - 16x^{2} + 7 \) Copy content Toggle raw display
Coefficient ring: \(\Z[a_1, \ldots, a_{7}]\)
Coefficient ring index: \( 2^{5} \)
Twist minimal: yes
Sato-Tate group: $\mathrm{SU}(2)[C_{2}]$

Embedding invariants

Embedding label 191.3
Root \(-0.707107 - 0.179070i\) of defining polynomial
Character \(\chi\) \(=\) 1920.191
Dual form 1920.2.b.f.191.4

$q$-expansion

comment: q-expansion
 
sage: f.q_expansion() # note that sage often uses an isomorphic number field
 
gp: mfcoefs(f, 20)
 
\(f(q)\) \(=\) \(q+(-1.13705 - 1.30656i) q^{3} +1.00000 q^{5} -1.08239i q^{7} +(-0.414214 + 2.97127i) q^{9} -2.16478i q^{11} +1.74053i q^{13} +(-1.13705 - 1.30656i) q^{15} +4.20201i q^{17} +3.21608 q^{19} +(-1.41421 + 1.23074i) q^{21} +5.49019 q^{23} +1.00000 q^{25} +(4.35313 - 2.83730i) q^{27} +0.828427 q^{29} +3.69552i q^{31} +(-2.82843 + 2.46148i) q^{33} -1.08239i q^{35} -10.1445i q^{37} +(2.27411 - 1.97908i) q^{39} +2.46148i q^{41} +8.70626 q^{43} +(-0.414214 + 2.97127i) q^{45} -10.0384 q^{47} +5.82843 q^{49} +(5.49019 - 4.77791i) q^{51} +2.00000 q^{53} -2.16478i q^{55} +(-3.65685 - 4.20201i) q^{57} -10.4525i q^{59} +10.8655i q^{61} +(3.21608 + 0.448342i) q^{63} +1.74053i q^{65} +4.15804 q^{67} +(-6.24264 - 7.17327i) q^{69} -1.88393 q^{71} +3.65685 q^{73} +(-1.13705 - 1.30656i) q^{75} -2.34315 q^{77} +11.9832i q^{79} +(-8.65685 - 2.46148i) q^{81} -10.0042i q^{83} +4.20201i q^{85} +(-0.941967 - 1.08239i) q^{87} +3.48106i q^{89} +1.88393 q^{91} +(4.82843 - 4.20201i) q^{93} +3.21608 q^{95} +9.31371 q^{97} +(6.43215 + 0.896683i) q^{99} +O(q^{100})\)
\(\operatorname{Tr}(f)(q)\) \(=\) \( 8 q + 8 q^{5} + 8 q^{9} + 8 q^{25} - 16 q^{29} + 8 q^{45} + 24 q^{49} + 16 q^{53} + 16 q^{57} - 16 q^{69} - 16 q^{73} - 64 q^{77} - 24 q^{81} + 16 q^{93} - 16 q^{97}+O(q^{100}) \) Copy content Toggle raw display

Character values

We give the values of \(\chi\) on generators for \(\left(\mathbb{Z}/1920\mathbb{Z}\right)^\times\).

\(n\) \(511\) \(641\) \(901\) \(1537\)
\(\chi(n)\) \(-1\) \(-1\) \(-1\) \(1\)

Coefficient data

For each \(n\) we display the coefficients of the \(q\)-expansion \(a_n\), the Satake parameters \(\alpha_p\), and the Satake angles \(\theta_p = \textrm{Arg}(\alpha_p)\).



Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))
Significant digits:
\(n\) \(a_n\) \(a_n / n^{(k-1)/2}\) \( \alpha_n \) \( \theta_n \)
\(p\) \(a_p\) \(a_p / p^{(k-1)/2}\) \( \alpha_p\) \( \theta_p \)
\(2\) 0 0
\(3\) −1.13705 1.30656i −0.656479 0.754344i
\(4\) 0 0
\(5\) 1.00000 0.447214
\(6\) 0 0
\(7\) 1.08239i 0.409106i −0.978856 0.204553i \(-0.934426\pi\)
0.978856 0.204553i \(-0.0655740\pi\)
\(8\) 0 0
\(9\) −0.414214 + 2.97127i −0.138071 + 0.990422i
\(10\) 0 0
\(11\) 2.16478i 0.652707i −0.945248 0.326354i \(-0.894180\pi\)
0.945248 0.326354i \(-0.105820\pi\)
\(12\) 0 0
\(13\) 1.74053i 0.482736i 0.970434 + 0.241368i \(0.0775960\pi\)
−0.970434 + 0.241368i \(0.922404\pi\)
\(14\) 0 0
\(15\) −1.13705 1.30656i −0.293586 0.337353i
\(16\) 0 0
\(17\) 4.20201i 1.01914i 0.860430 + 0.509568i \(0.170195\pi\)
−0.860430 + 0.509568i \(0.829805\pi\)
\(18\) 0 0
\(19\) 3.21608 0.737818 0.368909 0.929465i \(-0.379731\pi\)
0.368909 + 0.929465i \(0.379731\pi\)
\(20\) 0 0
\(21\) −1.41421 + 1.23074i −0.308607 + 0.268569i
\(22\) 0 0
\(23\) 5.49019 1.14478 0.572391 0.819981i \(-0.306016\pi\)
0.572391 + 0.819981i \(0.306016\pi\)
\(24\) 0 0
\(25\) 1.00000 0.200000
\(26\) 0 0
\(27\) 4.35313 2.83730i 0.837760 0.546038i
\(28\) 0 0
\(29\) 0.828427 0.153835 0.0769175 0.997037i \(-0.475492\pi\)
0.0769175 + 0.997037i \(0.475492\pi\)
\(30\) 0 0
\(31\) 3.69552i 0.663735i 0.943326 + 0.331867i \(0.107679\pi\)
−0.943326 + 0.331867i \(0.892321\pi\)
\(32\) 0 0
\(33\) −2.82843 + 2.46148i −0.492366 + 0.428488i
\(34\) 0 0
\(35\) 1.08239i 0.182958i
\(36\) 0 0
\(37\) 10.1445i 1.66775i −0.551952 0.833876i \(-0.686117\pi\)
0.551952 0.833876i \(-0.313883\pi\)
\(38\) 0 0
\(39\) 2.27411 1.97908i 0.364149 0.316906i
\(40\) 0 0
\(41\) 2.46148i 0.384418i 0.981354 + 0.192209i \(0.0615652\pi\)
−0.981354 + 0.192209i \(0.938435\pi\)
\(42\) 0 0
\(43\) 8.70626 1.32769 0.663846 0.747869i \(-0.268923\pi\)
0.663846 + 0.747869i \(0.268923\pi\)
\(44\) 0 0
\(45\) −0.414214 + 2.97127i −0.0617473 + 0.442930i
\(46\) 0 0
\(47\) −10.0384 −1.46425 −0.732126 0.681169i \(-0.761472\pi\)
−0.732126 + 0.681169i \(0.761472\pi\)
\(48\) 0 0
\(49\) 5.82843 0.832632
\(50\) 0 0
\(51\) 5.49019 4.77791i 0.768780 0.669041i
\(52\) 0 0
\(53\) 2.00000 0.274721 0.137361 0.990521i \(-0.456138\pi\)
0.137361 + 0.990521i \(0.456138\pi\)
\(54\) 0 0
\(55\) 2.16478i 0.291899i
\(56\) 0 0
\(57\) −3.65685 4.20201i −0.484362 0.556569i
\(58\) 0 0
\(59\) 10.4525i 1.36080i −0.732841 0.680400i \(-0.761806\pi\)
0.732841 0.680400i \(-0.238194\pi\)
\(60\) 0 0
\(61\) 10.8655i 1.39118i 0.718437 + 0.695592i \(0.244858\pi\)
−0.718437 + 0.695592i \(0.755142\pi\)
\(62\) 0 0
\(63\) 3.21608 + 0.448342i 0.405188 + 0.0564857i
\(64\) 0 0
\(65\) 1.74053i 0.215886i
\(66\) 0 0
\(67\) 4.15804 0.507986 0.253993 0.967206i \(-0.418256\pi\)
0.253993 + 0.967206i \(0.418256\pi\)
\(68\) 0 0
\(69\) −6.24264 7.17327i −0.751526 0.863561i
\(70\) 0 0
\(71\) −1.88393 −0.223582 −0.111791 0.993732i \(-0.535659\pi\)
−0.111791 + 0.993732i \(0.535659\pi\)
\(72\) 0 0
\(73\) 3.65685 0.428002 0.214001 0.976833i \(-0.431350\pi\)
0.214001 + 0.976833i \(0.431350\pi\)
\(74\) 0 0
\(75\) −1.13705 1.30656i −0.131296 0.150869i
\(76\) 0 0
\(77\) −2.34315 −0.267026
\(78\) 0 0
\(79\) 11.9832i 1.34822i 0.738631 + 0.674110i \(0.235473\pi\)
−0.738631 + 0.674110i \(0.764527\pi\)
\(80\) 0 0
\(81\) −8.65685 2.46148i −0.961873 0.273498i
\(82\) 0 0
\(83\) 10.0042i 1.09810i −0.835790 0.549050i \(-0.814990\pi\)
0.835790 0.549050i \(-0.185010\pi\)
\(84\) 0 0
\(85\) 4.20201i 0.455772i
\(86\) 0 0
\(87\) −0.941967 1.08239i −0.100989 0.116045i
\(88\) 0 0
\(89\) 3.48106i 0.368991i 0.982833 + 0.184496i \(0.0590651\pi\)
−0.982833 + 0.184496i \(0.940935\pi\)
\(90\) 0 0
\(91\) 1.88393 0.197490
\(92\) 0 0
\(93\) 4.82843 4.20201i 0.500685 0.435728i
\(94\) 0 0
\(95\) 3.21608 0.329962
\(96\) 0 0
\(97\) 9.31371 0.945664 0.472832 0.881153i \(-0.343232\pi\)
0.472832 + 0.881153i \(0.343232\pi\)
\(98\) 0 0
\(99\) 6.43215 + 0.896683i 0.646456 + 0.0901200i
\(100\) 0 0
\(101\) 1.51472 0.150720 0.0753601 0.997156i \(-0.475989\pi\)
0.0753601 + 0.997156i \(0.475989\pi\)
\(102\) 0 0
\(103\) 19.8226i 1.95318i −0.215108 0.976590i \(-0.569011\pi\)
0.215108 0.976590i \(-0.430989\pi\)
\(104\) 0 0
\(105\) −1.41421 + 1.23074i −0.138013 + 0.120108i
\(106\) 0 0
\(107\) 9.10748i 0.880453i −0.897887 0.440227i \(-0.854898\pi\)
0.897887 0.440227i \(-0.145102\pi\)
\(108\) 0 0
\(109\) 2.46148i 0.235767i −0.993027 0.117883i \(-0.962389\pi\)
0.993027 0.117883i \(-0.0376109\pi\)
\(110\) 0 0
\(111\) −13.2545 + 11.5349i −1.25806 + 1.09484i
\(112\) 0 0
\(113\) 12.6060i 1.18587i −0.805249 0.592937i \(-0.797968\pi\)
0.805249 0.592937i \(-0.202032\pi\)
\(114\) 0 0
\(115\) 5.49019 0.511962
\(116\) 0 0
\(117\) −5.17157 0.720950i −0.478112 0.0666519i
\(118\) 0 0
\(119\) 4.54822 0.416935
\(120\) 0 0
\(121\) 6.31371 0.573973
\(122\) 0 0
\(123\) 3.21608 2.79884i 0.289984 0.252362i
\(124\) 0 0
\(125\) 1.00000 0.0894427
\(126\) 0 0
\(127\) 8.47343i 0.751895i 0.926641 + 0.375948i \(0.122683\pi\)
−0.926641 + 0.375948i \(0.877317\pi\)
\(128\) 0 0
\(129\) −9.89949 11.3753i −0.871602 1.00154i
\(130\) 0 0
