Properties

Label 1920.2.b.h.191.3
Level $1920$
Weight $2$
Character 1920.191
Analytic conductor $15.331$
Analytic rank $0$
Dimension $8$
Inner twists $2$

Related objects

Downloads

Learn more

Show commands: Magma / PariGP / SageMath

Newspace parameters

comment: Compute space of new eigenforms
 
[N,k,chi] = [1920,2,Mod(191,1920)]
 
mf = mfinit([N,k,chi],0)
 
lf = mfeigenbasis(mf)
 
from sage.modular.dirichlet import DirichletCharacter
 
H = DirichletGroup(1920, base_ring=CyclotomicField(2))
 
chi = DirichletCharacter(H, H._module([1, 1, 1, 0]))
 
N = Newforms(chi, 2, names="a")
 
//Please install CHIMP (https://github.com/edgarcosta/CHIMP) if you want to run this code
 
chi := DirichletCharacter("1920.191");
 
S:= CuspForms(chi, 2);
 
N := Newforms(S);
 
Level: \( N \) \(=\) \( 1920 = 2^{7} \cdot 3 \cdot 5 \)
Weight: \( k \) \(=\) \( 2 \)
Character orbit: \([\chi]\) \(=\) 1920.b (of order \(2\), degree \(1\), minimal)

Newform invariants

comment: select newform
 
sage: f = N[0] # Warning: the index may be different
 
gp: f = lf[1] \\ Warning: the index may be different
 
Self dual: no
Analytic conductor: \(15.3312771881\)
Analytic rank: \(0\)
Dimension: \(8\)
Coefficient field: 8.0.619810816.2
comment: defining polynomial
 
gp: f.mod \\ as an extension of the character field
 
Defining polynomial: \( x^{8} - 2x^{5} + 14x^{4} - 8x^{3} + 2x^{2} + 2x + 1 \) Copy content Toggle raw display
Coefficient ring: \(\Z[a_1, \ldots, a_{7}]\)
Coefficient ring index: \( 2^{5} \)
Twist minimal: yes
Sato-Tate group: $\mathrm{SU}(2)[C_{2}]$

Embedding invariants

Embedding label 191.3
Root \(0.561103 - 0.561103i\) of defining polynomial
Character \(\chi\) \(=\) 1920.191
Dual form 1920.2.b.h.191.4

$q$-expansion

comment: q-expansion
 
sage: f.q_expansion() # note that sage often uses an isomorphic number field
 
gp: mfcoefs(f, 20)
 
\(f(q)\) \(=\) \(q+(-0.329998 - 1.70032i) q^{3} +1.00000 q^{5} -2.66000i q^{7} +(-2.78220 + 1.12221i) q^{9} -2.24441i q^{11} +2.74065i q^{13} +(-0.329998 - 1.70032i) q^{15} +0.496238i q^{17} -8.30506 q^{19} +(-4.52285 + 0.877793i) q^{21} -3.15623 q^{23} +1.00000 q^{25} +(2.82624 + 4.36032i) q^{27} -6.55688 q^{29} -1.50376i q^{31} +(-3.81623 + 0.740652i) q^{33} -2.66000i q^{35} -9.38064i q^{37} +(4.66000 - 0.904410i) q^{39} +10.3657i q^{41} +2.14130 q^{43} +(-2.78220 + 1.12221i) q^{45} +8.96505 q^{47} -0.0755782 q^{49} +(0.843766 - 0.163758i) q^{51} -10.1213 q^{53} -2.24441i q^{55} +(2.74065 + 14.1213i) q^{57} -0.435595i q^{59} -5.87687i q^{61} +(2.98507 + 7.40065i) q^{63} +2.74065i q^{65} -10.1413 q^{67} +(1.04155 + 5.36662i) q^{69} -4.32752 q^{71} -10.6101 q^{73} +(-0.329998 - 1.70032i) q^{75} -5.97013 q^{77} -13.2975i q^{79} +(6.48130 - 6.24441i) q^{81} +6.08066i q^{83} +0.496238i q^{85} +(2.16376 + 11.1488i) q^{87} +8.12129i q^{89} +7.29012 q^{91} +(-2.55688 + 0.496238i) q^{93} -8.30506 q^{95} +7.48130 q^{97} +(2.51870 + 6.24441i) q^{99} +O(q^{100})\)
\(\operatorname{Tr}(f)(q)\) \(=\) \( 8 q + 2 q^{3} + 8 q^{5} - 4 q^{9} + 2 q^{15} - 8 q^{19} + 4 q^{21} - 12 q^{23} + 8 q^{25} + 14 q^{27} - 8 q^{29} - 8 q^{33} + 28 q^{39} - 36 q^{43} - 4 q^{45} + 4 q^{47} + 20 q^{51} - 16 q^{63} - 28 q^{67}+ \cdots + 64 q^{99}+O(q^{100}) \) Copy content Toggle raw display

Character values

We give the values of \(\chi\) on generators for \(\left(\mathbb{Z}/1920\mathbb{Z}\right)^\times\).

\(n\) \(511\) \(641\) \(901\) \(1537\)
\(\chi(n)\) \(-1\) \(-1\) \(-1\) \(1\)

Coefficient data

For each \(n\) we display the coefficients of the \(q\)-expansion \(a_n\), the Satake parameters \(\alpha_p\), and the Satake angles \(\theta_p = \textrm{Arg}(\alpha_p)\).



Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))
Significant digits:
\(n\) \(a_n\) \(a_n / n^{(k-1)/2}\) \( \alpha_n \) \( \theta_n \)
\(p\) \(a_p\) \(a_p / p^{(k-1)/2}\) \( \alpha_p\) \( \theta_p \)
\(2\) 0 0
\(3\) −0.329998 1.70032i −0.190524 0.981682i
\(4\) 0 0
\(5\) 1.00000 0.447214
\(6\) 0 0
\(7\) 2.66000i 1.00538i −0.864466 0.502692i \(-0.832343\pi\)
0.864466 0.502692i \(-0.167657\pi\)
\(8\) 0 0
\(9\) −2.78220 + 1.12221i −0.927401 + 0.374069i
\(10\) 0 0
\(11\) 2.24441i 0.676716i −0.941017 0.338358i \(-0.890128\pi\)
0.941017 0.338358i \(-0.109872\pi\)
\(12\) 0 0
\(13\) 2.74065i 0.760120i 0.924962 + 0.380060i \(0.124097\pi\)
−0.924962 + 0.380060i \(0.875903\pi\)
\(14\) 0 0
\(15\) −0.329998 1.70032i −0.0852051 0.439022i
\(16\) 0 0
\(17\) 0.496238i 0.120355i 0.998188 + 0.0601777i \(0.0191667\pi\)
−0.998188 + 0.0601777i \(0.980833\pi\)
\(18\) 0 0
\(19\) −8.30506 −1.90531 −0.952655 0.304052i \(-0.901660\pi\)
−0.952655 + 0.304052i \(0.901660\pi\)
\(20\) 0 0
\(21\) −4.52285 + 0.877793i −0.986968 + 0.191550i
\(22\) 0 0
\(23\) −3.15623 −0.658120 −0.329060 0.944309i \(-0.606732\pi\)
−0.329060 + 0.944309i \(0.606732\pi\)
\(24\) 0 0
\(25\) 1.00000 0.200000
\(26\) 0 0
\(27\) 2.82624 + 4.36032i 0.543909 + 0.839144i
\(28\) 0 0
\(29\) −6.55688 −1.21758 −0.608791 0.793330i \(-0.708345\pi\)
−0.608791 + 0.793330i \(0.708345\pi\)
\(30\) 0 0
\(31\) 1.50376i 0.270084i −0.990840 0.135042i \(-0.956883\pi\)
0.990840 0.135042i \(-0.0431169\pi\)
\(32\) 0 0
\(33\) −3.81623 + 0.740652i −0.664320 + 0.128931i
\(34\) 0 0
\(35\) 2.66000i 0.449621i
\(36\) 0 0
\(37\) 9.38064i 1.54217i −0.636734 0.771083i \(-0.719715\pi\)
0.636734 0.771083i \(-0.280285\pi\)
\(38\) 0 0
\(39\) 4.66000 0.904410i 0.746197 0.144821i
\(40\) 0 0
\(41\) 10.3657i 1.61885i 0.587223 + 0.809425i \(0.300221\pi\)
−0.587223 + 0.809425i \(0.699779\pi\)
\(42\) 0 0
\(43\) 2.14130 0.326545 0.163273 0.986581i \(-0.447795\pi\)
0.163273 + 0.986581i \(0.447795\pi\)
\(44\) 0 0
\(45\) −2.78220 + 1.12221i −0.414746 + 0.167289i
\(46\) 0 0
\(47\) 8.96505 1.30769 0.653844 0.756630i \(-0.273155\pi\)
0.653844 + 0.756630i \(0.273155\pi\)
\(48\) 0 0
\(49\) −0.0755782 −0.0107969
\(50\) 0 0
\(51\) 0.843766 0.163758i 0.118151 0.0229307i
\(52\) 0 0
\(53\) −10.1213 −1.39027 −0.695133 0.718881i \(-0.744654\pi\)
−0.695133 + 0.718881i \(0.744654\pi\)
\(54\) 0 0
\(55\) 2.24441i 0.302637i
\(56\) 0 0
\(57\) 2.74065 + 14.1213i 0.363008 + 1.87041i
\(58\) 0 0
\(59\) 0.435595i 0.0567096i −0.999598 0.0283548i \(-0.990973\pi\)
0.999598 0.0283548i \(-0.00902682\pi\)
\(60\) 0 0
\(61\) 5.87687i 0.752457i −0.926527 0.376228i \(-0.877221\pi\)
0.926527 0.376228i \(-0.122779\pi\)
\(62\) 0 0
\(63\) 2.98507 + 7.40065i 0.376083 + 0.932394i
\(64\) 0 0
\(65\) 2.74065i 0.339936i
\(66\) 0 0
\(67\) −10.1413 −1.23896 −0.619478 0.785014i \(-0.712656\pi\)
−0.619478 + 0.785014i \(0.712656\pi\)
\(68\) 0 0
\(69\) 1.04155 + 5.36662i 0.125388 + 0.646065i
\(70\) 0 0
\(71\) −4.32752 −0.513582 −0.256791 0.966467i \(-0.582665\pi\)
−0.256791 + 0.966467i \(0.582665\pi\)
\(72\) 0 0
\(73\) −10.6101 −1.24182 −0.620910 0.783882i \(-0.713237\pi\)
−0.620910 + 0.783882i \(0.713237\pi\)
\(74\) 0 0
\(75\) −0.329998 1.70032i −0.0381049 0.196336i
\(76\) 0 0
\(77\) −5.97013 −0.680360
\(78\) 0 0
\(79\) 13.2975i 1.49609i −0.663648 0.748045i \(-0.730993\pi\)
0.663648 0.748045i \(-0.269007\pi\)
\(80\) 0 0
\(81\) 6.48130 6.24441i 0.720145 0.693824i
\(82\) 0 0
\(83\) 6.08066i 0.667439i 0.942672 + 0.333719i \(0.108304\pi\)
−0.942672 + 0.333719i \(0.891696\pi\)
\(84\) 0 0
\(85\) 0.496238i 0.0538246i
\(86\) 0 0
\(87\) 2.16376 + 11.1488i 0.231979 + 1.19528i
\(88\) 0 0
\(89\) 8.12129i 0.860855i 0.902625 + 0.430427i \(0.141637\pi\)
−0.902625 + 0.430427i \(0.858363\pi\)
\(90\) 0 0
\(91\) 7.29012 0.764213
\(92\) 0 0
\(93\) −2.55688 + 0.496238i −0.265136 + 0.0514575i
\(94\) 0 0
\(95\) −8.30506 −0.852081
\(96\) 0 0
\(97\) 7.48130 0.759611 0.379806 0.925066i \(-0.375991\pi\)
0.379806 + 0.925066i \(0.375991\pi\)
\(98\) 0 0
\(99\) 2.51870 + 6.24441i 0.253138 + 0.627587i
\(100\) 0 0
\(101\) 0.0831016 0.00826892 0.00413446 0.999991i \(-0.498684\pi\)
0.00413446 + 0.999991i \(0.498684\pi\)
\(102\) 0 0
\(103\) 0.851177i 0.0838690i −0.999120 0.0419345i \(-0.986648\pi\)
0.999120 0.0419345i \(-0.0133521\pi\)
\(104\) 0 0
\(105\) −4.52285 + 0.877793i −0.441385 + 0.0856638i
\(106\) 0 0
\(107\) 9.04815i 0.874718i 0.899287 + 0.437359i \(0.144086\pi\)
−0.899287 + 0.437359i \(0.855914\pi\)
\(108\) 0 0
\(109\) 9.37322i 0.897792i −0.893584 0.448896i \(-0.851817\pi\)
0.893584 0.448896i \(-0.148183\pi\)
\(110\) 0 0
\(111\) −15.9501 + 3.09559i −1.51392 + 0.293820i
\(112\) 0 0
\(113\) 14.4664i 1.36088i 0.732803 + 0.680441i \(0.238212\pi\)
−0.732803 + 0.680441i \(0.761788\pi\)
\(114\) 0 0
\(115\) −3.15623 −0.294320
\(116\) 0 0
\(117\) −3.07558 7.62505i −0.284337 0.704936i
\(118\) 0 0
\(119\) 1.31999 0.121003
\(120\) 0 0
\(121\) 5.96261 0.542055
\(122\) 0 0
\(123\) 17.6250 3.42066i 1.58920 0.308431i
\(124\) 0 0
\(125\) 1.00000 0.0894427
\(126\) 0 0
\(127\) 11.2701i 1.00006i 0.866008 + 0.500030i \(0.166678\pi\)
−0.866008 + 0.500030i \(0.833322\pi\)
\(128\) 0 0
\(129\) −0.706625 3.64090i −0.0622148 0.320564i
