Properties

Label 1920.2.b.h.191.7
Level $1920$
Weight $2$
Character 1920.191
Analytic conductor $15.331$
Analytic rank $0$
Dimension $8$
Inner twists $2$

Related objects

Downloads

Learn more

Show commands: Magma / PariGP / SageMath

Newspace parameters

comment: Compute space of new eigenforms
 
[N,k,chi] = [1920,2,Mod(191,1920)]
 
mf = mfinit([N,k,chi],0)
 
lf = mfeigenbasis(mf)
 
from sage.modular.dirichlet import DirichletCharacter
 
H = DirichletGroup(1920, base_ring=CyclotomicField(2))
 
chi = DirichletCharacter(H, H._module([1, 1, 1, 0]))
 
N = Newforms(chi, 2, names="a")
 
//Please install CHIMP (https://github.com/edgarcosta/CHIMP) if you want to run this code
 
chi := DirichletCharacter("1920.191");
 
S:= CuspForms(chi, 2);
 
N := Newforms(S);
 
Level: \( N \) \(=\) \( 1920 = 2^{7} \cdot 3 \cdot 5 \)
Weight: \( k \) \(=\) \( 2 \)
Character orbit: \([\chi]\) \(=\) 1920.b (of order \(2\), degree \(1\), minimal)

Newform invariants

comment: select newform
 
sage: f = N[0] # Warning: the index may be different
 
gp: f = lf[1] \\ Warning: the index may be different
 
Self dual: no
Analytic conductor: \(15.3312771881\)
Analytic rank: \(0\)
Dimension: \(8\)
Coefficient field: 8.0.619810816.2
comment: defining polynomial
 
gp: f.mod \\ as an extension of the character field
 
Defining polynomial: \( x^{8} - 2x^{5} + 14x^{4} - 8x^{3} + 2x^{2} + 2x + 1 \) Copy content Toggle raw display
Coefficient ring: \(\Z[a_1, \ldots, a_{7}]\)
Coefficient ring index: \( 2^{5} \)
Twist minimal: yes
Sato-Tate group: $\mathrm{SU}(2)[C_{2}]$

Embedding invariants

Embedding label 191.7
Root \(-0.252709 + 0.252709i\) of defining polynomial
Character \(\chi\) \(=\) 1920.191
Dual form 1920.2.b.h.191.8

$q$-expansion

comment: q-expansion
 
sage: f.q_expansion() # note that sage often uses an isomorphic number field
 
gp: mfcoefs(f, 20)
 
\(f(q)\) \(=\) \(q+(1.72585 - 0.146426i) q^{3} +1.00000 q^{5} +1.45170i q^{7} +(2.95712 - 0.505418i) q^{9} +1.01084i q^{11} +3.74455i q^{13} +(1.72585 - 0.146426i) q^{15} +4.75539i q^{17} +2.16969 q^{19} +(0.212567 + 2.50542i) q^{21} -3.30369 q^{23} +1.00000 q^{25} +(5.02954 - 1.30527i) q^{27} -3.59654 q^{29} +2.75539i q^{31} +(0.148013 + 1.74455i) q^{33} +1.45170i q^{35} +6.06225i q^{37} +(0.548299 + 6.46254i) q^{39} -7.32853i q^{41} +0.0374041 q^{43} +(2.95712 - 0.505418i) q^{45} -5.62139 q^{47} +4.89257 q^{49} +(0.696312 + 8.20709i) q^{51} +4.31770 q^{53} +1.01084i q^{55} +(3.74455 - 0.317698i) q^{57} -11.9142i q^{59} +5.30686i q^{61} +(0.733716 + 4.29285i) q^{63} +3.74455i q^{65} -8.03740 q^{67} +(-5.70167 + 0.483745i) q^{69} +12.4142 q^{71} +10.3394 q^{73} +(1.72585 - 0.146426i) q^{75} -1.46743 q^{77} -11.3411i q^{79} +(8.48910 - 2.98916i) q^{81} +11.1963i q^{83} +4.75539i q^{85} +(-6.20709 + 0.526626i) q^{87} -6.31770i q^{89} -5.43597 q^{91} +(0.403460 + 4.75539i) q^{93} +2.16969 q^{95} +9.48910 q^{97} +(0.510895 + 2.98916i) q^{99} +O(q^{100})\)
\(\operatorname{Tr}(f)(q)\) \(=\) \( 8 q + 2 q^{3} + 8 q^{5} - 4 q^{9} + 2 q^{15} - 8 q^{19} + 4 q^{21} - 12 q^{23} + 8 q^{25} + 14 q^{27} - 8 q^{29} - 8 q^{33} + 28 q^{39} - 36 q^{43} - 4 q^{45} + 4 q^{47} + 20 q^{51} - 16 q^{63} - 28 q^{67}+ \cdots + 64 q^{99}+O(q^{100}) \) Copy content Toggle raw display