\(131\) 11.3492i 0.991583i −0.868442 0.495792i \(-0.834878\pi\)
0.868442 0.495792i \(-0.165122\pi\)
\(132\) 0 0
\(133\) 3.48106i 0.301846i
\(134\) 0 0
\(135\) 4.35313 2.83730i 0.374658 0.244196i
\(136\) 0 0
\(137\) 16.0871i 1.37441i −0.726463 0.687206i \(-0.758837\pi\)
0.726463 0.687206i \(-0.241163\pi\)
\(138\) 0 0
\(139\) 3.21608 0.272784 0.136392 0.990655i \(-0.456449\pi\)
0.136392 + 0.990655i \(0.456449\pi\)
\(140\) 0 0
\(141\) 11.4142 + 13.1158i 0.961250 + 1.10455i
\(142\) 0 0
\(143\) 3.76787 0.315085
\(144\) 0 0
\(145\) 0.828427 0.0687971
\(146\) 0 0
\(147\) −6.62724 7.61521i −0.546606 0.628092i
\(148\) 0 0
\(149\) 13.3137 1.09070 0.545351 0.838208i \(-0.316396\pi\)
0.545351 + 0.838208i \(0.316396\pi\)
\(150\) 0 0
\(151\) 4.96362i 0.403934i 0.979392 + 0.201967i \(0.0647333\pi\)
−0.979392 + 0.201967i \(0.935267\pi\)
\(152\) 0 0
\(153\) −12.4853 1.74053i −1.00938 0.140713i
\(154\) 0 0
\(155\) 3.69552i 0.296831i
\(156\) 0 0
\(157\) 15.0675i 1.20252i −0.799055 0.601259i \(-0.794666\pi\)
0.799055 0.601259i \(-0.205334\pi\)
\(158\) 0 0
\(159\) −2.27411 2.61313i −0.180349 0.207234i
\(160\) 0 0
\(161\) 5.94253i 0.468337i
\(162\) 0 0
\(163\) −2.27411 −0.178122 −0.0890610 0.996026i \(-0.528387\pi\)
−0.0890610 + 0.996026i \(0.528387\pi\)
\(164\) 0 0
\(165\) −2.82843 + 2.46148i −0.220193 + 0.191626i
\(166\) 0 0
\(167\) 8.15447 0.631012 0.315506 0.948924i \(-0.397826\pi\)
0.315506 + 0.948924i \(0.397826\pi\)
\(168\) 0 0
\(169\) 9.97056 0.766966
\(170\) 0 0
\(171\) −1.33214 + 9.55582i −0.101871 + 0.730752i
\(172\) 0 0
\(173\) −21.3137 −1.62045 −0.810226 0.586118i \(-0.800655\pi\)
−0.810226 + 0.586118i \(0.800655\pi\)
\(174\) 0 0
\(175\) 1.08239i 0.0818212i
\(176\) 0 0
\(177\) −13.6569 + 11.8851i −1.02651 + 0.893336i
\(178\) 0 0
\(179\) 0 0 1.00000 \(0\)
−1.00000 \(\pi\)
\(180\) 0 0
\(181\) 23.7701i 1.76682i 0.468601 + 0.883410i \(0.344758\pi\)
−0.468601 + 0.883410i \(0.655242\pi\)
\(182\) 0 0
\(183\) 14.1964 12.3547i 1.04943 0.913282i
\(184\) 0 0
\(185\) 10.1445i 0.745841i
\(186\) 0 0
\(187\) 9.09644 0.665197
\(188\) 0 0
\(189\) −3.07107 4.71179i −0.223387 0.342733i
\(190\) 0 0
\(191\) −17.4125 −1.25993 −0.629963 0.776625i \(-0.716930\pi\)
−0.629963 + 0.776625i \(0.716930\pi\)
\(192\) 0 0
\(193\) 9.31371 0.670415 0.335208 0.942144i \(-0.391194\pi\)
0.335208 + 0.942144i \(0.391194\pi\)
\(194\) 0 0
\(195\) 2.27411 1.97908i 0.162852 0.141725i
\(196\) 0 0
\(197\) 2.00000 0.142494 0.0712470 0.997459i \(-0.477302\pi\)
0.0712470 + 0.997459i \(0.477302\pi\)
\(198\) 0 0
\(199\) 10.1899i 0.722341i −0.932500 0.361170i \(-0.882377\pi\)
0.932500 0.361170i \(-0.117623\pi\)
\(200\) 0 0
\(201\) −4.72792 5.43275i −0.333482 0.383196i
\(202\) 0 0
\(203\) 0.896683i 0.0629348i
\(204\) 0 0
\(205\) 2.46148i 0.171917i
\(206\) 0 0
\(207\) −2.27411 + 16.3128i −0.158062 + 1.13382i
\(208\) 0 0
\(209\) 6.96211i 0.481579i
\(210\) 0 0
\(211\) 16.8607 1.16074 0.580370 0.814353i \(-0.302908\pi\)
0.580370 + 0.814353i \(0.302908\pi\)
\(212\) 0 0
\(213\) 2.14214 + 2.46148i 0.146777 + 0.168658i
\(214\) 0 0
\(215\) 8.70626 0.593762
\(216\) 0 0
\(217\) 4.00000 0.271538
\(218\) 0 0
\(219\) −4.15804 4.77791i −0.280975 0.322861i
\(220\) 0 0
\(221\) −7.31371 −0.491973
\(222\) 0 0
\(223\) 25.4203i 1.70227i −0.524948 0.851134i \(-0.675915\pi\)
0.524948 0.851134i \(-0.324085\pi\)
\(224\) 0 0
\(225\) −0.414214 + 2.97127i −0.0276142 + 0.198084i
\(226\) 0 0
\(227\) 19.1886i 1.27359i 0.771033 + 0.636795i \(0.219740\pi\)
−0.771033 + 0.636795i \(0.780260\pi\)
\(228\) 0 0
\(229\) 8.40401i 0.555353i −0.960675 0.277676i \(-0.910436\pi\)
0.960675 0.277676i \(-0.0895643\pi\)
\(230\) 0 0
\(231\) 2.66428 + 3.06147i 0.175297 + 0.201430i
\(232\) 0 0
\(233\) 19.5681i 1.28195i 0.767561 + 0.640975i \(0.221470\pi\)
−0.767561 + 0.640975i \(0.778530\pi\)
\(234\) 0 0
\(235\) −10.0384 −0.654833
\(236\) 0 0
\(237\) 15.6569 13.6256i 1.01702 0.885078i
\(238\) 0 0
\(239\) −24.6250 −1.59286 −0.796430 0.604730i \(-0.793281\pi\)
−0.796430 + 0.604730i \(0.793281\pi\)
\(240\) 0 0
\(241\) 20.1421 1.29747 0.648735 0.761015i \(-0.275299\pi\)
0.648735 + 0.761015i \(0.275299\pi\)
\(242\) 0 0
\(243\) 6.62724 + 14.1096i 0.425138 + 0.905129i
\(244\) 0 0
\(245\) 5.82843 0.372365
\(246\) 0 0
\(247\) 5.59767i 0.356171i
\(248\) 0 0
\(249\) −13.0711 + 11.3753i −0.828345 + 0.720879i
\(250\) 0 0
\(251\) 18.7402i 1.18287i 0.806352 + 0.591436i \(0.201439\pi\)
−0.806352 + 0.591436i \(0.798561\pi\)
\(252\) 0 0
\(253\) 11.8851i 0.747208i
\(254\) 0 0
\(255\) 5.49019 4.77791i 0.343809 0.299204i
\(256\) 0 0
\(257\) 19.5681i 1.22063i 0.792160 + 0.610313i \(0.208956\pi\)
−0.792160 + 0.610313i \(0.791044\pi\)
\(258\) 0 0
\(259\) −10.9804 −0.682287
\(260\) 0 0
\(261\) −0.343146 + 2.46148i −0.0212402 + 0.152362i
\(262\) 0 0
\(263\) 29.3349 1.80887 0.904433 0.426617i \(-0.140295\pi\)
0.904433 + 0.426617i \(0.140295\pi\)
\(264\) 0 0
\(265\) 2.00000 0.122859
\(266\) 0 0
\(267\) 4.54822 3.95815i 0.278346 0.242235i
\(268\) 0 0
\(269\) −2.68629 −0.163786 −0.0818930 0.996641i \(-0.526097\pi\)
−0.0818930 + 0.996641i \(0.526097\pi\)
\(270\) 0 0
\(271\) 31.9916i 1.94335i 0.236323 + 0.971674i \(0.424058\pi\)
−0.236323 + 0.971674i \(0.575942\pi\)