\(130\) 0 0
\(131\) 17.0057i 1.48579i −0.669406 0.742897i \(-0.733451\pi\)
0.669406 0.742897i \(-0.266549\pi\)
\(132\) 0 0
\(133\) 22.0914i 1.91557i
\(134\) 0 0
\(135\) 2.82624 + 4.36032i 0.243244 + 0.375277i
\(136\) 0 0
\(137\) 7.01493i 0.599326i −0.954045 0.299663i \(-0.903126\pi\)
0.954045 0.299663i \(-0.0968743\pi\)
\(138\) 0 0
\(139\) 7.93752 0.673251 0.336626 0.941639i \(-0.390714\pi\)
0.336626 + 0.941639i \(0.390714\pi\)
\(140\) 0 0
\(141\) −2.95845 15.2435i −0.249146 1.28373i
\(142\) 0 0
\(143\) 6.15116 0.514386
\(144\) 0 0
\(145\) −6.55688 −0.544519
\(146\) 0 0
\(147\) 0.0249407 + 0.128507i 0.00205707 + 0.0105991i
\(148\) 0 0
\(149\) −17.6176 −1.44329 −0.721647 0.692262i \(-0.756614\pi\)
−0.721647 + 0.692262i \(0.756614\pi\)
\(150\) 0 0
\(151\) 8.34508i 0.679113i −0.940586 0.339557i \(-0.889723\pi\)
0.940586 0.339557i \(-0.110277\pi\)
\(152\) 0 0
\(153\) −0.556882 1.38064i −0.0450212 0.111618i
\(154\) 0 0
\(155\) 1.50376i 0.120785i
\(156\) 0 0
\(157\) 16.3882i 1.30792i 0.756530 + 0.653959i \(0.226893\pi\)
−0.756530 + 0.653959i \(0.773107\pi\)
\(158\) 0 0
\(159\) 3.34000 + 17.2095i 0.264880 + 1.36480i
\(160\) 0 0
\(161\) 8.39557i 0.661664i
\(162\) 0 0
\(163\) −11.6226 −0.910353 −0.455176 0.890401i \(-0.650424\pi\)
−0.455176 + 0.890401i \(0.650424\pi\)
\(164\) 0 0
\(165\) −3.81623 + 0.740652i −0.297093 + 0.0576597i
\(166\) 0 0
\(167\) −4.63754 −0.358863 −0.179432 0.983770i \(-0.557426\pi\)
−0.179432 + 0.983770i \(0.557426\pi\)
\(168\) 0 0
\(169\) 5.48883 0.422217
\(170\) 0 0
\(171\) 23.1064 9.31999i 1.76699 0.712718i
\(172\) 0 0
\(173\) −7.27997 −0.553486 −0.276743 0.960944i \(-0.589255\pi\)
−0.276743 + 0.960944i \(0.589255\pi\)
\(174\) 0 0
\(175\) 2.66000i 0.201077i
\(176\) 0 0
\(177\) −0.740652 + 0.143745i −0.0556708 + 0.0108046i
\(178\) 0 0
\(179\) 3.07558i 0.229880i −0.993372 0.114940i \(-0.963332\pi\)
0.993372 0.114940i \(-0.0366675\pi\)
\(180\) 0 0
\(181\) 17.6026i 1.30839i −0.756326 0.654195i \(-0.773007\pi\)
0.756326 0.654195i \(-0.226993\pi\)
\(182\) 0 0
\(183\) −9.99259 + 1.93936i −0.738673 + 0.143361i
\(184\) 0 0
\(185\) 9.38064i 0.689678i
\(186\) 0 0
\(187\) 1.11376 0.0814465
\(188\) 0 0
\(189\) 11.5984 7.51778i 0.843662 0.546838i
\(190\) 0 0
\(191\) −17.5626 −1.27078 −0.635391 0.772190i \(-0.719161\pi\)
−0.635391 + 0.772190i \(0.719161\pi\)
\(192\) 0 0
\(193\) −27.7239 −1.99561 −0.997804 0.0662324i \(-0.978902\pi\)
−0.997804 + 0.0662324i \(0.978902\pi\)
\(194\) 0 0
\(195\) 4.66000 0.904410i 0.333709 0.0647661i
\(196\) 0 0
\(197\) 12.1363 0.864678 0.432339 0.901711i \(-0.357688\pi\)
0.432339 + 0.901711i \(0.357688\pi\)
\(198\) 0 0
\(199\) 9.78636i 0.693737i 0.937914 + 0.346868i \(0.112755\pi\)
−0.937914 + 0.346868i \(0.887245\pi\)
\(200\) 0 0
\(201\) 3.34661 + 17.2435i 0.236052 + 1.21626i
\(202\) 0 0
\(203\) 17.4413i 1.22414i
\(204\) 0 0
\(205\) 10.3657i 0.723972i
\(206\) 0 0
\(207\) 8.78128 3.54195i 0.610341 0.246182i
\(208\) 0 0
\(209\) 18.6400i 1.28935i
\(210\) 0 0
\(211\) −19.6100 −1.35001 −0.675004 0.737814i \(-0.735858\pi\)
−0.675004 + 0.737814i \(0.735858\pi\)
\(212\) 0 0
\(213\) 1.42807 + 7.35818i 0.0978498 + 0.504174i
\(214\) 0 0
\(215\) 2.14130 0.146035
\(216\) 0 0
\(217\) −4.00000 −0.271538
\(218\) 0 0
\(219\) 3.50132 + 18.0406i 0.236597 + 1.21907i
\(220\) 0 0
\(221\) −1.36002 −0.0914846
\(222\) 0 0
\(223\) 8.34753i 0.558992i −0.960147 0.279496i \(-0.909833\pi\)
0.960147 0.279496i \(-0.0901673\pi\)
\(224\) 0 0
\(225\) −2.78220 + 1.12221i −0.185480 + 0.0748138i
\(226\) 0 0
\(227\) 15.8895i 1.05462i 0.849673 + 0.527311i \(0.176800\pi\)
−0.849673 + 0.527311i \(0.823200\pi\)
\(228\) 0 0
\(229\) 5.64751i 0.373198i 0.982436 + 0.186599i \(0.0597465\pi\)
−0.982436 + 0.186599i \(0.940254\pi\)
\(230\) 0 0
\(231\) 1.97013 + 10.1512i 0.129625 + 0.667897i
\(232\) 0 0
\(233\) 22.7539i 1.49065i −0.666699 0.745327i \(-0.732293\pi\)
0.666699 0.745327i \(-0.267707\pi\)
\(234\) 0 0
\(235\) 8.96505 0.584816
\(236\) 0 0
\(237\) −22.6101 + 4.38816i −1.46868 + 0.285042i
\(238\) 0 0
\(239\) 0.610115 0.0394650 0.0197325 0.999805i \(-0.493719\pi\)
0.0197325 + 0.999805i \(0.493719\pi\)
\(240\) 0 0
\(241\) 10.1893 0.656353 0.328177 0.944616i \(-0.393566\pi\)
0.328177 + 0.944616i \(0.393566\pi\)
\(242\) 0 0
\(243\) −12.7563 8.95967i −0.818320 0.574763i
\(244\) 0 0
\(245\) −0.0755782 −0.00482851
\(246\) 0 0
\(247\) 22.7613i 1.44826i
\(248\) 0 0
\(249\) 10.3391 2.00660i 0.655213 0.127163i
\(250\) 0 0
\(251\) 2.24441i 0.141666i −0.997488 0.0708331i \(-0.977434\pi\)
0.997488 0.0708331i \(-0.0225658\pi\)
\(252\) 0 0
\(253\) 7.08389i 0.445361i
\(254\) 0 0
\(255\) 0.843766 0.163758i 0.0528387 0.0102549i
\(256\) 0 0
\(257\) 2.51129i 0.156650i 0.996928 + 0.0783248i \(0.0249571\pi\)
−0.996928 + 0.0783248i \(0.975043\pi\)
\(258\) 0 0
\(259\) −24.9525 −1.55047
\(260\) 0 0
\(261\) 18.2426 7.35818i 1.12919 0.455460i
\(262\) 0 0
\(263\) 23.6451 1.45802 0.729008 0.684505i \(-0.239981\pi\)
0.729008 + 0.684505i \(0.239981\pi\)
\(264\) 0 0
\(265\) −10.1213 −0.621746
\(266\) 0 0
\(267\) 13.8088 2.68001i 0.845086 0.164014i
\(268\) 0 0
\(269\) 24.5802 1.49868 0.749342 0.662183i \(-0.230370\pi\)
0.749342 + 0.662183i \(0.230370\pi\)
\(270\) 0 0
