Properties

Label 1920.2.b.g.191.6
Level $1920$
Weight $2$
Character 1920.191
Analytic conductor $15.331$
Analytic rank $0$
Dimension $8$
Inner twists $2$

Related objects

Downloads

Learn more

Show commands: Magma / PariGP / SageMath

Newspace parameters

comment: Compute space of new eigenforms
 
[N,k,chi] = [1920,2,Mod(191,1920)]
 
mf = mfinit([N,k,chi],0)
 
lf = mfeigenbasis(mf)
 
from sage.modular.dirichlet import DirichletCharacter
 
H = DirichletGroup(1920, base_ring=CyclotomicField(2))
 
chi = DirichletCharacter(H, H._module([1, 1, 1, 0]))
 
N = Newforms(chi, 2, names="a")
 
//Please install CHIMP (https://github.com/edgarcosta/CHIMP) if you want to run this code
 
chi := DirichletCharacter("1920.191");
 
S:= CuspForms(chi, 2);
 
N := Newforms(S);
 
Level: \( N \) \(=\) \( 1920 = 2^{7} \cdot 3 \cdot 5 \)
Weight: \( k \) \(=\) \( 2 \)
Character orbit: \([\chi]\) \(=\) 1920.b (of order \(2\), degree \(1\), minimal)

Newform invariants

comment: select newform
 
sage: f = N[0] # Warning: the index may be different
 
gp: f = lf[1] \\ Warning: the index may be different
 
Self dual: no
Analytic conductor: \(15.3312771881\)
Analytic rank: \(0\)
Dimension: \(8\)
Coefficient field: 8.0.619810816.2
comment: defining polynomial
 
gp: f.mod \\ as an extension of the character field
 
Defining polynomial: \( x^{8} - 2x^{5} + 14x^{4} - 8x^{3} + 2x^{2} + 2x + 1 \) Copy content Toggle raw display
Coefficient ring: \(\Z[a_1, \ldots, a_{7}]\)
Coefficient ring index: \( 2^{5} \)
Twist minimal: yes
Sato-Tate group: $\mathrm{SU}(2)[C_{2}]$

Embedding invariants

Embedding label 191.6
Root \(1.18254 + 1.18254i\) of defining polynomial
Character \(\chi\) \(=\) 1920.191
Dual form 1920.2.b.g.191.5

$q$-expansion

comment: q-expansion
 
sage: f.q_expansion() # note that sage often uses an isomorphic number field
 
gp: mfcoefs(f, 20)
 
\(f(q)\) \(=\) \(q+(0.759725 + 1.55654i) q^{3} -1.00000 q^{5} +0.480550i q^{7} +(-1.84564 + 2.36509i) q^{9} -4.73017i q^{11} +1.59363i q^{13} +(-0.759725 - 1.55654i) q^{15} -6.32380i q^{17} -2.09764 q^{19} +(-0.747995 + 0.365086i) q^{21} -5.84325 q^{23} +1.00000 q^{25} +(-5.08353 - 1.07599i) q^{27} -8.95633 q^{29} +8.32380i q^{31} +(7.36270 - 3.59363i) q^{33} -0.480550i q^{35} -3.67143i q^{37} +(-2.48055 + 1.21072i) q^{39} -4.53489i q^{41} -8.70671 q^{43} +(1.84564 - 2.36509i) q^{45} -0.578190 q^{47} +6.76907 q^{49} +(9.84325 - 4.80435i) q^{51} -7.26506 q^{53} +4.73017i q^{55} +(-1.59363 - 3.26506i) q^{57} -2.30873i q^{59} -13.9952i q^{61} +(-1.13654 - 0.886919i) q^{63} -1.59363i q^{65} +0.706711 q^{67} +(-4.43927 - 9.09526i) q^{69} +13.6087 q^{71} +1.80472 q^{73} +(0.759725 + 1.55654i) q^{75} +2.27308 q^{77} -6.54996i q^{79} +(-2.18726 - 8.73017i) q^{81} +3.92582i q^{83} +6.32380i q^{85} +(-6.80435 - 13.9409i) q^{87} -9.26506i q^{89} -0.765818 q^{91} +(-12.9563 + 6.32380i) q^{93} +2.09764 q^{95} -1.18726 q^{97} +(11.1873 + 8.73017i) q^{99} +O(q^{100})\)
\(\operatorname{Tr}(f)(q)\) \(=\) \( 8 q + 2 q^{3} - 8 q^{5} - 4 q^{9} - 2 q^{15} - 8 q^{19} - 4 q^{21} + 12 q^{23} + 8 q^{25} + 14 q^{27} + 8 q^{29} - 8 q^{33} - 28 q^{39} - 36 q^{43} + 4 q^{45} - 4 q^{47} + 20 q^{51} + 16 q^{63} - 28 q^{67}+ \cdots + 64 q^{99}+O(q^{100}) \) Copy content Toggle raw display

Character values

We give the values of \(\chi\) on generators for \(\left(\mathbb{Z}/1920\mathbb{Z}\right)^\times\).

\(n\) \(511\) \(641\) \(901\) \(1537\)
\(\chi(n)\) \(-1\) \(-1\) \(-1\) \(1\)

Coefficient data

For each \(n\) we display the coefficients of the \(q\)-expansion \(a_n\), the Satake parameters \(\alpha_p\), and the Satake angles \(\theta_p = \textrm{Arg}(\alpha_p)\).



Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))
Significant digits:
\(n\) \(a_n\) \(a_n / n^{(k-1)/2}\) \( \alpha_n \) \( \theta_n \)
\(p\) \(a_p\) \(a_p / p^{(k-1)/2}\) \( \alpha_p\) \( \theta_p \)
\(2\) 0 0
\(3\) 0.759725 + 1.55654i 0.438628 + 0.898669i
\(4\) 0 0
\(5\) −1.00000 −0.447214
\(6\) 0 0
\(7\) 0.480550i 0.181631i 0.995868 + 0.0908153i \(0.0289473\pi\)
−0.995868 + 0.0908153i \(0.971053\pi\)
\(8\) 0 0
\(9\) −1.84564 + 2.36509i −0.615212 + 0.788362i
\(10\) 0 0
\(11\) 4.73017i 1.42620i −0.701062 0.713100i \(-0.747290\pi\)
0.701062 0.713100i \(-0.252710\pi\)
\(12\) 0 0
\(13\) 1.59363i 0.441994i 0.975275 + 0.220997i \(0.0709310\pi\)
−0.975275 + 0.220997i \(0.929069\pi\)
\(14\) 0 0
\(15\) −0.759725 1.55654i −0.196160 0.401897i
\(16\) 0 0
\(17\) 6.32380i 1.53375i −0.641798 0.766874i \(-0.721811\pi\)
0.641798 0.766874i \(-0.278189\pi\)
\(18\) 0 0
\(19\) −2.09764 −0.481232 −0.240616 0.970620i \(-0.577349\pi\)
−0.240616 + 0.970620i \(0.577349\pi\)
\(20\) 0 0
\(21\) −0.747995 + 0.365086i −0.163226 + 0.0796682i
\(22\) 0 0
\(23\) −5.84325 −1.21840 −0.609201 0.793016i \(-0.708510\pi\)
−0.609201 + 0.793016i \(0.708510\pi\)
\(24\) 0 0
\(25\) 1.00000 0.200000
\(26\) 0 0
\(27\) −5.08353 1.07599i −0.978325 0.207074i
\(28\) 0 0
\(29\) −8.95633 −1.66315 −0.831575 0.555413i \(-0.812560\pi\)
−0.831575 + 0.555413i \(0.812560\pi\)
\(30\) 0 0
\(31\) 8.32380i 1.49500i 0.664262 + 0.747499i \(0.268746\pi\)
−0.664262 + 0.747499i \(0.731254\pi\)
\(32\) 0 0
\(33\) 7.36270 3.59363i 1.28168 0.625571i
\(34\) 0 0
\(35\) 0.480550i 0.0812277i
\(36\) 0 0
\(37\) 3.67143i 0.603580i −0.953374 0.301790i \(-0.902416\pi\)
0.953374 0.301790i \(-0.0975841\pi\)
\(38\) 0 0
\(39\) −2.48055 + 1.21072i −0.397206 + 0.193871i
\(40\) 0 0
\(41\) 4.53489i 0.708231i −0.935202 0.354115i \(-0.884782\pi\)
0.935202 0.354115i \(-0.115218\pi\)
\(42\) 0 0
\(43\) −8.70671 −1.32776 −0.663880 0.747839i \(-0.731092\pi\)
−0.663880 + 0.747839i \(0.731092\pi\)
\(44\) 0 0
\(45\) 1.84564 2.36509i 0.275131 0.352566i
\(46\) 0 0
\(47\) −0.578190 −0.0843377 −0.0421688 0.999110i \(-0.513427\pi\)
−0.0421688 + 0.999110i \(0.513427\pi\)
\(48\) 0 0
\(49\) 6.76907 0.967010
\(50\) 0 0
\(51\) 9.84325 4.80435i 1.37833 0.672744i
\(52\) 0 0
\(53\) −7.26506 −0.997933 −0.498966 0.866621i \(-0.666287\pi\)
−0.498966 + 0.866621i \(0.666287\pi\)
\(54\) 0 0
\(55\) 4.73017i 0.637816i
\(56\) 0 0
\(57\) −1.59363 3.26506i −0.211081 0.432468i
\(58\) 0 0
\(59\) 2.30873i 0.300571i −0.988643 0.150285i \(-0.951981\pi\)
0.988643 0.150285i \(-0.0480193\pi\)
\(60\) 0 0
\(61\) 13.9952i 1.79191i −0.444149 0.895953i \(-0.646494\pi\)
0.444149 0.895953i \(-0.353506\pi\)
\(62\) 0 0
\(63\) −1.13654 0.886919i −0.143191 0.111741i
\(64\) 0 0
\(65\) 1.59363i 0.197666i
\(66\) 0 0
\(67\) 0.706711 0.0863385 0.0431692 0.999068i \(-0.486255\pi\)
0.0431692 + 0.999068i \(0.486255\pi\)
\(68\) 0 0
\(69\) −4.43927 9.09526i −0.534425 1.09494i
\(70\) 0 0
\(71\) 13.6087 1.61506 0.807528 0.589829i \(-0.200805\pi\)
0.807528 + 0.589829i \(0.200805\pi\)
\(72\) 0 0
\(73\) 1.80472 0.211226 0.105613 0.994407i \(-0.466319\pi\)
0.105613 + 0.994407i \(0.466319\pi\)
\(74\) 0 0
\(75\) 0.759725 + 1.55654i 0.0877255 + 0.179734i
\(76\) 0 0
\(77\) 2.27308 0.259042
\(78\) 0 0
\(79\) 6.54996i 0.736928i −0.929642 0.368464i \(-0.879884\pi\)
0.929642 0.368464i \(-0.120116\pi\)
\(80\) 0 0
\(81\) −2.18726 8.73017i −0.243029 0.970019i
\(82\) 0 0
\(83\) 3.92582i 0.430915i 0.976513 + 0.215457i \(0.0691242\pi\)
−0.976513 + 0.215457i \(0.930876\pi\)
\(84\) 0 0
\(85\) 6.32380i 0.685913i
\(86\) 0 0
\(87\) −6.80435 13.9409i −0.729503 1.49462i
\(88\) 0 0
\(89\) 9.26506i 0.982095i −0.871133 0.491047i \(-0.836614\pi\)
0.871133 0.491047i \(-0.163386\pi\)
\(90\) 0 0
\(91\) −0.765818 −0.0802796
\(92\) 0 0
\(93\) −12.9563 + 6.32380i −1.34351 + 0.655748i
\(94\) 0 0
\(95\) 2.09764 0.215213
\(96\) 0 0
\(97\) −1.18726 −0.120548 −0.0602740 0.998182i \(-0.519197\pi\)
−0.0602740 + 0.998182i \(0.519197\pi\)
\(98\) 0 0
\(99\) 11.1873 + 8.73017i 1.12436 + 0.877415i
\(100\) 0 0
\(101\) −6.87853 −0.684439 −0.342220 0.939620i \(-0.611179\pi\)
−0.342220 + 0.939620i \(0.611179\pi\)
\(102\) 0 0
\(103\) 1.94089i 0.191242i −0.995418 0.0956209i \(-0.969516\pi\)
0.995418 0.0956209i \(-0.0304837\pi\)
\(104\) 0 0
\(105\) 0.747995 0.365086i 0.0729968 0.0356287i
\(106\) 0 0
\(107\) 7.45672i 0.720868i 0.932785 + 0.360434i \(0.117371\pi\)
−0.932785 + 0.360434i \(0.882629\pi\)
\(108\) 0 0
\(109\) 8.11271i 0.777057i 0.921437 + 0.388528i \(0.127016\pi\)
−0.921437 + 0.388528i \(0.872984\pi\)
\(110\) 0 0
\(111\) 5.71473 2.78928i 0.542418 0.264747i
\(112\) 0 0
\(113\) 3.94928i 0.371517i 0.982595 + 0.185759i \(0.0594742\pi\)
−0.982595 + 0.185759i \(0.940526\pi\)
\(114\) 0 0
\(115\) 5.84325 0.544886
\(116\) 0 0
\(117\) −3.76907 2.94126i −0.348451 0.271920i
\(118\) 0 0
\(119\) 3.03890 0.278576
\(120\) 0 0
\(121\) −11.3745 −1.03405
\(122\) 0 0
\(123\) 7.05874 3.44527i 0.636465 0.310650i
\(124\) 0 0
\(125\) −1.00000 −0.0894427
\(126\) 0 0
\(127\) 3.32417i 0.294972i 0.989064 + 0.147486i \(0.0471182\pi\)
−0.989064 + 0.147486i \(0.952882\pi\)
\(128\) 0 0
\(129\) −6.61471 13.5523i −0.582393 1.19322i