\(272\) 0 0
\(273\) −2.14214 2.46148i −0.129648 0.148975i
\(274\) 0 0
\(275\) 2.16478i 0.130541i
\(276\) 0 0
\(277\) 1.74053i 0.104578i 0.998632 + 0.0522891i \(0.0166517\pi\)
−0.998632 + 0.0522891i \(0.983348\pi\)
\(278\) 0 0
\(279\) −10.9804 1.53073i −0.657378 0.0916426i
\(280\) 0 0
\(281\) 9.42359i 0.562164i 0.959684 + 0.281082i \(0.0906933\pi\)
−0.959684 + 0.281082i \(0.909307\pi\)
\(282\) 0 0
\(283\) −19.6866 −1.17025 −0.585124 0.810944i \(-0.698954\pi\)
−0.585124 + 0.810944i \(0.698954\pi\)
\(284\) 0 0
\(285\) −3.65685 4.20201i −0.216613 0.248905i
\(286\) 0 0
\(287\) 2.66428 0.157268
\(288\) 0 0
\(289\) −0.656854 −0.0386385
\(290\) 0 0
\(291\) −10.5902 12.1689i −0.620808 0.713356i
\(292\) 0 0
\(293\) −5.31371 −0.310430 −0.155215 0.987881i \(-0.549607\pi\)
−0.155215 + 0.987881i \(0.549607\pi\)
\(294\) 0 0
\(295\) 10.4525i 0.608568i
\(296\) 0 0
\(297\) −6.14214 9.42359i −0.356403 0.546812i
\(298\) 0 0
\(299\) 9.55582i 0.552627i
\(300\) 0 0
\(301\) 9.42359i 0.543167i
\(302\) 0 0
\(303\) −1.72232 1.97908i −0.0989446 0.113695i
\(304\) 0 0
\(305\) 10.8655i 0.622156i
\(306\) 0 0
\(307\) −28.7831 −1.64274 −0.821368 0.570398i \(-0.806789\pi\)
−0.821368 + 0.570398i \(0.806789\pi\)
\(308\) 0 0
\(309\) −25.8995 + 22.5394i −1.47337 + 1.28222i
\(310\) 0 0
\(311\) −23.8447 −1.35211 −0.676054 0.736852i \(-0.736311\pi\)
−0.676054 + 0.736852i \(0.736311\pi\)
\(312\) 0 0
\(313\) 29.3137 1.65691 0.828454 0.560057i \(-0.189221\pi\)
0.828454 + 0.560057i \(0.189221\pi\)
\(314\) 0 0
\(315\) 3.21608 + 0.448342i 0.181205 + 0.0252612i
\(316\) 0 0
\(317\) −17.3137 −0.972435 −0.486217 0.873838i \(-0.661624\pi\)
−0.486217 + 0.873838i \(0.661624\pi\)
\(318\) 0 0
\(319\) 1.79337i 0.100409i
\(320\) 0 0
\(321\) −11.8995 + 10.3557i −0.664165 + 0.577999i
\(322\) 0 0
\(323\) 13.5140i 0.751937i
\(324\) 0 0
\(325\) 1.74053i 0.0965471i
\(326\) 0 0
\(327\) −3.21608 + 2.79884i −0.177849 + 0.154776i
\(328\) 0 0
\(329\) 10.8655i 0.599034i
\(330\) 0 0
\(331\) −29.7250 −1.63384 −0.816918 0.576754i \(-0.804319\pi\)
−0.816918 + 0.576754i \(0.804319\pi\)
\(332\) 0 0
\(333\) 30.1421 + 4.20201i 1.65178 + 0.230269i
\(334\) 0 0
\(335\) 4.15804 0.227178
\(336\) 0 0
\(337\) 18.9706 1.03339 0.516696 0.856169i \(-0.327162\pi\)
0.516696 + 0.856169i \(0.327162\pi\)
\(338\) 0 0
\(339\) −16.4706 + 14.3337i −0.894558 + 0.778501i
\(340\) 0 0
\(341\) 8.00000 0.433224
\(342\) 0 0
\(343\) 13.8854i 0.749741i
\(344\) 0 0
\(345\) −6.24264 7.17327i −0.336092 0.386196i
\(346\) 0 0
\(347\) 0.819760i 0.0440070i 0.999758 + 0.0220035i \(0.00700450\pi\)
−0.999758 + 0.0220035i \(0.992996\pi\)
\(348\) 0 0
\(349\) 3.48106i 0.186337i −0.995650 0.0931683i \(-0.970301\pi\)
0.995650 0.0931683i \(-0.0296995\pi\)
\(350\) 0 0
\(351\) 4.93839 + 7.57675i 0.263592 + 0.404417i
\(352\) 0 0
\(353\) 9.12496i 0.485673i 0.970067 + 0.242836i \(0.0780778\pi\)
−0.970067 + 0.242836i \(0.921922\pi\)
\(354\) 0 0
\(355\) −1.88393 −0.0999888
\(356\) 0 0
\(357\) −5.17157 5.94253i −0.273709 0.314512i
\(358\) 0 0
\(359\) 2.66428 0.140616 0.0703078 0.997525i \(-0.477602\pi\)
0.0703078 + 0.997525i \(0.477602\pi\)
\(360\) 0 0
\(361\) −8.65685 −0.455624
\(362\) 0 0
\(363\) −7.17903 8.24926i −0.376801 0.432974i
\(364\) 0 0
\(365\) 3.65685 0.191408
\(366\) 0 0
\(367\) 25.9456i 1.35435i 0.735824 + 0.677173i \(0.236795\pi\)
−0.735824 + 0.677173i \(0.763205\pi\)
\(368\) 0 0
\(369\) −7.31371 1.01958i −0.380736 0.0530771i
\(370\) 0 0
\(371\) 2.16478i 0.112390i
\(372\) 0 0
\(373\) 17.1067i 0.885749i 0.896584 + 0.442874i \(0.146041\pi\)
−0.896584 + 0.442874i \(0.853959\pi\)
\(374\) 0 0
\(375\) −1.13705 1.30656i −0.0587172 0.0674706i
\(376\) 0 0
\(377\) 1.44190i 0.0742617i
\(378\) 0 0
\(379\) 14.9768 0.769306 0.384653 0.923061i \(-0.374321\pi\)
0.384653 + 0.923061i \(0.374321\pi\)
\(380\) 0 0
\(381\) 11.0711 9.63475i 0.567188 0.493603i
\(382\) 0 0
\(383\) 33.8831 1.73134 0.865672 0.500611i \(-0.166891\pi\)
0.865672 + 0.500611i \(0.166891\pi\)
\(384\) 0 0
\(385\) −2.34315 −0.119418
\(386\) 0 0
\(387\) −3.60625 + 25.8686i −0.183316 + 1.31498i
\(388\) 0 0
\(389\) 25.3137 1.28346 0.641728 0.766932i \(-0.278218\pi\)
0.641728 + 0.766932i \(0.278218\pi\)
\(390\) 0 0
\(391\) 23.0698i 1.16669i
\(392\) 0 0
\(393\) −14.8284 + 12.9046i −0.747995 + 0.650953i
\(394\) 0 0
\(395\) 11.9832i 0.602942i
\(396\) 0 0
\(397\) 26.9526i 1.35271i 0.736576 + 0.676355i \(0.236442\pi\)
−0.736576 + 0.676355i \(0.763558\pi\)
\(398\) 0 0
\(399\) −4.54822 + 3.95815i −0.227696 + 0.198155i
\(400\) 0 0
\(401\) 11.8851i 0.593512i 0.954953 + 0.296756i \(0.0959048\pi\)
−0.954953 + 0.296756i \(0.904095\pi\)
\(402\) 0 0
\(403\) −6.43215 −0.320408
\(404\) 0 0
\(405\) −8.65685 2.46148i −0.430163 0.122312i
\(406\) 0 0
\(407\) −21.9607 −1.08855
\(408\) 0 0
\(409\) 12.1421 0.600390 0.300195 0.953878i \(-0.402948\pi\)
0.300195 + 0.953878i \(0.402948\pi\)
\(410\) 0 0
\(411\) −21.0188 + 18.2919i −1.03678 + 0.902272i
\(412\) 0 0
\(413\) −11.3137 −0.556711
\(414\) 0 0
\(415\) 10.0042i 0.491085i
\(416\) 0 0
\(417\) −3.65685 4.20201i −0.179077 0.205773i
\(418\) 0 0
\(419\) 16.0502i 0.784102i 0.919943 + 0.392051i \(0.128234\pi\)