\(271\) 29.8676i 1.81433i −0.420776 0.907164i \(-0.638242\pi\)
0.420776 0.907164i \(-0.361758\pi\)
\(272\) 0 0
\(273\) −2.40573 12.3956i −0.145601 0.750214i
\(274\) 0 0
\(275\) 2.24441i 0.135343i
\(276\) 0 0
\(277\) 22.8471i 1.37275i −0.727248 0.686375i \(-0.759201\pi\)
0.727248 0.686375i \(-0.240799\pi\)
\(278\) 0 0
\(279\) 1.68753 + 4.18377i 0.101030 + 0.250476i
\(280\) 0 0
\(281\) 28.2145i 1.68314i −0.540149 0.841569i \(-0.681632\pi\)
0.540149 0.841569i \(-0.318368\pi\)
\(282\) 0 0
\(283\) −22.4688 −1.33563 −0.667816 0.744326i \(-0.732771\pi\)
−0.667816 + 0.744326i \(0.732771\pi\)
\(284\) 0 0
\(285\) 2.74065 + 14.1213i 0.162342 + 0.836473i
\(286\) 0 0
\(287\) 27.5727 1.62757
\(288\) 0 0
\(289\) 16.7537 0.985515
\(290\) 0 0
\(291\) −2.46881 12.7206i −0.144724 0.745697i
\(292\) 0 0
\(293\) 16.9626 0.990966 0.495483 0.868618i \(-0.334991\pi\)
0.495483 + 0.868618i \(0.334991\pi\)
\(294\) 0 0
\(295\) 0.435595i 0.0253613i
\(296\) 0 0
\(297\) 9.78636 6.34324i 0.567862 0.368072i
\(298\) 0 0
\(299\) 8.65014i 0.500250i
\(300\) 0 0
\(301\) 5.69585i 0.328303i
\(302\) 0 0
\(303\) −0.0274234 0.141300i −0.00157543 0.00811745i
\(304\) 0 0
\(305\) 5.87687i 0.336509i
\(306\) 0 0
\(307\) −10.9576 −0.625386 −0.312693 0.949854i \(-0.601231\pi\)
−0.312693 + 0.949854i \(0.601231\pi\)
\(308\) 0 0
\(309\) −1.44728 + 0.280887i −0.0823327 + 0.0159791i
\(310\) 0 0
\(311\) 30.5550 1.73262 0.866309 0.499509i \(-0.166486\pi\)
0.866309 + 0.499509i \(0.166486\pi\)
\(312\) 0 0
\(313\) −10.9476 −0.618793 −0.309396 0.950933i \(-0.600127\pi\)
−0.309396 + 0.950933i \(0.600127\pi\)
\(314\) 0 0
\(315\) 2.98507 + 7.40065i 0.168189 + 0.416979i
\(316\) 0 0
\(317\) 22.3639 1.25608 0.628040 0.778181i \(-0.283857\pi\)
0.628040 + 0.778181i \(0.283857\pi\)
\(318\) 0 0
\(319\) 14.7164i 0.823958i
\(320\) 0 0
\(321\) 15.3848 2.98587i 0.858695 0.166655i
\(322\) 0 0
\(323\) 4.12129i 0.229315i
\(324\) 0 0
\(325\) 2.74065i 0.152024i
\(326\) 0 0
\(327\) −15.9375 + 3.09314i −0.881347 + 0.171051i
\(328\) 0 0
\(329\) 23.8470i 1.31473i
\(330\) 0 0
\(331\) −20.6326 −1.13407 −0.567034 0.823694i \(-0.691909\pi\)
−0.567034 + 0.823694i \(0.691909\pi\)
\(332\) 0 0
\(333\) 10.5270 + 26.0988i 0.576877 + 1.43021i
\(334\) 0 0
\(335\) −10.1413 −0.554078
\(336\) 0 0
\(337\) 3.11376 0.169618 0.0848088 0.996397i \(-0.472972\pi\)
0.0848088 + 0.996397i \(0.472972\pi\)
\(338\) 0 0
\(339\) 24.5975 4.77387i 1.33595 0.259281i
\(340\) 0 0
\(341\) −3.37506 −0.182770
\(342\) 0 0
\(343\) 18.4189i 0.994529i
\(344\) 0 0
\(345\) 1.04155 + 5.36662i 0.0560752 + 0.288929i
\(346\) 0 0
\(347\) 11.7282i 0.629601i −0.949158 0.314800i \(-0.898062\pi\)
0.949158 0.314800i \(-0.101938\pi\)
\(348\) 0 0
\(349\) 20.1213i 1.07707i −0.842604 0.538534i \(-0.818978\pi\)
0.842604 0.538534i \(-0.181022\pi\)
\(350\) 0 0
\(351\) −11.9501 + 7.74573i −0.637850 + 0.413436i
\(352\) 0 0
\(353\) 1.22764i 0.0653407i −0.999466 0.0326703i \(-0.989599\pi\)
0.999466 0.0326703i \(-0.0104011\pi\)
\(354\) 0 0
\(355\) −4.32752 −0.229681
\(356\) 0 0
\(357\) −0.435595 2.24441i −0.0230541 0.118787i
\(358\) 0 0
\(359\) −37.2351 −1.96519 −0.982595 0.185759i \(-0.940526\pi\)
−0.982595 + 0.185759i \(0.940526\pi\)
\(360\) 0 0
\(361\) 49.9740 2.63021
\(362\) 0 0
\(363\) −1.96765 10.1384i −0.103275 0.532126i
\(364\) 0 0
\(365\) −10.6101 −0.555359
\(366\) 0 0
\(367\) 18.9826i 0.990885i −0.868641 0.495442i \(-0.835006\pi\)
0.868641 0.495442i \(-0.164994\pi\)
\(368\) 0 0
\(369\) −11.6325 28.8395i −0.605562 1.50132i
\(370\) 0 0
\(371\) 26.9226i 1.39775i
\(372\) 0 0
\(373\) 33.6232i 1.74094i 0.492218 + 0.870472i \(0.336186\pi\)
−0.492218 + 0.870472i \(0.663814\pi\)
\(374\) 0 0
\(375\) −0.329998 1.70032i −0.0170410 0.0878043i
\(376\) 0 0
\(377\) 17.9701i 0.925509i
\(378\) 0 0
\(379\) 16.3051 0.837535 0.418767 0.908094i \(-0.362462\pi\)
0.418767 + 0.908094i \(0.362462\pi\)
\(380\) 0 0
\(381\) 19.1628 3.71911i 0.981742 0.190536i
\(382\) 0 0
\(383\) −3.44372 −0.175966 −0.0879831 0.996122i \(-0.528042\pi\)
−0.0879831 + 0.996122i \(0.528042\pi\)
\(384\) 0 0
\(385\) −5.97013 −0.304266
\(386\) 0 0
\(387\) −5.95753 + 2.40298i −0.302838 + 0.122150i
\(388\) 0 0
\(389\) 22.2426 1.12774 0.563872 0.825862i \(-0.309311\pi\)
0.563872 + 0.825862i \(0.309311\pi\)
\(390\) 0 0
\(391\) 1.56624i 0.0792084i
\(392\) 0 0
\(393\) −28.9152 + 5.61184i −1.45858 + 0.283080i
\(394\) 0 0
\(395\) 13.2975i 0.669072i
\(396\) 0 0
\(397\) 8.23678i 0.413392i −0.978405 0.206696i \(-0.933729\pi\)
0.978405 0.206696i \(-0.0662711\pi\)
\(398\) 0 0
\(399\) 37.5626 7.29012i 1.88048 0.364963i
\(400\) 0 0
\(401\) 4.16620i 0.208050i 0.994575 + 0.104025i \(0.0331722\pi\)
−0.994575 + 0.104025i \(0.966828\pi\)
\(402\) 0 0
\(403\) 4.12129 0.205296
\(404\) 0 0
\(405\) 6.48130 6.24441i 0.322059 0.310287i
\(406\) 0 0
\(407\) −21.0540 −1.04361
\(408\) 0 0
\(409\) −11.4132 −0.564349 −0.282174 0.959363i \(-0.591056\pi\)
−0.282174 + 0.959363i \(0.591056\pi\)
\(410\) 0 0
\(411\) −11.9277 + 2.31491i −0.588348 + 0.114186i
\(412\) 0 0
\(413\) −1.15868 −0.0570149
\(414\) 0 0
\(415\) 6.08066i 0.298488i
\(416\) 0 0
\(417\) −2.61936 13.4964i −0.128271 0.660919i
\(418\) 0 0
\(419\) 15.9319i 0.778326i −0.921169 0.389163i \(-0.872764\pi\)