\(130\) 0 0
\(131\) 6.61269i 0.577754i 0.957366 + 0.288877i \(0.0932818\pi\)
−0.957366 + 0.288877i \(0.906718\pi\)
\(132\) 0 0
\(133\) 1.00802i 0.0874065i
\(134\) 0 0
\(135\) 5.08353 + 1.07599i 0.437520 + 0.0926065i
\(136\) 0 0
\(137\) 8.86346i 0.757256i −0.925549 0.378628i \(-0.876396\pi\)
0.925549 0.378628i \(-0.123604\pi\)
\(138\) 0 0
\(139\) −20.6278 −1.74962 −0.874812 0.484462i \(-0.839015\pi\)
−0.874812 + 0.484462i \(0.839015\pi\)
\(140\) 0 0
\(141\) −0.439266 0.899976i −0.0369928 0.0757917i
\(142\) 0 0
\(143\) 7.53814 0.630371
\(144\) 0 0
\(145\) 8.95633 0.743783
\(146\) 0 0
\(147\) 5.14263 + 10.5363i 0.424157 + 0.869022i
\(148\) 0 0
\(149\) 18.8429 1.54367 0.771835 0.635823i \(-0.219339\pi\)
0.771835 + 0.635823i \(0.219339\pi\)
\(150\) 0 0
\(151\) 15.2143i 1.23813i 0.785341 + 0.619063i \(0.212487\pi\)
−0.785341 + 0.619063i \(0.787513\pi\)
\(152\) 0 0
\(153\) 14.9563 + 11.6714i 1.20915 + 0.943579i
\(154\) 0 0
\(155\) 8.32380i 0.668584i
\(156\) 0 0
\(157\) 16.9762i 1.35485i −0.735594 0.677423i \(-0.763097\pi\)
0.735594 0.677423i \(-0.236903\pi\)
\(158\) 0 0
\(159\) −5.51945 11.3084i −0.437721 0.896811i
\(160\) 0 0
\(161\) 2.80797i 0.221299i
\(162\) 0 0
\(163\) 7.89397 0.618304 0.309152 0.951013i \(-0.399955\pi\)
0.309152 + 0.951013i \(0.399955\pi\)
\(164\) 0 0
\(165\) −7.36270 + 3.59363i −0.573186 + 0.279764i
\(166\) 0 0
\(167\) −13.0305 −1.00833 −0.504166 0.863607i \(-0.668200\pi\)
−0.504166 + 0.863607i \(0.668200\pi\)
\(168\) 0 0
\(169\) 10.4603 0.804642
\(170\) 0 0
\(171\) 3.87148 4.96110i 0.296059 0.379385i
\(172\) 0 0
\(173\) −10.1556 −0.772116 −0.386058 0.922474i \(-0.626164\pi\)
−0.386058 + 0.922474i \(0.626164\pi\)
\(174\) 0 0
\(175\) 0.480550i 0.0363261i
\(176\) 0 0
\(177\) 3.59363 1.75400i 0.270114 0.131839i
\(178\) 0 0
\(179\) 3.76907i 0.281714i 0.990030 + 0.140857i \(0.0449857\pi\)
−0.990030 + 0.140857i \(0.955014\pi\)
\(180\) 0 0
\(181\) 8.45232i 0.628256i −0.949381 0.314128i \(-0.898288\pi\)
0.949381 0.314128i \(-0.101712\pi\)
\(182\) 0 0
\(183\) 21.7841 10.6325i 1.61033 0.785979i
\(184\) 0 0
\(185\) 3.67143i 0.269929i
\(186\) 0 0
\(187\) −29.9127 −2.18743
\(188\) 0 0
\(189\) 0.517067 2.44289i 0.0376111 0.177694i
\(190\) 0 0
\(191\) −21.5690 −1.56068 −0.780340 0.625356i \(-0.784954\pi\)
−0.780340 + 0.625356i \(0.784954\pi\)
\(192\) 0 0
\(193\) 15.7174 1.13136 0.565681 0.824624i \(-0.308613\pi\)
0.565681 + 0.824624i \(0.308613\pi\)
\(194\) 0 0
\(195\) 2.48055 1.21072i 0.177636 0.0867015i
\(196\) 0 0
\(197\) −22.0301 −1.56958 −0.784791 0.619760i \(-0.787230\pi\)
−0.784791 + 0.619760i \(0.787230\pi\)
\(198\) 0 0
\(199\) 5.08962i 0.360794i 0.983594 + 0.180397i \(0.0577382\pi\)
−0.983594 + 0.180397i \(0.942262\pi\)
\(200\) 0 0
\(201\) 0.536906 + 1.10002i 0.0378704 + 0.0775897i
\(202\) 0 0
\(203\) 4.30396i 0.302079i
\(204\) 0 0
\(205\) 4.53489i 0.316730i
\(206\) 0 0
\(207\) 10.7845 13.8198i 0.749575 0.960542i
\(208\) 0 0
\(209\) 9.92220i 0.686333i
\(210\) 0 0
\(211\) 18.2365 1.25545 0.627725 0.778435i \(-0.283986\pi\)
0.627725 + 0.778435i \(0.283986\pi\)
\(212\) 0 0
\(213\) 10.3389 + 21.1825i 0.708408 + 1.45140i
\(214\) 0 0
\(215\) 8.70671 0.593793
\(216\) 0 0
\(217\) −4.00000 −0.271538
\(218\) 0 0
\(219\) 1.37109 + 2.80912i 0.0926497 + 0.189823i
\(220\) 0 0
\(221\) 10.0778 0.677906
\(222\) 0 0
\(223\) 24.1671i 1.61835i 0.587571 + 0.809173i \(0.300084\pi\)
−0.587571 + 0.809173i \(0.699916\pi\)
\(224\) 0 0
\(225\) −1.84564 + 2.36509i −0.123042 + 0.157672i
\(226\) 0 0
\(227\) 14.3473i 0.952261i 0.879375 + 0.476131i \(0.157961\pi\)
−0.879375 + 0.476131i \(0.842039\pi\)
\(228\) 0 0
\(229\) 10.5698i 0.698472i −0.937035 0.349236i \(-0.886441\pi\)
0.937035 0.349236i \(-0.113559\pi\)
\(230\) 0 0
\(231\) 1.72692 + 3.53814i 0.113623 + 0.232793i
\(232\) 0 0
\(233\) 8.44128i 0.553007i −0.961013 0.276503i \(-0.910824\pi\)
0.961013 0.276503i \(-0.0891757\pi\)
\(234\) 0 0
\(235\) 0.578190 0.0377170
\(236\) 0 0
\(237\) 10.1953 4.97617i 0.662255 0.323237i
\(238\) 0 0
\(239\) 11.8047 0.763584 0.381792 0.924248i \(-0.375307\pi\)
0.381792 + 0.924248i \(0.375307\pi\)
\(240\) 0 0
\(241\) −27.6817 −1.78314 −0.891569 0.452885i \(-0.850395\pi\)
−0.891569 + 0.452885i \(0.850395\pi\)
\(242\) 0 0
\(243\) 11.9271 10.0371i 0.765127 0.643880i
\(244\) 0 0
\(245\) −6.76907 −0.432460
\(246\) 0 0
\(247\) 3.34286i 0.212701i
\(248\) 0 0
\(249\) −6.11070 + 2.98254i −0.387250 + 0.189011i
\(250\) 0 0
\(251\) 4.73017i 0.298566i −0.988795 0.149283i \(-0.952303\pi\)
0.988795 0.149283i \(-0.0476965\pi\)
\(252\) 0 0
\(253\) 27.6396i 1.73769i
\(254\) 0 0
\(255\) −9.84325 + 4.80435i −0.616408 + 0.300860i
\(256\) 0 0
\(257\) 22.9714i 1.43292i 0.697630 + 0.716458i \(0.254238\pi\)
−0.697630 + 0.716458i \(0.745762\pi\)
\(258\) 0 0
\(259\) 1.76431 0.109629
\(260\) 0 0
\(261\) 16.5301 21.1825i 1.02319 1.31116i
\(262\) 0 0
\(263\) −19.6171 −1.20964 −0.604821 0.796362i \(-0.706755\pi\)
−0.604821 + 0.796362i \(0.706755\pi\)
\(264\) 0 0
\(265\) 7.26506 0.446289
\(266\) 0 0
\(267\) 14.4214 7.03890i 0.882578 0.430774i
\(268\) 0 0
\(269\) −8.46836 −0.516325 −0.258163 0.966101i \(-0.583117\pi\)
−0.258163 + 0.966101i \(0.583117\pi\)
\(270\) 0 0