−0.919943 + 0.392051i \(0.871766\pi\)
\(420\) 0 0
\(421\) 17.8276i 0.868864i −0.900705 0.434432i \(-0.856949\pi\)
0.900705 0.434432i \(-0.143051\pi\)
\(422\) 0 0
\(423\) 4.15804 29.8268i 0.202171 1.45023i
\(424\) 0 0
\(425\) 4.20201i 0.203827i
\(426\) 0 0
\(427\) 11.7607 0.569141
\(428\) 0 0
\(429\) −4.28427 4.92296i −0.206847 0.237683i
\(430\) 0 0
\(431\) −32.9411 −1.58672 −0.793359 0.608754i \(-0.791670\pi\)
−0.793359 + 0.608754i \(0.791670\pi\)
\(432\) 0 0
\(433\) −21.3137 −1.02427 −0.512136 0.858905i \(-0.671146\pi\)
−0.512136 + 0.858905i \(0.671146\pi\)
\(434\) 0 0
\(435\) −0.941967 1.08239i −0.0451639 0.0518967i
\(436\) 0 0
\(437\) 17.6569 0.844642
\(438\) 0 0
\(439\) 8.92177i 0.425813i 0.977073 + 0.212906i \(0.0682929\pi\)
−0.977073 + 0.212906i \(0.931707\pi\)
\(440\) 0 0
\(441\) −2.41421 + 17.3178i −0.114963 + 0.824658i
\(442\) 0 0
\(443\) 15.6018i 0.741265i 0.928780 + 0.370633i \(0.120859\pi\)
−0.928780 + 0.370633i \(0.879141\pi\)
\(444\) 0 0
\(445\) 3.48106i 0.165018i
\(446\) 0 0
\(447\) −15.1384 17.3952i −0.716022 0.822765i
\(448\) 0 0
\(449\) 27.6735i 1.30599i −0.757361 0.652997i \(-0.773511\pi\)
0.757361 0.652997i \(-0.226489\pi\)
\(450\) 0 0
\(451\) 5.32857 0.250913
\(452\) 0 0
\(453\) 6.48528 5.64391i 0.304705 0.265174i
\(454\) 0 0
\(455\) 1.88393 0.0883202
\(456\) 0 0
\(457\) 7.65685 0.358173 0.179086 0.983833i \(-0.442686\pi\)
0.179086 + 0.983833i \(0.442686\pi\)
\(458\) 0 0
\(459\) 11.9223 + 18.2919i 0.556487 + 0.853792i
\(460\) 0 0
\(461\) −36.8284 −1.71527 −0.857635 0.514258i \(-0.828067\pi\)
−0.857635 + 0.514258i \(0.828067\pi\)
\(462\) 0 0
\(463\) 17.1326i 0.796218i −0.917338 0.398109i \(-0.869667\pi\)
0.917338 0.398109i \(-0.130333\pi\)
\(464\) 0 0
\(465\) 4.82843 4.20201i 0.223913 0.194863i
\(466\) 0 0
\(467\) 28.2191i 1.30583i 0.757433 + 0.652913i \(0.226453\pi\)
−0.757433 + 0.652913i \(0.773547\pi\)
\(468\) 0 0
\(469\) 4.50063i 0.207820i
\(470\) 0 0
\(471\) −19.6866 + 17.1326i −0.907112 + 0.789427i
\(472\) 0 0
\(473\) 18.8472i 0.866594i
\(474\) 0 0
\(475\) 3.21608 0.147564
\(476\) 0 0
\(477\) −0.828427 + 5.94253i −0.0379311 + 0.272090i
\(478\) 0 0
\(479\) 33.7215 1.54077 0.770386 0.637577i \(-0.220063\pi\)
0.770386 + 0.637577i \(0.220063\pi\)
\(480\) 0 0
\(481\) 17.6569 0.805083
\(482\) 0 0
\(483\) −7.76429 + 6.75699i −0.353288 + 0.307453i
\(484\) 0 0
\(485\) 9.31371 0.422914
\(486\) 0 0
\(487\) 0.185709i 0.00841528i −0.999991 0.00420764i \(-0.998661\pi\)
0.999991 0.00420764i \(-0.00133934\pi\)
\(488\) 0 0
\(489\) 2.58579 + 2.97127i 0.116933 + 0.134365i
\(490\) 0 0
\(491\) 20.0083i 0.902963i 0.892280 + 0.451482i \(0.149104\pi\)
−0.892280 + 0.451482i \(0.850896\pi\)
\(492\) 0 0
\(493\) 3.48106i 0.156779i
\(494\) 0 0
\(495\) 6.43215 + 0.896683i 0.289104 + 0.0403029i
\(496\) 0 0
\(497\) 2.03916i 0.0914686i
\(498\) 0 0
\(499\) −34.2733 −1.53428 −0.767141 0.641479i \(-0.778321\pi\)
−0.767141 + 0.641479i \(0.778321\pi\)
\(500\) 0 0
\(501\) −9.27208 10.6543i −0.414246 0.476000i
\(502\) 0 0
\(503\) 4.70983 0.210001 0.105001 0.994472i \(-0.466516\pi\)
0.105001 + 0.994472i \(0.466516\pi\)
\(504\) 0 0
\(505\) 1.51472 0.0674041
\(506\) 0 0
\(507\) −11.3371 13.0272i −0.503497 0.578557i
\(508\) 0 0
\(509\) 33.1127 1.46769 0.733847 0.679314i \(-0.237723\pi\)
0.733847 + 0.679314i \(0.237723\pi\)
\(510\) 0 0
\(511\) 3.95815i 0.175098i
\(512\) 0 0
\(513\) 14.0000 9.12496i 0.618115 0.402877i
\(514\) 0 0
\(515\) 19.8226i 0.873489i
\(516\) 0 0
\(517\) 21.7310i 0.955727i
\(518\) 0 0
\(519\) 24.2349 + 27.8477i 1.06379 + 1.22238i
\(520\) 0 0
\(521\) 33.6160i 1.47275i −0.676576 0.736373i \(-0.736537\pi\)
0.676576 0.736373i \(-0.263463\pi\)
\(522\) 0 0
\(523\) 9.48661 0.414821 0.207410 0.978254i \(-0.433496\pi\)
0.207410 + 0.978254i \(0.433496\pi\)
\(524\) 0 0
\(525\) −1.41421 + 1.23074i −0.0617213 + 0.0537139i
\(526\) 0 0
\(527\) −15.5286 −0.676436
\(528\) 0 0
\(529\) 7.14214 0.310528
\(530\) 0 0
\(531\) 31.0572 + 4.32957i 1.34777 + 0.187887i
\(532\) 0 0
\(533\) −4.28427 −0.185572
\(534\) 0 0
\(535\) 9.10748i 0.393751i
\(536\) 0 0
\(537\) 0 0
\(538\) 0 0
\(539\) 12.6173i 0.543465i
\(540\) 0 0
\(541\) 21.7310i 0.934288i −0.884181 0.467144i \(-0.845283\pi\)
0.884181 0.467144i \(-0.154717\pi\)
\(542\) 0 0
\(543\) 31.0572 27.0279i 1.33279 1.15988i
\(544\) 0 0
\(545\) 2.46148i 0.105438i
\(546\) 0 0
\(547\) −11.3705 −0.486169 −0.243085 0.970005i \(-0.578159\pi\)
−0.243085 + 0.970005i \(0.578159\pi\)
\(548\) 0 0
\(549\) −32.2843 4.50063i −1.37786 0.192082i
\(550\) 0 0
\(551\) 2.66428 0.113502
\(552\) 0 0
\(553\) 12.9706 0.551564
\(554\) 0 0
\(555\) −13.2545 + 11.5349i −0.562621 + 0.489629i
\(556\) 0 0
\(557\) −15.6569 −0.663402 −0.331701 0.943385i \(-0.607623\pi\)
−0.331701 + 0.943385i \(0.607623\pi\)
\(558\) 0 0
\(559\) 15.1535i 0.640924i
\(560\) 0 0
\(561\) −10.3431 11.8851i −0.436688 0.501788i
\(562\) 0 0
\(563\) 11.7975i 0.497207i 0.968605 + 0.248603i \(0.0799715\pi\)
−0.968605 + 0.248603i \(0.920028\pi\)
\(564\) 0 0
\(565\) 12.6060i 0.530339i
\(566\) 0 0
\(567\) −2.66428 + 9.37011i −0.111889 + 0.393508i
\(568\) 0 0
\(569\) 17.8276i 0.747372i 0.927555 + 0.373686i \(0.121906\pi\)
−0.927555 + 0.373686i \(0.878094\pi\)