0.921169 0.389163i \(-0.127236\pi\)
\(420\) 0 0
\(421\) 20.3507i 0.991830i −0.868371 0.495915i \(-0.834833\pi\)
0.868371 0.495915i \(-0.165167\pi\)
\(422\) 0 0
\(423\) −24.9426 + 10.0606i −1.21275 + 0.489165i
\(424\) 0 0
\(425\) 0.496238i 0.0240711i
\(426\) 0 0
\(427\) −15.6325 −0.756508
\(428\) 0 0
\(429\) −2.02987 10.4590i −0.0980030 0.504963i
\(430\) 0 0
\(431\) −20.2377 −0.974815 −0.487407 0.873175i \(-0.662057\pi\)
−0.487407 + 0.873175i \(0.662057\pi\)
\(432\) 0 0
\(433\) −6.44391 −0.309675 −0.154837 0.987940i \(-0.549485\pi\)
−0.154837 + 0.987940i \(0.549485\pi\)
\(434\) 0 0
\(435\) 2.16376 + 11.1488i 0.103744 + 0.534545i
\(436\) 0 0
\(437\) 26.2127 1.25392
\(438\) 0 0
\(439\) 36.0588i 1.72099i −0.509456 0.860496i \(-0.670154\pi\)
0.509456 0.860496i \(-0.329846\pi\)
\(440\) 0 0
\(441\) 0.210274 0.0848144i 0.0100130 0.00403878i
\(442\) 0 0
\(443\) 11.3157i 0.537625i −0.963192 0.268813i \(-0.913369\pi\)
0.963192 0.268813i \(-0.0866313\pi\)
\(444\) 0 0
\(445\) 8.12129i 0.384986i
\(446\) 0 0
\(447\) 5.81378 + 29.9557i 0.274983 + 1.41686i
\(448\) 0 0
\(449\) 10.2444i 0.483464i 0.970343 + 0.241732i \(0.0777154\pi\)
−0.970343 + 0.241732i \(0.922285\pi\)
\(450\) 0 0
\(451\) 23.2649 1.09550
\(452\) 0 0
\(453\) −14.1893 + 2.75386i −0.666673 + 0.129388i
\(454\) 0 0
\(455\) 7.29012 0.341766
\(456\) 0 0
\(457\) 33.3714 1.56105 0.780524 0.625126i \(-0.214952\pi\)
0.780524 + 0.625126i \(0.214952\pi\)
\(458\) 0 0
\(459\) −2.16376 + 1.40249i −0.100996 + 0.0654625i
\(460\) 0 0
\(461\) 23.8368 1.11019 0.555096 0.831786i \(-0.312681\pi\)
0.555096 + 0.831786i \(0.312681\pi\)
\(462\) 0 0
\(463\) 27.7288i 1.28867i −0.764744 0.644334i \(-0.777135\pi\)
0.764744 0.644334i \(-0.222865\pi\)
\(464\) 0 0
\(465\) −2.55688 + 0.496238i −0.118573 + 0.0230125i
\(466\) 0 0
\(467\) 24.4996i 1.13371i −0.823819 0.566853i \(-0.808161\pi\)
0.823819 0.566853i \(-0.191839\pi\)
\(468\) 0 0
\(469\) 26.9758i 1.24563i
\(470\) 0 0
\(471\) 27.8652 5.40806i 1.28396 0.249190i
\(472\) 0 0
\(473\) 4.80596i 0.220978i
\(474\) 0 0
\(475\) −8.30506 −0.381062
\(476\) 0 0
\(477\) 28.1595 11.3582i 1.28933 0.520055i
\(478\) 0 0
\(479\) −0.0449159 −0.00205226 −0.00102613 0.999999i \(-0.500327\pi\)
−0.00102613 + 0.999999i \(0.500327\pi\)
\(480\) 0 0
\(481\) 25.7091 1.17223
\(482\) 0 0
\(483\) 14.2752 2.77052i 0.649544 0.126063i
\(484\) 0 0
\(485\) 7.48130 0.339709
\(486\) 0 0
\(487\) 24.6301i 1.11610i 0.829808 + 0.558049i \(0.188450\pi\)
−0.829808 + 0.558049i \(0.811550\pi\)
\(488\) 0 0
\(489\) 3.83544 + 19.7622i 0.173444 + 0.893677i
\(490\) 0 0
\(491\) 26.8545i 1.21193i 0.795492 + 0.605964i \(0.207212\pi\)
−0.795492 + 0.605964i \(0.792788\pi\)
\(492\) 0 0
\(493\) 3.25378i 0.146543i
\(494\) 0 0
\(495\) 2.51870 + 6.24441i 0.113207 + 0.280666i
\(496\) 0 0
\(497\) 11.5112i 0.516347i
\(498\) 0 0
\(499\) 0.305057 0.0136562 0.00682812 0.999977i \(-0.497827\pi\)
0.00682812 + 0.999977i \(0.497827\pi\)
\(500\) 0 0
\(501\) 1.53038 + 7.88532i 0.0683722 + 0.352290i
\(502\) 0 0
\(503\) 10.6526 0.474975 0.237488 0.971391i \(-0.423676\pi\)
0.237488 + 0.971391i \(0.423676\pi\)
\(504\) 0 0
\(505\) 0.0831016 0.00369797
\(506\) 0 0
\(507\) −1.81130 9.33278i −0.0804427 0.414483i
\(508\) 0 0
\(509\) −23.0457 −1.02148 −0.510742 0.859734i \(-0.670629\pi\)
−0.510742 + 0.859734i \(0.670629\pi\)
\(510\) 0 0
\(511\) 28.2229i 1.24851i
\(512\) 0 0
\(513\) −23.4721 36.2127i −1.03632 1.59883i
\(514\) 0 0
\(515\) 0.851177i 0.0375073i
\(516\) 0 0
\(517\) 20.1213i 0.884933i
\(518\) 0 0
\(519\) 2.40237 + 12.3783i 0.105453 + 0.543347i
\(520\) 0 0
\(521\) 20.9476i 0.917729i −0.888506 0.458865i \(-0.848256\pi\)
0.888506 0.458865i \(-0.151744\pi\)
\(522\) 0 0
\(523\) 8.68520 0.379777 0.189889 0.981806i \(-0.439187\pi\)
0.189889 + 0.981806i \(0.439187\pi\)
\(524\) 0 0
\(525\) −4.52285 + 0.877793i −0.197394 + 0.0383100i
\(526\) 0 0
\(527\) 0.746224 0.0325060
\(528\) 0 0
\(529\) −13.0382 −0.566878
\(530\) 0 0
\(531\) 0.488827 + 1.21191i 0.0212133 + 0.0525925i
\(532\) 0 0
\(533\) −28.4088 −1.23052
\(534\) 0 0
\(535\) 9.04815i 0.391186i
\(536\) 0 0
\(537\) −5.22948 + 1.01493i −0.225669 + 0.0437977i
\(538\) 0 0
\(539\) 0.169629i 0.00730643i
\(540\) 0 0
\(541\) 14.0914i 0.605837i −0.953016 0.302919i \(-0.902039\pi\)
0.953016 0.302919i \(-0.0979611\pi\)
\(542\) 0 0
\(543\) −29.9301 + 5.80882i −1.28442 + 0.249280i
\(544\) 0 0
\(545\) 9.37322i 0.401505i
\(546\) 0 0
\(547\) 7.44647 0.318388 0.159194 0.987247i \(-0.449110\pi\)
0.159194 + 0.987247i \(0.449110\pi\)
\(548\) 0 0
\(549\) 6.59507 + 16.3507i 0.281471 + 0.697829i
\(550\) 0 0
\(551\) 54.4553 2.31987
\(552\) 0 0
\(553\) −35.3714 −1.50414
\(554\) 0 0
\(555\) −15.9501 + 3.09559i −0.677045 + 0.131400i
\(556\) 0 0
\(557\) −10.1065 −0.428225 −0.214112 0.976809i \(-0.568686\pi\)
−0.214112 + 0.976809i \(0.568686\pi\)
\(558\) 0 0
\(559\) 5.86856i 0.248214i
\(560\) 0 0
\(561\) −0.367540 1.89376i −0.0155175 0.0799546i
\(562\) 0 0
\(563\) 17.0482i 0.718494i 0.933243 + 0.359247i \(0.116966\pi\)
−0.933243 + 0.359247i \(0.883034\pi\)
\(564\) 0 0
\(565\) 14.4664i 0.608605i
\(566\) 0 0
\(567\) −16.6101 17.2402i −0.697559 0.724022i
\(568\) 0 0
\(569\) 30.8694i 1.29411i −0.762443 0.647055i \(-0.776000\pi\)