\(271\) 15.4714i 0.939820i −0.882714 0.469910i \(-0.844286\pi\)
0.882714 0.469910i \(-0.155714\pi\)
\(272\) 0 0
\(273\) −0.581812 1.19203i −0.0352128 0.0721448i
\(274\) 0 0
\(275\) 4.73017i 0.285240i
\(276\) 0 0
\(277\) 24.7096i 1.48466i 0.670037 + 0.742328i \(0.266278\pi\)
−0.670037 + 0.742328i \(0.733722\pi\)
\(278\) 0 0
\(279\) −19.6865 15.3627i −1.17860 0.919741i
\(280\) 0 0
\(281\) 27.0033i 1.61088i −0.592678 0.805440i \(-0.701929\pi\)
0.592678 0.805440i \(-0.298071\pi\)
\(282\) 0 0
\(283\) −20.9020 −1.24249 −0.621247 0.783615i \(-0.713374\pi\)
−0.621247 + 0.783615i \(0.713374\pi\)
\(284\) 0 0
\(285\) 1.59363 + 3.26506i 0.0943985 + 0.193406i
\(286\) 0 0
\(287\) 2.17924 0.128636
\(288\) 0 0
\(289\) −22.9905 −1.35238
\(290\) 0 0
\(291\) −0.901992 1.84802i −0.0528757 0.108333i
\(292\) 0 0
\(293\) 0.374521 0.0218797 0.0109399 0.999940i \(-0.496518\pi\)
0.0109399 + 0.999940i \(0.496518\pi\)
\(294\) 0 0
\(295\) 2.30873i 0.134419i
\(296\) 0 0
\(297\) −5.08962 + 24.0460i −0.295330 + 1.39529i
\(298\) 0 0
\(299\) 9.31198i 0.538526i
\(300\) 0 0
\(301\) 4.18401i 0.241162i
\(302\) 0 0
\(303\) −5.22579 10.7067i −0.300214 0.615084i
\(304\) 0 0
\(305\) 13.9952i 0.801365i
\(306\) 0 0
\(307\) −14.3623 −0.819702 −0.409851 0.912153i \(-0.634419\pi\)
−0.409851 + 0.912153i \(0.634419\pi\)
\(308\) 0 0
\(309\) 3.02108 1.47454i 0.171863 0.0838839i
\(310\) 0 0
\(311\) 22.2166 1.25979 0.629895 0.776681i \(-0.283098\pi\)
0.629895 + 0.776681i \(0.283098\pi\)
\(312\) 0 0
\(313\) 33.6697 1.90313 0.951563 0.307455i \(-0.0994772\pi\)
0.951563 + 0.307455i \(0.0994772\pi\)
\(314\) 0 0
\(315\) 1.13654 + 0.886919i 0.0640368 + 0.0499722i
\(316\) 0 0
\(317\) 29.7952 1.67346 0.836732 0.547612i \(-0.184463\pi\)
0.836732 + 0.547612i \(0.184463\pi\)
\(318\) 0 0
\(319\) 42.3650i 2.37198i
\(320\) 0 0
\(321\) −11.6067 + 5.66506i −0.647822 + 0.316193i
\(322\) 0 0
\(323\) 13.2651i 0.738088i
\(324\) 0 0
\(325\) 1.59363i 0.0883987i
\(326\) 0 0
\(327\) −12.6278 + 6.16343i −0.698317 + 0.340839i
\(328\) 0 0
\(329\) 0.277849i 0.0153183i
\(330\) 0 0
\(331\) −23.7063 −1.30302 −0.651509 0.758641i \(-0.725864\pi\)
−0.651509 + 0.758641i \(0.725864\pi\)
\(332\) 0 0
\(333\) 8.68325 + 6.77612i 0.475839 + 0.371329i
\(334\) 0 0
\(335\) −0.706711 −0.0386117
\(336\) 0 0
\(337\) −27.9127 −1.52050 −0.760250 0.649631i \(-0.774924\pi\)
−0.760250 + 0.649631i \(0.774924\pi\)
\(338\) 0 0
\(339\) −6.14721 + 3.00037i −0.333871 + 0.162958i
\(340\) 0 0
\(341\) 39.3730 2.13217
\(342\) 0 0
\(343\) 6.61672i 0.357269i
\(344\) 0 0
\(345\) 4.43927 + 9.09526i 0.239002 + 0.489672i
\(346\) 0 0
\(347\) 14.4956i 0.778166i −0.921203 0.389083i \(-0.872792\pi\)
0.921203 0.389083i \(-0.127208\pi\)
\(348\) 0 0
\(349\) 2.73494i 0.146398i 0.997317 + 0.0731989i \(0.0233208\pi\)
−0.997317 + 0.0731989i \(0.976679\pi\)
\(350\) 0 0
\(351\) 1.71473 8.10126i 0.0915256 0.432413i
\(352\) 0 0
\(353\) 35.3936i 1.88381i 0.335879 + 0.941905i \(0.390967\pi\)
−0.335879 + 0.941905i \(0.609033\pi\)
\(354\) 0 0
\(355\) −13.6087 −0.722275
\(356\) 0 0
\(357\) 2.30873 + 4.73017i 0.122191 + 0.250347i
\(358\) 0 0
\(359\) −11.1777 −0.589938 −0.294969 0.955507i \(-0.595309\pi\)
−0.294969 + 0.955507i \(0.595309\pi\)
\(360\) 0 0
\(361\) −14.5999 −0.768416
\(362\) 0 0
\(363\) −8.64151 17.7049i −0.453562 0.929266i
\(364\) 0 0
\(365\) −1.80472 −0.0944633
\(366\) 0 0
\(367\) 8.18383i 0.427192i 0.976922 + 0.213596i \(0.0685177\pi\)
−0.976922 + 0.213596i \(0.931482\pi\)
\(368\) 0 0
\(369\) 10.7254 + 8.36975i 0.558342 + 0.435712i
\(370\) 0 0
\(371\) 3.49122i 0.181255i
\(372\) 0 0
\(373\) 14.2016i 0.735329i 0.929959 + 0.367664i \(0.119842\pi\)
−0.929959 + 0.367664i \(0.880158\pi\)
\(374\) 0 0
\(375\) −0.759725 1.55654i −0.0392320 0.0803794i
\(376\) 0 0
\(377\) 14.2731i 0.735101i
\(378\) 0 0
\(379\) 10.0976 0.518681 0.259340 0.965786i \(-0.416495\pi\)
0.259340 + 0.965786i \(0.416495\pi\)
\(380\) 0 0
\(381\) −5.17420 + 2.52546i −0.265082 + 0.129383i
\(382\) 0 0
\(383\) −9.35125 −0.477827 −0.238913 0.971041i \(-0.576791\pi\)
−0.238913 + 0.971041i \(0.576791\pi\)
\(384\) 0 0
\(385\) −2.27308 −0.115847
\(386\) 0 0
\(387\) 16.0694 20.5921i 0.816854 1.04676i
\(388\) 0 0
\(389\) 12.5301 0.635302 0.317651 0.948208i \(-0.397106\pi\)
0.317651 + 0.948208i \(0.397106\pi\)
\(390\) 0 0
\(391\) 36.9516i 1.86872i
\(392\) 0 0
\(393\) −10.2929 + 5.02383i −0.519209 + 0.253419i
\(394\) 0 0
\(395\) 6.54996i 0.329564i
\(396\) 0 0
\(397\) 28.3492i 1.42280i −0.702785 0.711402i \(-0.748060\pi\)
0.702785 0.711402i \(-0.251940\pi\)
\(398\) 0 0
\(399\) 1.56902 0.765818i 0.0785495 0.0383389i
\(400\) 0 0
\(401\) 17.7571i 0.886745i 0.896337 + 0.443373i \(0.146218\pi\)
−0.896337 + 0.443373i \(0.853782\pi\)
\(402\) 0 0
\(403\) −13.2651 −0.660780
\(404\) 0 0
\(405\) 2.18726 + 8.73017i 0.108686 + 0.433806i
\(406\) 0 0
\(407\) −17.3665 −0.860825
\(408\) 0 0
\(409\) −23.2294 −1.14862 −0.574310 0.818638i \(-0.694730\pi\)
−0.574310 + 0.818638i \(0.694730\pi\)
\(410\) 0 0
\(411\) 13.7963 6.73379i 0.680523 0.332154i
\(412\) 0 0
\(413\) 1.10946 0.0545929
\(414\) 0 0
\(415\) 3.92582i 0.192711i
\(416\) 0 0
\(417\) −15.6714 32.1079i −0.767433 1.57233i
\(418\) 0 0
\(419\) 36.4167i 1.77907i −0.456866 0.889536i \(-0.651028\pi\)