\(570\) 0 0
\(571\) −35.0536 −1.46695 −0.733474 0.679718i \(-0.762102\pi\)
−0.733474 + 0.679718i \(0.762102\pi\)
\(572\) 0 0
\(573\) 19.7990 + 22.7506i 0.827115 + 0.950418i
\(574\) 0 0
\(575\) 5.49019 0.228957
\(576\) 0 0
\(577\) −25.3137 −1.05382 −0.526912 0.849920i \(-0.676650\pi\)
−0.526912 + 0.849920i \(0.676650\pi\)
\(578\) 0 0
\(579\) −10.5902 12.1689i −0.440113 0.505724i
\(580\) 0 0
\(581\) −10.8284 −0.449239
\(582\) 0 0
\(583\) 4.32957i 0.179312i
\(584\) 0 0
\(585\) −5.17157 0.720950i −0.213818 0.0298076i
\(586\) 0 0
\(587\) 22.6215i 0.933687i −0.884340 0.466844i \(-0.845391\pi\)
0.884340 0.466844i \(-0.154609\pi\)
\(588\) 0 0
\(589\) 11.8851i 0.489716i
\(590\) 0 0
\(591\) −2.27411 2.61313i −0.0935444 0.107490i
\(592\) 0 0
\(593\) 7.68306i 0.315506i −0.987479 0.157753i \(-0.949575\pi\)
0.987479 0.157753i \(-0.0504249\pi\)
\(594\) 0 0
\(595\) 4.54822 0.186459
\(596\) 0 0
\(597\) −13.3137 + 11.5864i −0.544894 + 0.474201i
\(598\) 0 0
\(599\) −11.7607 −0.480530 −0.240265 0.970707i \(-0.577234\pi\)
−0.240265 + 0.970707i \(0.577234\pi\)
\(600\) 0 0
\(601\) 0.142136 0.00579783 0.00289892 0.999996i \(-0.499077\pi\)
0.00289892 + 0.999996i \(0.499077\pi\)
\(602\) 0 0
\(603\) −1.72232 + 12.3547i −0.0701382 + 0.503120i
\(604\) 0 0
\(605\) 6.31371 0.256689
\(606\) 0 0
\(607\) 31.1718i 1.26522i −0.774469 0.632612i \(-0.781983\pi\)
0.774469 0.632612i \(-0.218017\pi\)
\(608\) 0 0
\(609\) −1.17157 + 1.01958i −0.0474745 + 0.0413154i
\(610\) 0 0
\(611\) 17.4721i 0.706846i
\(612\) 0 0
\(613\) 22.0296i 0.889767i −0.895588 0.444884i \(-0.853245\pi\)
0.895588 0.444884i \(-0.146755\pi\)
\(614\) 0 0
\(615\) 3.21608 2.79884i 0.129685 0.112860i
\(616\) 0 0
\(617\) 29.4140i 1.18416i −0.805877 0.592082i \(-0.798306\pi\)
0.805877 0.592082i \(-0.201694\pi\)
\(618\) 0 0
\(619\) −18.7447 −0.753412 −0.376706 0.926333i \(-0.622943\pi\)
−0.376706 + 0.926333i \(0.622943\pi\)
\(620\) 0 0
\(621\) 23.8995 15.5773i 0.959054 0.625095i
\(622\) 0 0
\(623\) 3.76787 0.150956
\(624\) 0 0
\(625\) 1.00000 0.0400000
\(626\) 0 0
\(627\) −9.09644 + 7.91630i −0.363277 + 0.316147i
\(628\) 0 0
\(629\) 42.6274 1.69967
\(630\) 0 0
\(631\) 30.7235i 1.22308i 0.791213 + 0.611541i \(0.209450\pi\)
−0.791213 + 0.611541i \(0.790550\pi\)
\(632\) 0 0
\(633\) −19.1716 22.0296i −0.762002 0.875598i
\(634\) 0 0
\(635\) 8.47343i 0.336258i
\(636\) 0 0
\(637\) 10.1445i 0.401941i
\(638\) 0 0
\(639\) 0.780351 5.59767i 0.0308702 0.221440i
\(640\) 0 0
\(641\) 26.2316i 1.03609i −0.855354 0.518043i \(-0.826661\pi\)
0.855354 0.518043i \(-0.173339\pi\)
\(642\) 0 0
\(643\) 4.15804 0.163977 0.0819886 0.996633i \(-0.473873\pi\)
0.0819886 + 0.996633i \(0.473873\pi\)
\(644\) 0 0
\(645\) −9.89949 11.3753i −0.389792 0.447901i
\(646\) 0 0
\(647\) −25.5670 −1.00514 −0.502571 0.864536i \(-0.667612\pi\)
−0.502571 + 0.864536i \(0.667612\pi\)
\(648\) 0 0
\(649\) −22.6274 −0.888204
\(650\) 0 0
\(651\) −4.54822 5.22625i −0.178259 0.204833i
\(652\) 0 0
\(653\) −27.6569 −1.08230 −0.541148 0.840927i \(-0.682010\pi\)
−0.541148 + 0.840927i \(0.682010\pi\)
\(654\) 0 0
\(655\) 11.3492i 0.443449i
\(656\) 0 0
\(657\) −1.51472 + 10.8655i −0.0590948 + 0.423903i
\(658\) 0 0
\(659\) 7.91630i 0.308375i 0.988042 + 0.154188i \(0.0492760\pi\)
−0.988042 + 0.154188i \(0.950724\pi\)
\(660\) 0 0
\(661\) 46.5207i 1.80945i −0.426001 0.904723i \(-0.640078\pi\)
0.426001 0.904723i \(-0.359922\pi\)
\(662\) 0 0
\(663\) 8.31609 + 9.55582i 0.322970 + 0.371117i
\(664\) 0 0
\(665\) 3.48106i 0.134990i
\(666\) 0 0
\(667\) 4.54822 0.176108
\(668\) 0 0
\(669\) −33.2132 + 28.9043i −1.28410 + 1.11750i
\(670\) 0 0
\(671\) 23.5214 0.908035
\(672\) 0 0
\(673\) −14.6863 −0.566115 −0.283057 0.959103i \(-0.591349\pi\)
−0.283057 + 0.959103i \(0.591349\pi\)
\(674\) 0 0
\(675\) 4.35313 2.83730i 0.167552 0.109208i
\(676\) 0 0
\(677\) 9.02944 0.347029 0.173515 0.984831i \(-0.444488\pi\)
0.173515 + 0.984831i \(0.444488\pi\)
\(678\) 0 0
\(679\) 10.0811i 0.386877i
\(680\) 0 0
\(681\) 25.0711 21.8184i 0.960725 0.836085i
\(682\) 0 0
\(683\) 21.7248i 0.831275i −0.909530 0.415638i \(-0.863558\pi\)
0.909530 0.415638i \(-0.136442\pi\)
\(684\) 0 0
\(685\) 16.0871i 0.614655i
\(686\) 0 0
\(687\) −10.9804 + 9.55582i −0.418927 + 0.364577i
\(688\) 0 0
\(689\) 3.48106i 0.132618i
\(690\) 0 0
\(691\) 32.3893 1.23215 0.616074 0.787688i \(-0.288722\pi\)
0.616074 + 0.787688i \(0.288722\pi\)
\(692\) 0 0
\(693\) 0.970563 6.96211i 0.0368686 0.264469i
\(694\) 0 0
\(695\) 3.21608 0.121993
\(696\) 0 0
\(697\) −10.3431 −0.391775
\(698\) 0 0
\(699\) 25.5670 22.2500i 0.967032 0.841574i
\(700\) 0 0
\(701\) 1.31371 0.0496181 0.0248090 0.999692i \(-0.492102\pi\)
0.0248090 + 0.999692i \(0.492102\pi\)
\(702\) 0 0
\(703\) 32.6256i 1.23050i
\(704\) 0 0
\(705\) 11.4142 + 13.1158i 0.429884 + 0.493970i
\(706\) 0 0
\(707\) 1.63952i 0.0616605i
\(708\) 0 0
\(709\) 34.2133i 1.28491i 0.766324 + 0.642454i \(0.222084\pi\)
−0.766324 + 0.642454i \(0.777916\pi\)
\(710\) 0 0
\(711\) −35.6054 4.96362i −1.33531 0.186150i
\(712\) 0 0
\(713\) 20.2891i 0.759832i
\(714\) 0 0
\(715\) 3.76787 0.140910
\(716\) 0 0
\(717\) 28.0000 + 32.1741i 1.04568 + 1.20157i
\(718\) 0 0