0.762443 0.647055i \(-0.224000\pi\)
\(570\) 0 0
\(571\) −1.33756 −0.0559751 −0.0279875 0.999608i \(-0.508910\pi\)
−0.0279875 + 0.999608i \(0.508910\pi\)
\(572\) 0 0
\(573\) 5.79561 + 29.8621i 0.242115 + 1.24751i
\(574\) 0 0
\(575\) −3.15623 −0.131624
\(576\) 0 0
\(577\) 24.2576 1.00986 0.504929 0.863161i \(-0.331519\pi\)
0.504929 + 0.863161i \(0.331519\pi\)
\(578\) 0 0
\(579\) 9.14882 + 47.1396i 0.380212 + 1.95905i
\(580\) 0 0
\(581\) 16.1745 0.671032
\(582\) 0 0
\(583\) 22.7164i 0.940815i
\(584\) 0 0
\(585\) −3.07558 7.62505i −0.127160 0.315257i
\(586\) 0 0
\(587\) 15.2344i 0.628793i 0.949292 + 0.314396i \(0.101802\pi\)
−0.949292 + 0.314396i \(0.898198\pi\)
\(588\) 0 0
\(589\) 12.4888i 0.514593i
\(590\) 0 0
\(591\) −4.00497 20.6357i −0.164742 0.848839i
\(592\) 0 0
\(593\) 30.5076i 1.25280i −0.779503 0.626399i \(-0.784528\pi\)
0.779503 0.626399i \(-0.215472\pi\)
\(594\) 0 0
\(595\) 1.31999 0.0541144
\(596\) 0 0
\(597\) 16.6400 3.22948i 0.681029 0.132174i
\(598\) 0 0
\(599\) −41.5878 −1.69923 −0.849615 0.527403i \(-0.823166\pi\)
−0.849615 + 0.527403i \(0.823166\pi\)
\(600\) 0 0
\(601\) −29.6709 −1.21030 −0.605150 0.796111i \(-0.706887\pi\)
−0.605150 + 0.796111i \(0.706887\pi\)
\(602\) 0 0
\(603\) 28.2152 11.3806i 1.14901 0.463455i
\(604\) 0 0
\(605\) 5.96261 0.242414
\(606\) 0 0
\(607\) 4.87638i 0.197926i −0.995091 0.0989631i \(-0.968447\pi\)
0.995091 0.0989631i \(-0.0315526\pi\)
\(608\) 0 0
\(609\) 29.6558 5.75559i 1.20171 0.233228i
\(610\) 0 0
\(611\) 24.5701i 0.993999i
\(612\) 0 0
\(613\) 44.9682i 1.81625i 0.418702 + 0.908124i \(0.362485\pi\)
−0.418702 + 0.908124i \(0.637515\pi\)
\(614\) 0 0
\(615\) 17.6250 3.42066i 0.710711 0.137934i
\(616\) 0 0
\(617\) 13.7762i 0.554609i 0.960782 + 0.277305i \(0.0894411\pi\)
−0.960782 + 0.277305i \(0.910559\pi\)
\(618\) 0 0
\(619\) −18.6126 −0.748105 −0.374052 0.927408i \(-0.622032\pi\)
−0.374052 + 0.927408i \(0.622032\pi\)
\(620\) 0 0
\(621\) −8.92026 13.7622i −0.357958 0.552258i
\(622\) 0 0
\(623\) 21.6026 0.865490
\(624\) 0 0
\(625\) 1.00000 0.0400000
\(626\) 0 0
\(627\) 31.6940 6.15116i 1.26574 0.245654i
\(628\) 0 0
\(629\) 4.65503 0.185608
\(630\) 0 0
\(631\) 48.0489i 1.91280i 0.292067 + 0.956398i \(0.405657\pi\)
−0.292067 + 0.956398i \(0.594343\pi\)
\(632\) 0 0
\(633\) 6.47126 + 33.3434i 0.257210 + 1.32528i
\(634\) 0 0
\(635\) 11.2701i 0.447241i
\(636\) 0 0
\(637\) 0.207134i 0.00820693i
\(638\) 0 0
\(639\) 12.0400 4.85637i 0.476296 0.192115i
\(640\) 0 0
\(641\) 22.1995i 0.876827i 0.898773 + 0.438414i \(0.144460\pi\)
−0.898773 + 0.438414i \(0.855540\pi\)
\(642\) 0 0
\(643\) 20.5751 0.811401 0.405700 0.914006i \(-0.367028\pi\)
0.405700 + 0.914006i \(0.367028\pi\)
\(644\) 0 0
\(645\) −0.706625 3.64090i −0.0278233 0.143360i
\(646\) 0 0
\(647\) −48.7852 −1.91795 −0.958973 0.283498i \(-0.908505\pi\)
−0.958973 + 0.283498i \(0.908505\pi\)
\(648\) 0 0
\(649\) −0.977654 −0.0383763
\(650\) 0 0
\(651\) 1.31999 + 6.80130i 0.0517346 + 0.266564i
\(652\) 0 0
\(653\) 46.2278 1.80903 0.904516 0.426440i \(-0.140232\pi\)
0.904516 + 0.426440i \(0.140232\pi\)
\(654\) 0 0
\(655\) 17.0057i 0.664467i
\(656\) 0 0
\(657\) 29.5195 11.9067i 1.15166 0.464526i
\(658\) 0 0
\(659\) 42.6631i 1.66192i −0.556333 0.830960i \(-0.687792\pi\)
0.556333 0.830960i \(-0.312208\pi\)
\(660\) 0 0
\(661\) 41.8171i 1.62650i −0.581916 0.813249i \(-0.697697\pi\)
0.581916 0.813249i \(-0.302303\pi\)
\(662\) 0 0
\(663\) 0.448803 + 2.31247i 0.0174300 + 0.0898088i
\(664\) 0 0
\(665\) 22.0914i 0.856668i
\(666\) 0 0
\(667\) 20.6951 0.801316
\(668\) 0 0
\(669\) −14.1935 + 2.75467i −0.548752 + 0.106502i
\(670\) 0 0
\(671\) −13.1901 −0.509200
\(672\) 0 0
\(673\) −8.76127 −0.337722 −0.168861 0.985640i \(-0.554009\pi\)
−0.168861 + 0.985640i \(0.554009\pi\)
\(674\) 0 0
\(675\) 2.82624 + 4.36032i 0.108782 + 0.167829i
\(676\) 0 0
\(677\) −26.2278 −1.00801 −0.504007 0.863699i \(-0.668142\pi\)
−0.504007 + 0.863699i \(0.668142\pi\)
\(678\) 0 0
\(679\) 19.9002i 0.763701i
\(680\) 0 0
\(681\) 27.0173 5.24349i 1.03530 0.200931i
\(682\) 0 0
\(683\) 25.5469i 0.977525i 0.872417 + 0.488763i \(0.162552\pi\)
−0.872417 + 0.488763i \(0.837448\pi\)
\(684\) 0 0
\(685\) 7.01493i 0.268027i
\(686\) 0 0
\(687\) 9.60259 1.86367i 0.366362 0.0711033i
\(688\) 0 0
\(689\) 27.7389i 1.05677i
\(690\) 0 0
\(691\) 3.61000 0.137331 0.0686655 0.997640i \(-0.478126\pi\)
0.0686655 + 0.997640i \(0.478126\pi\)
\(692\) 0 0
\(693\) 16.6101 6.69972i 0.630966 0.254501i
\(694\) 0 0
\(695\) 7.93752 0.301087
\(696\) 0 0
\(697\) −5.14386 −0.194838
\(698\) 0 0
\(699\) −38.6889 + 7.50873i −1.46335 + 0.284006i
\(700\) 0 0
\(701\) −19.9850 −0.754821 −0.377411 0.926046i \(-0.623185\pi\)
−0.377411 + 0.926046i \(0.623185\pi\)
\(702\) 0 0
\(703\) 77.9067i 2.93831i
\(704\) 0 0
\(705\) −2.95845 15.2435i −0.111422 0.574103i
\(706\) 0 0
\(707\) 0.221050i 0.00831344i
\(708\) 0 0
\(709\) 15.0839i 0.566488i −0.959048 0.283244i \(-0.908589\pi\)
0.959048 0.283244i \(-0.0914106\pi\)
\(710\) 0 0
\(711\) 14.9226 + 36.9964i 0.559641 + 1.38747i
\(712\) 0 0
\(713\) 4.74622i 0.177747i
\(714\) 0 0
\(715\) 6.15116 0.230040
\(716\) 0 0
\(717\) −0.201337 1.03739i −0.00751905 0.0387421i
\(718\) 0 0