0.456866 0.889536i \(-0.348972\pi\)
\(420\) 0 0
\(421\) 21.8301i 1.06393i −0.846765 0.531967i \(-0.821453\pi\)
0.846765 0.531967i \(-0.178547\pi\)
\(422\) 0 0
\(423\) 1.06713 1.36747i 0.0518855 0.0664886i
\(424\) 0 0
\(425\) 6.32380i 0.306749i
\(426\) 0 0
\(427\) 6.72540 0.325465
\(428\) 0 0
\(429\) 5.72692 + 11.7334i 0.276498 + 0.566495i
\(430\) 0 0
\(431\) −32.4355 −1.56237 −0.781183 0.624303i \(-0.785383\pi\)
−0.781183 + 0.624303i \(0.785383\pi\)
\(432\) 0 0
\(433\) 19.5618 0.940079 0.470040 0.882645i \(-0.344240\pi\)
0.470040 + 0.882645i \(0.344240\pi\)
\(434\) 0 0
\(435\) 6.80435 + 13.9409i 0.326244 + 0.668415i
\(436\) 0 0
\(437\) 12.2570 0.586334
\(438\) 0 0
\(439\) 9.89283i 0.472159i −0.971734 0.236079i \(-0.924137\pi\)
0.971734 0.236079i \(-0.0758625\pi\)
\(440\) 0 0
\(441\) −12.4932 + 16.0094i −0.594916 + 0.762354i
\(442\) 0 0
\(443\) 39.2519i 1.86491i 0.361281 + 0.932457i \(0.382340\pi\)
−0.361281 + 0.932457i \(0.617660\pi\)
\(444\) 0 0
\(445\) 9.26506i 0.439206i
\(446\) 0 0
\(447\) 14.3154 + 29.3297i 0.677096 + 1.38725i
\(448\) 0 0
\(449\) 12.7302i 0.600774i 0.953817 + 0.300387i \(0.0971158\pi\)
−0.953817 + 0.300387i \(0.902884\pi\)
\(450\) 0 0
\(451\) −21.4508 −1.01008
\(452\) 0 0
\(453\) −23.6817 + 11.5587i −1.11267 + 0.543076i
\(454\) 0 0
\(455\) 0.765818 0.0359021
\(456\) 0 0
\(457\) −5.14758 −0.240794 −0.120397 0.992726i \(-0.538417\pi\)
−0.120397 + 0.992726i \(0.538417\pi\)
\(458\) 0 0
\(459\) −6.80435 + 32.1472i −0.317600 + 1.50050i
\(460\) 0 0
\(461\) 9.11194 0.424385 0.212193 0.977228i \(-0.431940\pi\)
0.212193 + 0.977228i \(0.431940\pi\)
\(462\) 0 0
\(463\) 36.4542i 1.69417i −0.531456 0.847086i \(-0.678355\pi\)
0.531456 0.847086i \(-0.321645\pi\)
\(464\) 0 0
\(465\) 12.9563 6.32380i 0.600836 0.293259i
\(466\) 0 0
\(467\) 10.5425i 0.487851i −0.969794 0.243925i \(-0.921565\pi\)
0.969794 0.243925i \(-0.0784352\pi\)
\(468\) 0 0
\(469\) 0.339610i 0.0156817i
\(470\) 0 0
\(471\) 26.4241 12.8972i 1.21756 0.594273i
\(472\) 0 0
\(473\) 41.1842i 1.89365i
\(474\) 0 0
\(475\) −2.09764 −0.0962463
\(476\) 0 0
\(477\) 13.4087 17.1825i 0.613940 0.786732i
\(478\) 0 0
\(479\) 31.0221 1.41744 0.708719 0.705491i \(-0.249274\pi\)
0.708719 + 0.705491i \(0.249274\pi\)
\(480\) 0 0
\(481\) 5.85090 0.266778
\(482\) 0 0
\(483\) 4.37072 2.13329i 0.198875 0.0970679i
\(484\) 0 0
\(485\) 1.18726 0.0539107
\(486\) 0 0
\(487\) 18.7536i 0.849808i −0.905238 0.424904i \(-0.860308\pi\)
0.905238 0.424904i \(-0.139692\pi\)
\(488\) 0 0
\(489\) 5.99725 + 12.2873i 0.271205 + 0.555650i
\(490\) 0 0
\(491\) 16.9255i 0.763835i 0.924196 + 0.381917i \(0.124736\pi\)
−0.924196 + 0.381917i \(0.875264\pi\)
\(492\) 0 0
\(493\) 56.6381i 2.55085i
\(494\) 0 0
\(495\) −11.1873 8.73017i −0.502830 0.392392i
\(496\) 0 0
\(497\) 6.53966i 0.293344i
\(498\) 0 0
\(499\) −5.90236 −0.264226 −0.132113 0.991235i \(-0.542176\pi\)
−0.132113 + 0.991235i \(0.542176\pi\)
\(500\) 0 0
\(501\) −9.89961 20.2825i −0.442282 0.906156i
\(502\) 0 0
\(503\) −20.2647 −0.903558 −0.451779 0.892130i \(-0.649210\pi\)
−0.451779 + 0.892130i \(0.649210\pi\)
\(504\) 0 0
\(505\) 6.87853 0.306091
\(506\) 0 0
\(507\) 7.94699 + 16.2819i 0.352938 + 0.723107i
\(508\) 0 0
\(509\) 12.5040 0.554231 0.277115 0.960837i \(-0.410622\pi\)
0.277115 + 0.960837i \(0.410622\pi\)
\(510\) 0 0
\(511\) 0.867257i 0.0383652i
\(512\) 0 0
\(513\) 10.6634 + 2.25704i 0.470801 + 0.0996508i
\(514\) 0 0
\(515\) 1.94089i 0.0855259i
\(516\) 0 0
\(517\) 2.73494i 0.120282i
\(518\) 0 0
\(519\) −7.71547 15.8076i −0.338671 0.693877i
\(520\) 0 0
\(521\) 23.6697i 1.03699i 0.855081 + 0.518495i \(0.173507\pi\)
−0.855081 + 0.518495i \(0.826493\pi\)
\(522\) 0 0
\(523\) 43.1655 1.88750 0.943749 0.330664i \(-0.107273\pi\)
0.943749 + 0.330664i \(0.107273\pi\)
\(524\) 0 0
\(525\) −0.747995 + 0.365086i −0.0326452 + 0.0159336i
\(526\) 0 0
\(527\) 52.6381 2.29295
\(528\) 0 0
\(529\) 11.1436 0.484504
\(530\) 0 0
\(531\) 5.46034 + 4.26107i 0.236959 + 0.184915i
\(532\) 0 0
\(533\) 7.22694 0.313033
\(534\) 0 0
\(535\) 7.45672i 0.322382i
\(536\) 0 0
\(537\) −5.86671 + 2.86346i −0.253167 + 0.123567i
\(538\) 0 0
\(539\) 32.0189i 1.37915i
\(540\) 0 0
\(541\) 6.99198i 0.300609i −0.988640 0.150304i \(-0.951975\pi\)
0.988640 0.150304i \(-0.0480254\pi\)
\(542\) 0 0
\(543\) 13.1564 6.42144i 0.564594 0.275570i
\(544\) 0 0
\(545\) 8.11271i 0.347510i
\(546\) 0 0
\(547\) 15.8227 0.676529 0.338264 0.941051i \(-0.390160\pi\)
0.338264 + 0.941051i \(0.390160\pi\)
\(548\) 0 0
\(549\) 33.0999 + 25.8301i 1.41267 + 1.10240i
\(550\) 0 0
\(551\) 18.7872 0.800360
\(552\) 0 0
\(553\) 3.14758 0.133849
\(554\) 0 0
\(555\) −5.71473 + 2.78928i −0.242577 + 0.118398i
\(556\) 0 0
\(557\) 16.3032 0.690790 0.345395 0.938457i \(-0.387745\pi\)
0.345395 + 0.938457i \(0.387745\pi\)
\(558\) 0 0
\(559\) 13.8753i 0.586862i
\(560\) 0 0
\(561\) −22.7254 46.5603i −0.959467 1.96578i
\(562\) 0 0
\(563\) 15.4567i 0.651423i 0.945469 + 0.325712i \(0.105604\pi\)
−0.945469 + 0.325712i \(0.894396\pi\)
\(564\) 0 0
\(565\) 3.94928i 0.166147i
\(566\) 0 0
\(567\) 4.19528 1.05109i 0.176185 0.0441415i
\(568\) 0 0
\(569\) 2.64284i 0.110793i 0.998464 + 0.0553967i \(0.0176424\pi\)