\(719\) 9.09644 0.339240 0.169620 0.985510i \(-0.445746\pi\)
0.169620 + 0.985510i \(0.445746\pi\)
\(720\) 0 0
\(721\) −21.4558 −0.799057
\(722\) 0 0
\(723\) −22.9027 26.3170i −0.851761 0.978739i
\(724\) 0 0
\(725\) 0.828427 0.0307670
\(726\) 0 0
\(727\) 37.2947i 1.38319i 0.722288 + 0.691593i \(0.243091\pi\)
−0.722288 + 0.691593i \(0.756909\pi\)
\(728\) 0 0
\(729\) 10.8995 24.7022i 0.403685 0.914898i
\(730\) 0 0
\(731\) 36.5838i 1.35310i
\(732\) 0 0
\(733\) 36.7985i 1.35918i 0.733591 + 0.679591i \(0.237843\pi\)
−0.733591 + 0.679591i \(0.762157\pi\)
\(734\) 0 0
\(735\) −6.62724 7.61521i −0.244449 0.280891i
\(736\) 0 0
\(737\) 9.00127i 0.331566i
\(738\) 0 0
\(739\) 31.6090 1.16275 0.581377 0.813634i \(-0.302514\pi\)
0.581377 + 0.813634i \(0.302514\pi\)
\(740\) 0 0
\(741\) 7.31371 6.36486i 0.268676 0.233819i
\(742\) 0 0
\(743\) 11.9223 0.437388 0.218694 0.975793i \(-0.429820\pi\)
0.218694 + 0.975793i \(0.429820\pi\)
\(744\) 0 0
\(745\) 13.3137 0.487777
\(746\) 0 0
\(747\) 29.7250 + 4.14386i 1.08758 + 0.151616i
\(748\) 0 0
\(749\) −9.85786 −0.360199
\(750\) 0 0
\(751\) 24.6005i 0.897686i 0.893611 + 0.448843i \(0.148164\pi\)
−0.893611 + 0.448843i \(0.851836\pi\)
\(752\) 0 0
\(753\) 24.4853 21.3087i 0.892293 0.776531i
\(754\) 0 0
\(755\) 4.96362i 0.180645i
\(756\) 0 0
\(757\) 1.74053i 0.0632606i 0.999500 + 0.0316303i \(0.0100699\pi\)
−0.999500 + 0.0316303i \(0.989930\pi\)
\(758\) 0 0
\(759\) −15.5286 + 13.5140i −0.563652 + 0.490526i
\(760\) 0 0
\(761\) 28.6931i 1.04012i 0.854129 + 0.520062i \(0.174091\pi\)
−0.854129 + 0.520062i \(0.825909\pi\)
\(762\) 0 0
\(763\) −2.66428 −0.0964536
\(764\) 0 0
\(765\) −12.4853 1.74053i −0.451406 0.0629289i
\(766\) 0 0
\(767\) 18.1929 0.656907
\(768\) 0 0
\(769\) 12.3431 0.445105 0.222553 0.974921i \(-0.428561\pi\)
0.222553 + 0.974921i \(0.428561\pi\)
\(770\) 0 0
\(771\) 25.5670 22.2500i 0.920773 0.801315i
\(772\) 0 0
\(773\) −28.6274 −1.02966 −0.514828 0.857293i \(-0.672144\pi\)
−0.514828 + 0.857293i \(0.672144\pi\)
\(774\) 0 0
\(775\) 3.69552i 0.132747i
\(776\) 0 0
\(777\) 12.4853 + 14.3465i 0.447907 + 0.514679i
\(778\) 0 0
\(779\) 7.91630i 0.283631i
\(780\) 0 0
\(781\) 4.07831i 0.145933i
\(782\) 0 0
\(783\) 3.60625 2.35049i 0.128877 0.0839998i
\(784\) 0 0
\(785\) 15.0675i 0.537782i
\(786\) 0 0
\(787\) −15.9188 −0.567443 −0.283721 0.958907i \(-0.591569\pi\)
−0.283721 + 0.958907i \(0.591569\pi\)
\(788\) 0 0
\(789\) −33.3553 38.3278i −1.18748 1.36451i
\(790\) 0 0
\(791\) −13.6447 −0.485148
\(792\) 0 0
\(793\) −18.9117 −0.671574
\(794\) 0 0
\(795\) −2.27411 2.61313i −0.0806543 0.0926780i
\(796\) 0 0
\(797\) 26.0000 0.920967 0.460484 0.887668i \(-0.347676\pi\)
0.460484 + 0.887668i \(0.347676\pi\)
\(798\) 0 0
\(799\) 42.1814i 1.49227i
\(800\) 0 0
\(801\) −10.3431 1.44190i −0.365457 0.0509470i
\(802\) 0 0
\(803\) 7.91630i 0.279360i
\(804\) 0 0
\(805\) 5.94253i 0.209447i
\(806\) 0 0
\(807\) 3.05446 + 3.50981i 0.107522 + 0.123551i
\(808\) 0 0
\(809\) 1.44190i 0.0506945i −0.999679 0.0253473i \(-0.991931\pi\)
0.999679 0.0253473i \(-0.00806915\pi\)
\(810\) 0 0
\(811\) 2.43573 0.0855299 0.0427649 0.999085i \(-0.486383\pi\)
0.0427649 + 0.999085i \(0.486383\pi\)
\(812\) 0 0
\(813\) 41.7990 36.3762i 1.46595 1.27577i
\(814\) 0 0
\(815\) −2.27411 −0.0796586
\(816\) 0 0
\(817\) 28.0000 0.979596
\(818\) 0 0
\(819\) −0.780351 + 5.59767i −0.0272677 + 0.195598i
\(820\) 0 0
\(821\) 18.0000 0.628204 0.314102 0.949389i \(-0.398297\pi\)
0.314102 + 0.949389i \(0.398297\pi\)
\(822\) 0 0
\(823\) 11.5349i 0.402081i 0.979583 + 0.201041i \(0.0644323\pi\)
−0.979583 + 0.201041i \(0.935568\pi\)
\(824\) 0 0
\(825\) −2.82843 + 2.46148i −0.0984732 + 0.0856977i
\(826\) 0 0
\(827\) 51.8142i 1.80176i −0.434073 0.900878i \(-0.642924\pi\)
0.434073 0.900878i \(-0.357076\pi\)
\(828\) 0 0
\(829\) 26.2316i 0.911062i 0.890220 + 0.455531i \(0.150551\pi\)
−0.890220 + 0.455531i \(0.849449\pi\)
\(830\) 0 0
\(831\) 2.27411 1.97908i 0.0788880 0.0686534i
\(832\) 0 0
\(833\) 24.4911i 0.848566i
\(834\) 0 0
\(835\) 8.15447 0.282197
\(836\) 0 0
\(837\) 10.4853 + 16.0871i 0.362424 + 0.556051i
\(838\) 0 0
\(839\) −46.5858 −1.60832 −0.804160 0.594413i \(-0.797384\pi\)
−0.804160 + 0.594413i \(0.797384\pi\)
\(840\) 0 0
\(841\) −28.3137 −0.976335
\(842\) 0 0
\(843\) 12.3125 10.7151i 0.424065 0.369049i
\(844\) 0 0
\(845\) 9.97056 0.342998
\(846\) 0 0
\(847\) 6.83391i 0.234816i
\(848\) 0 0
\(849\) 22.3848 + 25.7218i 0.768244 + 0.882771i
\(850\) 0 0
\(851\) 55.6954i 1.90921i
\(852\) 0 0
\(853\) 22.0296i 0.754279i −0.926156 0.377140i \(-0.876908\pi\)
0.926156 0.377140i \(-0.123092\pi\)
\(854\) 0 0
\(855\) −1.33214 + 9.55582i −0.0455583 + 0.326802i
\(856\) 0 0
\(857\) 21.6073i 0.738091i 0.929411 + 0.369045i \(0.120315\pi\)
−0.929411 + 0.369045i \(0.879685\pi\)
\(858\) 0 0
\(859\) 36.9375 1.26029 0.630146 0.776476i \(-0.282995\pi\)
0.630146 + 0.776476i \(0.282995\pi\)
\(860\) 0 0
\(861\) −3.02944 3.48106i −0.103243 0.118634i
\(862\) 0 0
\(863\) 28.2313 0.961004 0.480502 0.876994i \(-0.340455\pi\)
0.480502 + 0.876994i \(0.340455\pi\)
\(864\) 0 0
\(865\) −21.3137 −0.724688
\(866\) 0 0
\(867\) 0.746879 + 0.858221i 0.0253653 + 0.0291467i
\(868\) 0 0