\(719\) −9.05770 −0.337795 −0.168898 0.985634i \(-0.554021\pi\)
−0.168898 + 0.985634i \(0.554021\pi\)
\(720\) 0 0
\(721\) −2.26413 −0.0843205
\(722\) 0 0
\(723\) −3.36246 17.3252i −0.125051 0.644330i
\(724\) 0 0
\(725\) −6.55688 −0.243516
\(726\) 0 0
\(727\) 16.2675i 0.603327i −0.953414 0.301664i \(-0.902458\pi\)
0.953414 0.301664i \(-0.0975420\pi\)
\(728\) 0 0
\(729\) −11.0248 + 24.6466i −0.408325 + 0.912837i
\(730\) 0 0
\(731\) 1.06259i 0.0393015i
\(732\) 0 0
\(733\) 4.34324i 0.160421i 0.996778 + 0.0802107i \(0.0255593\pi\)
−0.996778 + 0.0802107i \(0.974441\pi\)
\(734\) 0 0
\(735\) 0.0249407 + 0.128507i 0.000919950 + 0.00474007i
\(736\) 0 0
\(737\) 22.7613i 0.838422i
\(738\) 0 0
\(739\) 23.6500 0.869980 0.434990 0.900435i \(-0.356752\pi\)
0.434990 + 0.900435i \(0.356752\pi\)
\(740\) 0 0
\(741\) −38.7015 + 7.51117i −1.42174 + 0.275930i
\(742\) 0 0
\(743\) 0.858588 0.0314985 0.0157493 0.999876i \(-0.494987\pi\)
0.0157493 + 0.999876i \(0.494987\pi\)
\(744\) 0 0
\(745\) −17.6176 −0.645460
\(746\) 0 0
\(747\) −6.82375 16.9176i −0.249668 0.618983i
\(748\) 0 0
\(749\) 24.0681 0.879428
\(750\) 0 0
\(751\) 14.0486i 0.512642i −0.966592 0.256321i \(-0.917490\pi\)
0.966592 0.256321i \(-0.0825105\pi\)
\(752\) 0 0
\(753\) −3.81623 + 0.740652i −0.139071 + 0.0269909i
\(754\) 0 0
\(755\) 8.34508i 0.303709i
\(756\) 0 0
\(757\) 1.12324i 0.0408248i 0.999792 + 0.0204124i \(0.00649792\pi\)
−0.999792 + 0.0204124i \(0.993502\pi\)
\(758\) 0 0
\(759\) 12.0449 2.33767i 0.437203 0.0848521i
\(760\) 0 0
\(761\) 35.0187i 1.26943i 0.772748 + 0.634713i \(0.218882\pi\)
−0.772748 + 0.634713i \(0.781118\pi\)
\(762\) 0 0
\(763\) −24.9327 −0.902626
\(764\) 0 0
\(765\) −0.556882 1.38064i −0.0201341 0.0499170i
\(766\) 0 0
\(767\) 1.19381 0.0431061
\(768\) 0 0
\(769\) −23.7688 −0.857125 −0.428562 0.903512i \(-0.640980\pi\)
−0.428562 + 0.903512i \(0.640980\pi\)
\(770\) 0 0
\(771\) 4.27000 0.828719i 0.153780 0.0298456i
\(772\) 0 0
\(773\) −3.09894 −0.111461 −0.0557306 0.998446i \(-0.517749\pi\)
−0.0557306 + 0.998446i \(0.517749\pi\)
\(774\) 0 0
\(775\) 1.50376i 0.0540167i
\(776\) 0 0
\(777\) 8.23426 + 42.4273i 0.295402 + 1.52207i
\(778\) 0 0
\(779\) 86.0877i 3.08441i
\(780\) 0 0
\(781\) 9.71273i 0.347549i
\(782\) 0 0
\(783\) −18.5313 28.5901i −0.662255 1.02173i
\(784\) 0 0
\(785\) 16.3882i 0.584918i
\(786\) 0 0
\(787\) 47.4828 1.69258 0.846290 0.532723i \(-0.178831\pi\)
0.846290 + 0.532723i \(0.178831\pi\)
\(788\) 0 0
\(789\) −7.80282 40.2043i −0.277788 1.43131i
\(790\) 0 0
\(791\) 38.4805 1.36821
\(792\) 0 0
\(793\) 16.1065 0.571957
\(794\) 0 0
\(795\) 3.34000 + 17.2095i 0.118458 + 0.610357i
\(796\) 0 0
\(797\) −41.3862 −1.46597 −0.732987 0.680242i \(-0.761875\pi\)
−0.732987 + 0.680242i \(0.761875\pi\)
\(798\) 0 0
\(799\) 4.44880i 0.157387i
\(800\) 0 0
\(801\) −9.11376 22.5951i −0.322019 0.798357i
\(802\) 0 0
\(803\) 23.8135i 0.840360i
\(804\) 0 0
\(805\) 8.39557i 0.295905i
\(806\) 0 0
\(807\) −8.11143 41.7944i −0.285536 1.47123i
\(808\) 0 0
\(809\) 26.2127i 0.921590i 0.887507 + 0.460795i \(0.152436\pi\)
−0.887507 + 0.460795i \(0.847564\pi\)
\(810\) 0 0
\(811\) −21.4853 −0.754450 −0.377225 0.926122i \(-0.623122\pi\)
−0.377225 + 0.926122i \(0.623122\pi\)
\(812\) 0 0
\(813\) −50.7846 + 9.85625i −1.78109 + 0.345674i
\(814\) 0 0
\(815\) −11.6226 −0.407122
\(816\) 0 0
\(817\) −17.7836 −0.622170
\(818\) 0 0
\(819\) −20.2826 + 8.18103i −0.708731 + 0.285868i
\(820\) 0 0
\(821\) 23.9350 0.835337 0.417669 0.908599i \(-0.362847\pi\)
0.417669 + 0.908599i \(0.362847\pi\)
\(822\) 0 0
\(823\) 5.47611i 0.190885i −0.995435 0.0954427i \(-0.969573\pi\)
0.995435 0.0954427i \(-0.0304267\pi\)
\(824\) 0 0
\(825\) −3.81623 + 0.740652i −0.132864 + 0.0257862i
\(826\) 0 0
\(827\) 22.1022i 0.768568i −0.923215 0.384284i \(-0.874448\pi\)
0.923215 0.384284i \(-0.125552\pi\)
\(828\) 0 0
\(829\) 17.3732i 0.603397i 0.953403 + 0.301699i \(0.0975536\pi\)
−0.953403 + 0.301699i \(0.902446\pi\)
\(830\) 0 0
\(831\) −38.8475 + 7.53950i −1.34760 + 0.261542i
\(832\) 0 0
\(833\) 0.0375048i 0.00129946i
\(834\) 0 0
\(835\) −4.63754 −0.160489
\(836\) 0 0
\(837\) 6.55688 4.24999i 0.226639 0.146901i
\(838\) 0 0
\(839\) −18.2724 −0.630835 −0.315417 0.948953i \(-0.602145\pi\)
−0.315417 + 0.948953i \(0.602145\pi\)
\(840\) 0 0
\(841\) 13.9927 0.482507
\(842\) 0 0
\(843\) −47.9739 + 9.31074i −1.65231 + 0.320679i
\(844\) 0 0
\(845\) 5.48883 0.188821
\(846\) 0 0
\(847\) 15.8605i 0.544974i
\(848\) 0 0
\(849\) 7.41466 + 38.2043i 0.254471 + 1.31117i
\(850\) 0 0
\(851\) 29.6075i 1.01493i
\(852\) 0 0
\(853\) 2.49808i 0.0855325i 0.999085 + 0.0427663i \(0.0136171\pi\)
−0.999085 + 0.0427663i \(0.986383\pi\)
\(854\) 0 0
\(855\) 23.1064 9.31999i 0.790221 0.318737i
\(856\) 0 0
\(857\) 25.9775i 0.887376i −0.896181 0.443688i \(-0.853670\pi\)
0.896181 0.443688i \(-0.146330\pi\)
\(858\) 0 0
\(859\) −32.8351 −1.12032 −0.560160 0.828384i \(-0.689260\pi\)
−0.560160 + 0.828384i \(0.689260\pi\)
\(860\) 0 0
\(861\) −9.09894 46.8826i −0.310091 1.59775i
\(862\) 0 0
\(863\) 37.2926 1.26945 0.634727 0.772737i \(-0.281113\pi\)
0.634727 + 0.772737i \(0.281113\pi\)
\(864\) 0 0
\(865\) −7.27997 −0.247526
\(866\) 0 0
\(867\) −5.52870 28.4868i −0.187765 0.967462i
\(868\) 0 0