−0.998464 + 0.0553967i \(0.982358\pi\)
\(570\) 0 0
\(571\) 5.43326 0.227375 0.113687 0.993517i \(-0.463734\pi\)
0.113687 + 0.993517i \(0.463734\pi\)
\(572\) 0 0
\(573\) −16.3865 33.5731i −0.684557 1.40253i
\(574\) 0 0
\(575\) −5.84325 −0.243680
\(576\) 0 0
\(577\) 16.7651 0.697940 0.348970 0.937134i \(-0.386532\pi\)
0.348970 + 0.937134i \(0.386532\pi\)
\(578\) 0 0
\(579\) 11.9409 + 24.4647i 0.496247 + 1.01672i
\(580\) 0 0
\(581\) −1.88655 −0.0782673
\(582\) 0 0
\(583\) 34.3650i 1.42325i
\(584\) 0 0
\(585\) 3.76907 + 2.94126i 0.155832 + 0.121606i
\(586\) 0 0
\(587\) 4.87014i 0.201012i −0.994936 0.100506i \(-0.967954\pi\)
0.994936 0.100506i \(-0.0320462\pi\)
\(588\) 0 0
\(589\) 17.4603i 0.719441i
\(590\) 0 0
\(591\) −16.7369 34.2908i −0.688462 1.41054i
\(592\) 0 0
\(593\) 23.5492i 0.967049i 0.875331 + 0.483525i \(0.160644\pi\)
−0.875331 + 0.483525i \(0.839356\pi\)
\(594\) 0 0
\(595\) −3.03890 −0.124583
\(596\) 0 0
\(597\) −7.92220 + 3.86671i −0.324234 + 0.158254i
\(598\) 0 0
\(599\) 39.1160 1.59824 0.799118 0.601175i \(-0.205300\pi\)
0.799118 + 0.601175i \(0.205300\pi\)
\(600\) 0 0
\(601\) −33.9945 −1.38666 −0.693332 0.720618i \(-0.743858\pi\)
−0.693332 + 0.720618i \(0.743858\pi\)
\(602\) 0 0
\(603\) −1.30433 + 1.67143i −0.0531164 + 0.0680660i
\(604\) 0 0
\(605\) 11.3745 0.462440
\(606\) 0 0
\(607\) 38.7441i 1.57257i 0.617861 + 0.786287i \(0.287999\pi\)
−0.617861 + 0.786287i \(0.712001\pi\)
\(608\) 0 0
\(609\) 6.69929 3.26983i 0.271469 0.132500i
\(610\) 0 0
\(611\) 0.921421i 0.0372767i
\(612\) 0 0
\(613\) 21.4190i 0.865104i 0.901609 + 0.432552i \(0.142387\pi\)
−0.901609 + 0.432552i \(0.857613\pi\)
\(614\) 0 0
\(615\) −7.05874 + 3.44527i −0.284636 + 0.138927i
\(616\) 0 0
\(617\) 10.4794i 0.421885i −0.977498 0.210942i \(-0.932347\pi\)
0.977498 0.210942i \(-0.0676533\pi\)
\(618\) 0 0
\(619\) 23.4943 0.944315 0.472158 0.881514i \(-0.343475\pi\)
0.472158 + 0.881514i \(0.343475\pi\)
\(620\) 0 0
\(621\) 29.7043 + 6.28728i 1.19199 + 0.252300i
\(622\) 0 0
\(623\) 4.45232 0.178379
\(624\) 0 0
\(625\) 1.00000 0.0400000
\(626\) 0 0
\(627\) −15.4443 + 7.53814i −0.616786 + 0.301044i
\(628\) 0 0
\(629\) −23.2174 −0.925739
\(630\) 0 0
\(631\) 43.5809i 1.73493i −0.497500 0.867464i \(-0.665749\pi\)
0.497500 0.867464i \(-0.334251\pi\)
\(632\) 0 0
\(633\) 13.8547 + 28.3858i 0.550675 + 1.12823i
\(634\) 0 0
\(635\) 3.32417i 0.131916i
\(636\) 0 0
\(637\) 10.7874i 0.427412i
\(638\) 0 0
\(639\) −25.1167 + 32.1857i −0.993601 + 1.27325i
\(640\) 0 0
\(641\) 6.29195i 0.248517i −0.992250 0.124259i \(-0.960345\pi\)
0.992250 0.124259i \(-0.0396552\pi\)
\(642\) 0 0
\(643\) −25.6583 −1.01186 −0.505932 0.862573i \(-0.668851\pi\)
−0.505932 + 0.862573i \(0.668851\pi\)
\(644\) 0 0
\(645\) 6.61471 + 13.5523i 0.260454 + 0.533623i
\(646\) 0 0
\(647\) −6.22575 −0.244760 −0.122380 0.992483i \(-0.539053\pi\)
−0.122380 + 0.992483i \(0.539053\pi\)
\(648\) 0 0
\(649\) −10.9207 −0.428674
\(650\) 0 0
\(651\) −3.03890 6.22616i −0.119104 0.244022i
\(652\) 0 0
\(653\) −35.0382 −1.37115 −0.685575 0.728002i \(-0.740449\pi\)
−0.685575 + 0.728002i \(0.740449\pi\)
\(654\) 0 0
\(655\) 6.61269i 0.258379i
\(656\) 0 0
\(657\) −3.33085 + 4.26832i −0.129949 + 0.166523i
\(658\) 0 0
\(659\) 17.5166i 0.682350i 0.940000 + 0.341175i \(0.110825\pi\)
−0.940000 + 0.341175i \(0.889175\pi\)
\(660\) 0 0
\(661\) 14.5509i 0.565966i 0.959125 + 0.282983i \(0.0913239\pi\)
−0.959125 + 0.282983i \(0.908676\pi\)
\(662\) 0 0
\(663\) 7.65636 + 15.6865i 0.297348 + 0.609213i
\(664\) 0 0
\(665\) 1.00802i 0.0390894i
\(666\) 0 0
\(667\) 52.3341 2.02638
\(668\) 0 0
\(669\) −37.6170 + 18.3603i −1.45436 + 0.709851i
\(670\) 0 0
\(671\) −66.1999 −2.55562
\(672\) 0 0
\(673\) 17.3429 0.668518 0.334259 0.942481i \(-0.391514\pi\)
0.334259 + 0.942481i \(0.391514\pi\)
\(674\) 0 0
\(675\) −5.08353 1.07599i −0.195665 0.0414149i
\(676\) 0 0
\(677\) 15.0382 0.577964 0.288982 0.957335i \(-0.406683\pi\)
0.288982 + 0.957335i \(0.406683\pi\)
\(678\) 0 0
\(679\) 0.570538i 0.0218952i
\(680\) 0 0
\(681\) −22.3321 + 10.9000i −0.855768 + 0.417688i
\(682\) 0 0
\(683\) 12.5566i 0.480467i −0.970715 0.240233i \(-0.922776\pi\)
0.970715 0.240233i \(-0.0772240\pi\)
\(684\) 0 0
\(685\) 8.86346i 0.338655i
\(686\) 0 0
\(687\) 16.4523 8.03014i 0.627695 0.306369i
\(688\) 0 0
\(689\) 11.5778i 0.441080i
\(690\) 0 0
\(691\) −34.2365 −1.30242 −0.651208 0.758899i \(-0.725738\pi\)
−0.651208 + 0.758899i \(0.725738\pi\)
\(692\) 0 0
\(693\) −4.19528 + 5.37603i −0.159366 + 0.204219i
\(694\) 0 0
\(695\) 20.6278 0.782456
\(696\) 0 0
\(697\) −28.6777 −1.08625
\(698\) 0 0
\(699\) 13.1392 6.41305i 0.496970 0.242564i
\(700\) 0 0
\(701\) −7.29521 −0.275536 −0.137768 0.990465i \(-0.543993\pi\)
−0.137768 + 0.990465i \(0.543993\pi\)
\(702\) 0 0
\(703\) 7.70134i 0.290462i
\(704\) 0 0
\(705\) 0.439266 + 0.899976i 0.0165437 + 0.0338951i
\(706\) 0 0
\(707\) 3.30548i 0.124315i
\(708\) 0 0
\(709\) 19.6396i 0.737580i −0.929513 0.368790i \(-0.879772\pi\)
0.929513 0.368790i \(-0.120228\pi\)
\(710\) 0 0
\(711\) 15.4912 + 12.0888i 0.580966 + 0.453367i
\(712\) 0 0
\(713\) 48.6381i 1.82151i
\(714\) 0 0
\(715\) −7.53814 −0.281911
\(716\) 0 0
\(717\) 8.96834 + 18.3745i 0.334929 + 0.686209i