\(869\) 25.9411 0.879992
\(870\) 0 0
\(871\) 7.23719i 0.245223i
\(872\) 0 0
\(873\) −3.85786 + 27.6735i −0.130569 + 0.936607i
\(874\) 0 0
\(875\) 1.08239i 0.0365915i
\(876\) 0 0
\(877\) 12.1837i 0.411414i −0.978614 0.205707i \(-0.934051\pi\)
0.978614 0.205707i \(-0.0659494\pi\)
\(878\) 0 0
\(879\) 6.04198 + 6.94269i 0.203791 + 0.234171i
\(880\) 0 0
\(881\) 43.0396i 1.45004i 0.688727 + 0.725021i \(0.258170\pi\)
−0.688727 + 0.725021i \(0.741830\pi\)
\(882\) 0 0
\(883\) 32.5509 1.09543 0.547713 0.836666i \(-0.315499\pi\)
0.547713 + 0.836666i \(0.315499\pi\)
\(884\) 0 0
\(885\) −13.6569 + 11.8851i −0.459070 + 0.399512i
\(886\) 0 0
\(887\) −3.60625 −0.121086 −0.0605430 0.998166i \(-0.519283\pi\)
−0.0605430 + 0.998166i \(0.519283\pi\)
\(888\) 0 0
\(889\) 9.17157 0.307605
\(890\) 0 0
\(891\) −5.32857 + 18.7402i −0.178514 + 0.627821i
\(892\) 0 0
\(893\) −32.2843 −1.08035
\(894\) 0 0
\(895\) 0 0
\(896\) 0 0
\(897\) 12.4853 10.8655i 0.416871 0.362788i
\(898\) 0 0
\(899\) 3.06147i 0.102106i
\(900\) 0 0
\(901\) 8.40401i 0.279978i
\(902\) 0 0
\(903\) −12.3125 + 10.7151i −0.409735 + 0.356577i
\(904\) 0 0
\(905\) 23.7701i 0.790146i
\(906\) 0 0
\(907\) 44.3117 1.47134 0.735672 0.677338i \(-0.236866\pi\)
0.735672 + 0.677338i \(0.236866\pi\)
\(908\) 0 0
\(909\) −0.627417 + 4.50063i −0.0208101 + 0.149277i
\(910\) 0 0
\(911\) −10.9804 −0.363796 −0.181898 0.983317i \(-0.558224\pi\)
−0.181898 + 0.983317i \(0.558224\pi\)
\(912\) 0 0
\(913\) −21.6569 −0.716737
\(914\) 0 0
\(915\) 14.1964 12.3547i 0.469320 0.408432i
\(916\) 0 0
\(917\) −12.2843 −0.405662
\(918\) 0 0
\(919\) 16.3128i 0.538110i 0.963125 + 0.269055i \(0.0867113\pi\)
−0.963125 + 0.269055i \(0.913289\pi\)
\(920\) 0 0
\(921\) 32.7279 + 37.6069i 1.07842 + 1.23919i
\(922\) 0 0
\(923\) 3.27904i 0.107931i
\(924\) 0 0
\(925\) 10.1445i 0.333550i
\(926\) 0 0
\(927\) 58.8983 + 8.21080i 1.93447 + 0.269678i
\(928\) 0 0
\(929\) 44.4815i 1.45939i 0.683772 + 0.729696i \(0.260338\pi\)
−0.683772 + 0.729696i \(0.739662\pi\)
\(930\) 0 0
\(931\) 18.7447 0.614332
\(932\) 0 0
\(933\) 27.1127 + 31.1546i 0.887630 + 1.01995i
\(934\) 0 0
\(935\) 9.09644 0.297485
\(936\) 0 0
\(937\) −44.9117 −1.46720 −0.733600 0.679581i \(-0.762162\pi\)
−0.733600 + 0.679581i \(0.762162\pi\)
\(938\) 0 0
\(939\) −33.3313 38.3002i −1.08773 1.24988i
\(940\) 0 0
\(941\) −37.1127 −1.20984 −0.604920 0.796286i \(-0.706795\pi\)
−0.604920 + 0.796286i \(0.706795\pi\)
\(942\) 0 0
\(943\) 13.5140i 0.440075i
\(944\) 0 0
\(945\) −3.07107 4.71179i −0.0999018 0.153275i
\(946\) 0 0
\(947\) 10.3756i 0.337161i 0.985688 + 0.168581i \(0.0539183\pi\)
−0.985688 + 0.168581i \(0.946082\pi\)
\(948\) 0 0
\(949\) 6.36486i 0.206612i
\(950\) 0 0
\(951\) 19.6866 + 22.6215i 0.638383 + 0.733551i
\(952\) 0 0
\(953\) 53.1842i 1.72280i −0.507923 0.861402i \(-0.669587\pi\)
0.507923 0.861402i \(-0.330413\pi\)
\(954\) 0 0
\(955\) −17.4125 −0.563456
\(956\) 0 0
\(957\) −2.34315 + 2.03916i −0.0757431 + 0.0659165i
\(958\) 0 0
\(959\) −17.4125 −0.562280
\(960\) 0 0
\(961\) 17.3431 0.559456
\(962\) 0 0
\(963\) 27.0608 + 3.77244i 0.872021 + 0.121565i
\(964\) 0 0
\(965\) 9.31371 0.299819
\(966\) 0 0
\(967\) 14.0711i 0.452496i 0.974070 + 0.226248i \(0.0726460\pi\)
−0.974070 + 0.226248i \(0.927354\pi\)
\(968\) 0 0
\(969\) 17.6569 15.3661i 0.567220 0.493631i
\(970\) 0 0
\(971\) 2.16478i 0.0694712i −0.999397 0.0347356i \(-0.988941\pi\)
0.999397 0.0347356i \(-0.0110589\pi\)
\(972\) 0 0
\(973\) 3.48106i 0.111598i
\(974\) 0 0
\(975\) 2.27411 1.97908i 0.0728298 0.0633811i
\(976\) 0 0
\(977\) 14.6452i 0.468541i −0.972172 0.234270i \(-0.924730\pi\)
0.972172 0.234270i \(-0.0752701\pi\)
\(978\) 0 0
\(979\) 7.53574 0.240843
\(980\) 0 0
\(981\) 7.31371 + 1.01958i 0.233509 + 0.0325526i
\(982\) 0 0
\(983\) −28.2313 −0.900438 −0.450219 0.892918i \(-0.648654\pi\)
−0.450219 + 0.892918i \(0.648654\pi\)
\(984\) 0 0
\(985\) 2.00000 0.0637253
\(986\) 0 0
\(987\) 14.1964 12.3547i 0.451878 0.393253i
\(988\) 0 0
\(989\) 47.7990 1.51992
\(990\) 0 0
\(991\) 52.3713i 1.66363i −0.555053 0.831815i \(-0.687302\pi\)
0.555053 0.831815i \(-0.312698\pi\)
\(992\) 0 0
\(993\) 33.7990 + 38.8376i 1.07258 + 1.23247i
\(994\) 0 0
\(995\) 10.1899i 0.323041i
\(996\) 0 0
\(997\) 22.0296i 0.697685i 0.937181 + 0.348842i \(0.113425\pi\)
−0.937181 + 0.348842i \(0.886575\pi\)
\(998\) 0 0
\(999\) −28.7831 44.1605i −0.910656 1.39718i
Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))

Twists

       By twisting character
Char Parity Ord Type Twist Min Dim
1.1 even 1 trivial 1920.2.b.f.191.3 yes 8
3.2 odd 2 1920.2.b.d.191.4 yes 8
4.3 odd 2 inner 1920.2.b.f.191.6 yes 8
8.3 odd 2 1920.2.b.d.191.3 8
8.5 even 2 1920.2.b.d.191.6 yes 8
12.11 even 2 1920.2.b.d.191.5 yes 8
24.5 odd 2 inner 1920.2.b.f.191.5 yes 8
24.11 even 2 inner 1920.2.b.f.191.4 yes 8
    
        By twisted newform
Twist Min Dim Char Parity Ord Type
1920.2.b.d.191.3 8 8.3 odd 2
1920.2.b.d.191.4 yes 8 3.2 odd 2
1920.2.b.d.191.5 yes 8 12.11 even 2
1920.2.b.d.191.6 yes 8 8.5 even 2
1920.2.b.f.191.3 yes 8 1.1 even 1 trivial
1920.2.b.f.191.4 yes 8 24.11 even 2 inner
1920.2.b.f.191.5 yes 8 24.5 odd 2 inner
1920.2.b.f.191.6 yes 8 4.3 odd 2 inner