\(869\) −29.8452 −1.01243
\(870\) 0 0
\(871\) 27.7938i 0.941756i
\(872\) 0 0
\(873\) −20.8145 + 8.39557i −0.704464 + 0.284147i
\(874\) 0 0
\(875\) 2.66000i 0.0899243i
\(876\) 0 0
\(877\) 13.0931i 0.442124i 0.975260 + 0.221062i \(0.0709523\pi\)
−0.975260 + 0.221062i \(0.929048\pi\)
\(878\) 0 0
\(879\) −5.59763 28.8419i −0.188803 0.972814i
\(880\) 0 0
\(881\) 34.6083i 1.16598i 0.812478 + 0.582991i \(0.198118\pi\)
−0.812478 + 0.582991i \(0.801882\pi\)
\(882\) 0 0
\(883\) 53.9202 1.81456 0.907280 0.420526i \(-0.138154\pi\)
0.907280 + 0.420526i \(0.138154\pi\)
\(884\) 0 0
\(885\) −0.740652 + 0.143745i −0.0248967 + 0.00483195i
\(886\) 0 0
\(887\) −32.8949 −1.10450 −0.552252 0.833677i \(-0.686231\pi\)
−0.552252 + 0.833677i \(0.686231\pi\)
\(888\) 0 0
\(889\) 29.9784 1.00544
\(890\) 0 0
\(891\) −14.0150 14.5467i −0.469522 0.487334i
\(892\) 0 0
\(893\) −74.4553 −2.49155
\(894\) 0 0
\(895\) 3.07558i 0.102805i
\(896\) 0 0
\(897\) −14.7080 + 2.85453i −0.491087 + 0.0953099i
\(898\) 0 0
\(899\) 9.85999i 0.328849i
\(900\) 0 0
\(901\) 5.02257i 0.167326i
\(902\) 0 0
\(903\) −9.68479 + 1.87962i −0.322290 + 0.0625498i
\(904\) 0 0
\(905\) 17.6026i 0.585130i
\(906\) 0 0
\(907\) −35.3615 −1.17416 −0.587080 0.809529i \(-0.699723\pi\)
−0.587080 + 0.809529i \(0.699723\pi\)
\(908\) 0 0
\(909\) −0.231206 + 0.0932572i −0.00766860 + 0.00309315i
\(910\) 0 0
\(911\) −7.61275 −0.252222 −0.126111 0.992016i \(-0.540249\pi\)
−0.126111 + 0.992016i \(0.540249\pi\)
\(912\) 0 0
\(913\) 13.6475 0.451667
\(914\) 0 0
\(915\) −9.99259 + 1.93936i −0.330345 + 0.0641131i
\(916\) 0 0
\(917\) −45.2351 −1.49379
\(918\) 0 0
\(919\) 18.0474i 0.595330i 0.954670 + 0.297665i \(0.0962078\pi\)
−0.954670 + 0.297665i \(0.903792\pi\)
\(920\) 0 0
\(921\) 3.61600 + 18.6315i 0.119151 + 0.613930i
\(922\) 0 0
\(923\) 11.8602i 0.390384i
\(924\) 0 0
\(925\) 9.38064i 0.308433i
\(926\) 0 0
\(927\) 0.955196 + 2.36815i 0.0313728 + 0.0777801i
\(928\) 0 0
\(929\) 25.6958i 0.843053i 0.906816 + 0.421527i \(0.138506\pi\)
−0.906816 + 0.421527i \(0.861494\pi\)
\(930\) 0 0
\(931\) 0.627681 0.0205714
\(932\) 0 0
\(933\) −10.0831 51.9535i −0.330106 1.70088i
\(934\) 0 0
\(935\) 1.11376 0.0364240
\(936\) 0 0
\(937\) −22.9124 −0.748516 −0.374258 0.927325i \(-0.622103\pi\)
−0.374258 + 0.927325i \(0.622103\pi\)
\(938\) 0 0
\(939\) 3.61267 + 18.6144i 0.117895 + 0.607458i
\(940\) 0 0
\(941\) 13.7657 0.448750 0.224375 0.974503i \(-0.427966\pi\)
0.224375 + 0.974503i \(0.427966\pi\)
\(942\) 0 0
\(943\) 32.7166i 1.06540i
\(944\) 0 0
\(945\) 11.5984 7.51778i 0.377297 0.244553i
\(946\) 0 0
\(947\) 10.3933i 0.337738i −0.985638 0.168869i \(-0.945988\pi\)
0.985638 0.168869i \(-0.0540116\pi\)
\(948\) 0 0
\(949\) 29.0786i 0.943932i
\(950\) 0 0
\(951\) −7.38003 38.0258i −0.239314 1.23307i
\(952\) 0 0
\(953\) 17.4290i 0.564580i 0.959329 + 0.282290i \(0.0910940\pi\)
−0.959329 + 0.282290i \(0.908906\pi\)
\(954\) 0 0
\(955\) −17.5626 −0.568311
\(956\) 0 0
\(957\) 25.0226 4.85637i 0.808865 0.156984i
\(958\) 0 0
\(959\) −18.6597 −0.602553
\(960\) 0 0
\(961\) 28.7387 0.927055
\(962\) 0 0
\(963\) −10.1539 25.1738i −0.327205 0.811214i
\(964\) 0 0
\(965\) −27.7239 −0.892463
\(966\) 0 0
\(967\) 29.7587i 0.956976i 0.878094 + 0.478488i \(0.158815\pi\)
−0.878094 + 0.478488i \(0.841185\pi\)
\(968\) 0 0
\(969\) −7.00752 + 1.36002i −0.225114 + 0.0436900i
\(970\) 0 0
\(971\) 8.71819i 0.279780i 0.990167 + 0.139890i \(0.0446749\pi\)
−0.990167 + 0.139890i \(0.955325\pi\)
\(972\) 0 0
\(973\) 21.1138i 0.676876i
\(974\) 0 0
\(975\) 4.66000 0.904410i 0.149239 0.0289643i
\(976\) 0 0
\(977\) 12.2500i 0.391912i 0.980613 + 0.195956i \(0.0627809\pi\)
−0.980613 + 0.195956i \(0.937219\pi\)
\(978\) 0 0
\(979\) 18.2275 0.582554
\(980\) 0 0
\(981\) 10.5187 + 26.0782i 0.335836 + 0.832613i
\(982\) 0 0
\(983\) −4.74400 −0.151310 −0.0756551 0.997134i \(-0.524105\pi\)
−0.0756551 + 0.997134i \(0.524105\pi\)
\(984\) 0 0
\(985\) 12.1363 0.386696
\(986\) 0 0
\(987\) −40.5476 + 7.86946i −1.29065 + 0.250488i
\(988\) 0 0
\(989\) −6.75844 −0.214906
\(990\) 0 0
\(991\) 23.7350i 0.753966i 0.926220 + 0.376983i \(0.123039\pi\)
−0.926220 + 0.376983i \(0.876961\pi\)
\(992\) 0 0
\(993\) 6.80871 + 35.0821i 0.216068 + 1.11330i
\(994\) 0 0
\(995\) 9.78636i 0.310249i
\(996\) 0 0
\(997\) 5.50192i 0.174248i 0.996197 + 0.0871238i \(0.0277676\pi\)
−0.996197 + 0.0871238i \(0.972232\pi\)
\(998\) 0 0
\(999\) 40.9026 26.5119i 1.29410 0.838799i
Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))

Twists

       By twisting character
Char Parity Ord Type Twist Min Dim
1.1 even 1 trivial 1920.2.b.h.191.3 yes 8
3.2 odd 2 1920.2.b.g.191.4 yes 8
4.3 odd 2 1920.2.b.b.191.6 yes 8
8.3 odd 2 1920.2.b.g.191.3 yes 8
8.5 even 2 1920.2.b.a.191.6 yes 8
12.11 even 2 1920.2.b.a.191.5 8
24.5 odd 2 1920.2.b.b.191.5 yes 8
24.11 even 2 inner 1920.2.b.h.191.4 yes 8
    
        By twisted newform
Twist Min Dim Char Parity Ord Type
1920.2.b.a.191.5 8 12.11 even 2
1920.2.b.a.191.6 yes 8 8.5 even 2
1920.2.b.b.191.5 yes 8 24.5 odd 2
1920.2.b.b.191.6 yes 8 4.3 odd 2
1920.2.b.g.191.3 yes 8 8.3 odd 2
1920.2.b.g.191.4 yes 8 3.2 odd 2
1920.2.b.h.191.3 yes 8 1.1 even 1 trivial
1920.2.b.h.191.4 yes 8 24.11 even 2 inner