\(718\) 0 0
\(719\) 45.1541 1.68396 0.841982 0.539506i \(-0.181389\pi\)
0.841982 + 0.539506i \(0.181389\pi\)
\(720\) 0 0
\(721\) 0.932695 0.0347354
\(722\) 0 0
\(723\) −21.0305 43.0877i −0.782133 1.60245i
\(724\) 0 0
\(725\) −8.95633 −0.332630
\(726\) 0 0
\(727\) 5.93365i 0.220067i 0.993928 + 0.110033i \(0.0350958\pi\)
−0.993928 + 0.110033i \(0.964904\pi\)
\(728\) 0 0
\(729\) 24.6845 + 10.9397i 0.914240 + 0.405172i
\(730\) 0 0
\(731\) 55.0595i 2.03645i
\(732\) 0 0
\(733\) 26.0460i 0.962029i 0.876713 + 0.481015i \(0.159732\pi\)
−0.876713 + 0.481015i \(0.840268\pi\)
\(734\) 0 0
\(735\) −5.14263 10.5363i −0.189689 0.388639i
\(736\) 0 0
\(737\) 3.34286i 0.123136i
\(738\) 0 0
\(739\) −1.11976 −0.0411912 −0.0205956 0.999788i \(-0.506556\pi\)
−0.0205956 + 0.999788i \(0.506556\pi\)
\(740\) 0 0
\(741\) 5.20330 2.53966i 0.191148 0.0932966i
\(742\) 0 0
\(743\) 13.7250 0.503523 0.251761 0.967789i \(-0.418990\pi\)
0.251761 + 0.967789i \(0.418990\pi\)
\(744\) 0 0
\(745\) −18.8429 −0.690350
\(746\) 0 0
\(747\) −9.28490 7.24563i −0.339717 0.265104i
\(748\) 0 0
\(749\) −3.58332 −0.130932
\(750\) 0 0
\(751\) 41.2826i 1.50642i −0.657778 0.753212i \(-0.728503\pi\)
0.657778 0.753212i \(-0.271497\pi\)
\(752\) 0 0
\(753\) 7.36270 3.59363i 0.268312 0.130959i
\(754\) 0 0
\(755\) 15.2143i 0.553707i
\(756\) 0 0
\(757\) 46.4270i 1.68742i −0.536801 0.843709i \(-0.680368\pi\)
0.536801 0.843709i \(-0.319632\pi\)
\(758\) 0 0
\(759\) −43.0221 + 20.9985i −1.56160 + 0.762197i
\(760\) 0 0
\(761\) 49.4413i 1.79224i −0.443807 0.896122i \(-0.646372\pi\)
0.443807 0.896122i \(-0.353628\pi\)
\(762\) 0 0
\(763\) −3.89856 −0.141137
\(764\) 0 0
\(765\) −14.9563 11.6714i −0.540747 0.421982i
\(766\) 0 0
\(767\) 3.67926 0.132850
\(768\) 0 0
\(769\) −11.3047 −0.407659 −0.203830 0.979006i \(-0.565339\pi\)
−0.203830 + 0.979006i \(0.565339\pi\)
\(770\) 0 0
\(771\) −35.7559 + 17.4520i −1.28772 + 0.628517i
\(772\) 0 0
\(773\) −4.34438 −0.156256 −0.0781282 0.996943i \(-0.524894\pi\)
−0.0781282 + 0.996943i \(0.524894\pi\)
\(774\) 0 0
\(775\) 8.32380i 0.299000i
\(776\) 0 0
\(777\) 1.34039 + 2.74621i 0.0480861 + 0.0985198i
\(778\) 0 0
\(779\) 9.51257i 0.340823i
\(780\) 0 0
\(781\) 64.3715i 2.30339i
\(782\) 0 0
\(783\) 45.5298 + 9.63693i 1.62710 + 0.344396i
\(784\) 0 0
\(785\) 16.9762i 0.605906i
\(786\) 0 0
\(787\) −5.58121 −0.198949 −0.0994743 0.995040i \(-0.531716\pi\)
−0.0994743 + 0.995040i \(0.531716\pi\)
\(788\) 0 0
\(789\) −14.9036 30.5348i −0.530582 1.08707i
\(790\) 0 0
\(791\) −1.89783 −0.0674789
\(792\) 0 0
\(793\) 22.3032 0.792011
\(794\) 0 0
\(795\) 5.51945 + 11.3084i 0.195755 + 0.401066i
\(796\) 0 0
\(797\) −20.7159 −0.733794 −0.366897 0.930262i \(-0.619580\pi\)
−0.366897 + 0.930262i \(0.619580\pi\)
\(798\) 0 0
\(799\) 3.65636i 0.129353i
\(800\) 0 0
\(801\) 21.9127 + 17.0999i 0.774246 + 0.604196i
\(802\) 0 0
\(803\) 8.53663i 0.301251i
\(804\) 0 0
\(805\) 2.80797i 0.0989680i
\(806\) 0 0
\(807\) −6.43363 13.1813i −0.226474 0.464005i
\(808\) 0 0
\(809\) 12.2570i 0.430935i −0.976511 0.215467i \(-0.930873\pi\)
0.976511 0.215467i \(-0.0691275\pi\)
\(810\) 0 0
\(811\) 22.6285 0.794594 0.397297 0.917690i \(-0.369948\pi\)
0.397297 + 0.917690i \(0.369948\pi\)
\(812\) 0 0
\(813\) 24.0818 11.7540i 0.844587 0.412231i
\(814\) 0 0
\(815\) −7.89397 −0.276514
\(816\) 0 0
\(817\) 18.2635 0.638961
\(818\) 0 0
\(819\) 1.41342 1.81123i 0.0493889 0.0632894i
\(820\) 0 0
\(821\) −25.0618 −0.874663 −0.437331 0.899300i \(-0.644076\pi\)
−0.437331 + 0.899300i \(0.644076\pi\)
\(822\) 0 0
\(823\) 33.3139i 1.16125i −0.814171 0.580625i \(-0.802808\pi\)
0.814171 0.580625i \(-0.197192\pi\)
\(824\) 0 0
\(825\) 7.36270 3.59363i 0.256336 0.125114i
\(826\) 0 0
\(827\) 17.9098i 0.622784i 0.950282 + 0.311392i \(0.100795\pi\)
−0.950282 + 0.311392i \(0.899205\pi\)
\(828\) 0 0
\(829\) 16.1127i 0.559618i −0.960056 0.279809i \(-0.909729\pi\)
0.960056 0.279809i \(-0.0902711\pi\)
\(830\) 0 0
\(831\) −38.4615 + 18.7725i −1.33421 + 0.651211i
\(832\) 0 0
\(833\) 42.8063i 1.48315i
\(834\) 0 0
\(835\) 13.0305 0.450939
\(836\) 0 0
\(837\) 8.95633 42.3143i 0.309576 1.46260i
\(838\) 0 0
\(839\) −12.8032 −0.442016 −0.221008 0.975272i \(-0.570935\pi\)
−0.221008 + 0.975272i \(0.570935\pi\)
\(840\) 0 0
\(841\) 51.2159 1.76607
\(842\) 0 0
\(843\) 42.0317 20.5151i 1.44765 0.706576i
\(844\) 0 0
\(845\) −10.4603 −0.359847
\(846\) 0 0
\(847\) 5.46602i 0.187815i
\(848\) 0 0
\(849\) −15.8798 32.5348i −0.544992 1.11659i
\(850\) 0 0
\(851\) 21.4531i 0.735403i
\(852\) 0 0
\(853\) 32.9365i 1.12772i −0.825869 0.563862i \(-0.809315\pi\)
0.825869 0.563862i \(-0.190685\pi\)
\(854\) 0 0
\(855\) −3.87148 + 4.96110i −0.132402 + 0.169666i
\(856\) 0 0
\(857\) 10.4889i 0.358295i −0.983822 0.179148i \(-0.942666\pi\)
0.983822 0.179148i \(-0.0573340\pi\)
\(858\) 0 0
\(859\) 11.9405 0.407404 0.203702 0.979033i \(-0.434703\pi\)
0.203702 + 0.979033i \(0.434703\pi\)
\(860\) 0 0
\(861\) 1.65562 + 3.39207i 0.0564235 + 0.115602i
\(862\) 0 0
\(863\) −38.1869 −1.29990 −0.649948 0.759978i \(-0.725210\pi\)
−0.649948 + 0.759978i \(0.725210\pi\)
\(864\) 0 0
\(865\) 10.1556 0.345301
\(866\) 0 0
\(867\) −17.4664 35.7856i −0.593191 1.21534i
\(868\) 0 0
\(869\) −30.9824 −1.05101
\(870\) 0 0
\(871\) 1.12624i 0.0381610i
\(872\) 0 0
\(873\) 2.19125 2.80797i 0.0741626 0.0950355i
\(874\) 0 0
\(875\) 0.480550i 0.0162455i
\(876\) 0 0
\(877\) 3.83657i 0.129552i −0.997900 0.0647758i \(-0.979367\pi\)
0.997900 0.0647758i \(-0.0206332\pi\)
\(878\) 0 0
\(879\) 0.284533 + 0.582957i 0.00959706 + 0.0196626i
\(880\) 0 0
\(881\) 15.0650i 0.507553i −0.967263 0.253777i \(-0.918327\pi\)
0.967263 0.253777i \(-0.0816728\pi\)
\(882\) 0 0
\(883\) 39.9878 1.34570 0.672849 0.739780i \(-0.265071\pi\)
0.672849 + 0.739780i \(0.265071\pi\)
\(884\) 0 0
\(885\) −3.59363 + 1.75400i −0.120799 + 0.0589601i
\(886\) 0 0
\(887\) −43.1289 −1.44813 −0.724064 0.689733i \(-0.757728\pi\)
−0.724064 + 0.689733i \(0.757728\pi\)
\(888\) 0 0
\(889\) −1.59743 −0.0535760
\(890\) 0 0
\(891\) −41.2952 + 10.3461i −1.38344 + 0.346608i
\(892\) 0 0
\(893\) 1.21283 0.0405860
\(894\) 0 0
\(895\) 3.76907i 0.125986i
\(896\) 0 0
\(897\) 14.4945 7.07455i 0.483956 0.236212i
\(898\) 0 0
\(899\) 74.5507i 2.48641i
\(900\) 0 0
\(901\) 45.9428i 1.53058i
\(902\) 0 0
\(903\) 6.51258 3.17870i 0.216725 0.105780i
\(904\) 0 0
\(905\) 8.45232i 0.280965i
\(906\) 0 0
\(907\) 0.316149 0.0104976 0.00524878 0.999986i \(-0.498329\pi\)
0.00524878 + 0.999986i \(0.498329\pi\)
\(908\) 0 0
\(909\) 12.6953 16.2683i 0.421075 0.539586i
\(910\) 0 0
\(911\) −9.06254 −0.300255 −0.150128 0.988667i \(-0.547968\pi\)
−0.150128 + 0.988667i \(0.547968\pi\)
\(912\) 0 0
\(913\) 18.5698 0.614571
\(914\) 0 0
\(915\) −21.7841 + 10.6325i −0.720162 + 0.351501i
\(916\) 0 0
\(917\) −3.17773 −0.104938
\(918\) 0 0
\(919\) 19.3326i 0.637722i −0.947801 0.318861i \(-0.896700\pi\)
0.947801 0.318861i \(-0.103300\pi\)
\(920\) 0 0
\(921\) −10.9114 22.3556i −0.359544 0.736640i
\(922\) 0 0
\(923\) 21.6872i 0.713844i
\(924\) 0 0
\(925\) 3.67143i 0.120716i
\(926\) 0 0
\(927\) 4.59038 + 3.58218i 0.150768 + 0.117654i
\(928\) 0 0
\(929\) 15.8160i 0.518906i 0.965756 + 0.259453i \(0.0835422\pi\)
−0.965756 + 0.259453i \(0.916458\pi\)
\(930\) 0 0
\(931\) −14.1991 −0.465356
\(932\) 0 0
\(933\) 16.8785 + 34.5811i 0.552578 + 1.13213i
\(934\) 0 0
\(935\) 29.9127 0.978249
\(936\) 0 0
\(937\) 16.8810 0.551478 0.275739 0.961232i \(-0.411077\pi\)
0.275739 + 0.961232i \(0.411077\pi\)
\(938\) 0 0
\(939\) 25.5797 + 52.4083i 0.834763 + 1.71028i
\(940\) 0 0
\(941\) −20.6596 −0.673484 −0.336742 0.941597i \(-0.609325\pi\)
−0.336742 + 0.941597i \(0.609325\pi\)
\(942\) 0 0
\(943\) 26.4985i 0.862910i
\(944\) 0 0
\(945\) −0.517067 + 2.44289i −0.0168202 + 0.0794671i
\(946\) 0 0
\(947\) 41.1028i 1.33566i −0.744313 0.667831i \(-0.767223\pi\)
0.744313 0.667831i \(-0.232777\pi\)
\(948\) 0 0
\(949\) 2.87605i 0.0933607i
\(950\) 0 0
\(951\) 22.6362 + 46.3774i 0.734028 + 1.50389i
\(952\) 0 0
\(953\) 10.4252i 0.337707i −0.985641 0.168853i \(-0.945994\pi\)
0.985641 0.168853i \(-0.0540064\pi\)
\(954\) 0 0
\(955\) 21.5690 0.697957
\(956\) 0 0
\(957\) −65.9428 + 32.1857i −2.13163 + 1.04042i
\(958\) 0 0
\(959\) 4.25933 0.137541
\(960\) 0 0
\(961\) −38.2857 −1.23502
\(962\) 0 0
\(963\) −17.6358 13.7624i −0.568305 0.443487i
\(964\) 0 0
\(965\) −15.7174 −0.505960
\(966\) 0 0
\(967\) 30.7273i 0.988124i 0.869427 + 0.494062i \(0.164488\pi\)
−0.869427 + 0.494062i \(0.835512\pi\)
\(968\) 0 0
\(969\) −20.6476 + 10.0778i −0.663297 + 0.323746i
\(970\) 0 0
\(971\) 11.1047i 0.356367i −0.983997 0.178183i \(-0.942978\pi\)
0.983997 0.178183i \(-0.0570220\pi\)
\(972\) 0 0
\(973\) 9.91266i 0.317785i
\(974\) 0 0
\(975\) −2.48055 + 1.21072i −0.0794412 + 0.0387741i
\(976\) 0 0
\(977\) 34.3143i 1.09781i −0.835885 0.548905i \(-0.815045\pi\)
0.835885 0.548905i \(-0.184955\pi\)
\(978\) 0 0
\(979\) −43.8253 −1.40066
\(980\) 0 0
\(981\) −19.1873 14.9731i −0.612602 0.478055i
\(982\) 0 0
\(983\) −6.72729 −0.214567 −0.107284 0.994228i \(-0.534215\pi\)
−0.107284 + 0.994228i \(0.534215\pi\)
\(984\) 0 0
\(985\) 22.0301 0.701939
\(986\) 0 0
\(987\) 0.432483 0.211089i 0.0137661 0.00671903i
\(988\) 0 0
\(989\) 50.8755 1.61775
\(990\) 0 0
\(991\) 43.0191i 1.36655i −0.730163 0.683273i \(-0.760556\pi\)
0.730163 0.683273i \(-0.239444\pi\)
\(992\) 0 0
\(993\) −18.0103 36.8999i −0.571540 1.17098i
\(994\) 0 0
\(995\) 5.08962i 0.161352i
\(996\) 0 0
\(997\) 24.9365i 0.789747i 0.918736 + 0.394873i \(0.129212\pi\)
−0.918736 + 0.394873i \(0.870788\pi\)
\(998\) 0 0
\(999\) −3.95043 + 18.6638i −0.124986 + 0.590497i
Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))

Twists

       By twisting character
Char Parity Ord Type Twist Min Dim
1.1 even 1 trivial 1920.2.b.g.191.6 yes 8
3.2 odd 2 1920.2.b.h.191.5 yes 8
4.3 odd 2 1920.2.b.a.191.3 8
8.3 odd 2 1920.2.b.h.191.6 yes 8
8.5 even 2 1920.2.b.b.191.3 yes 8
12.11 even 2 1920.2.b.b.191.4 yes 8
24.5 odd 2 1920.2.b.a.191.4 yes 8
24.11 even 2 inner 1920.2.b.g.191.5 yes 8
    
        By twisted newform
Twist Min Dim Char Parity Ord Type
1920.2.b.a.191.3 8 4.3 odd 2
1920.2.b.a.191.4 yes 8 24.5 odd 2
1920.2.b.b.191.3 yes 8 8.5 even 2
1920.2.b.b.191.4 yes 8 12.11 even 2
1920.2.b.g.191.5 yes 8 24.11 even 2 inner
1920.2.b.g.191.6 yes 8 1.1 even 1 trivial
1920.2.b.h.191.5 yes 8 3.2 odd 2
1920.2.b.h.191.6 yes 8 8.3 odd 2