Character values

We give the values of \(\chi\) on generators for \(\left(\mathbb{Z}/1920\mathbb{Z}\right)^\times\).

\(n\) \(511\) \(641\) \(901\) \(1537\)
\(\chi(n)\) \(-1\) \(-1\) \(-1\) \(1\)

Coefficient data

For each \(n\) we display the coefficients of the \(q\)-expansion \(a_n\), the Satake parameters \(\alpha_p\), and the Satake angles \(\theta_p = \textrm{Arg}(\alpha_p)\).



Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))
Significant digits:
\(n\) \(a_n\) \(a_n / n^{(k-1)/2}\) \( \alpha_n \) \( \theta_n \)
\(p\) \(a_p\) \(a_p / p^{(k-1)/2}\) \( \alpha_p\) \( \theta_p \)
\(2\) 0 0
\(3\) 1.72585 0.146426i 0.996420 0.0845390i
\(4\) 0 0
\(5\) 1.00000 0.447214
\(6\) 0 0
\(7\) 1.45170i 0.548691i 0.961631 + 0.274346i \(0.0884612\pi\)
−0.961631 + 0.274346i \(0.911539\pi\)
\(8\) 0 0
\(9\) 2.95712 0.505418i 0.985706 0.168473i
\(10\) 0 0
\(11\) 1.01084i 0.304779i 0.988321 + 0.152389i \(0.0486968\pi\)
−0.988321 + 0.152389i \(0.951303\pi\)
\(12\) 0 0
\(13\) 3.74455i 1.03855i 0.854607 + 0.519276i \(0.173798\pi\)
−0.854607 + 0.519276i \(0.826202\pi\)
\(14\) 0 0
\(15\) 1.72585 0.146426i 0.445613 0.0378070i
\(16\) 0 0
\(17\) 4.75539i 1.15335i 0.816973 + 0.576676i \(0.195650\pi\)
−0.816973 + 0.576676i \(0.804350\pi\)
\(18\) 0 0
\(19\) 2.16969 0.497760 0.248880 0.968534i \(-0.419938\pi\)
0.248880 + 0.968534i \(0.419938\pi\)
\(20\) 0 0
\(21\) 0.212567 + 2.50542i 0.0463858 + 0.546727i
\(22\) 0 0
\(23\) −3.30369 −0.688867 −0.344433 0.938811i \(-0.611929\pi\)
−0.344433 + 0.938811i \(0.611929\pi\)
\(24\) 0 0
\(25\) 1.00000 0.200000
\(26\) 0 0
\(27\) 5.02954 1.30527i 0.967935 0.251200i
\(28\) 0 0
\(29\) −3.59654 −0.667861 −0.333930 0.942598i \(-0.608375\pi\)
−0.333930 + 0.942598i \(0.608375\pi\)
\(30\) 0 0
\(31\) 2.75539i 0.494882i 0.968903 + 0.247441i \(0.0795897\pi\)
−0.968903 + 0.247441i \(0.920410\pi\)
\(32\) 0 0
\(33\) 0.148013 + 1.74455i 0.0257657 + 0.303688i
\(34\) 0 0
\(35\) 1.45170i 0.245382i
\(36\) 0 0
\(37\) 6.06225i 0.996628i 0.866997 + 0.498314i \(0.166047\pi\)
−0.866997 + 0.498314i \(0.833953\pi\)
\(38\) 0 0
\(39\) 0.548299 + 6.46254i 0.0877982 + 1.03483i
\(40\) 0 0
\(41\) 7.32853i 1.14452i −0.820071 0.572262i \(-0.806066\pi\)
0.820071 0.572262i \(-0.193934\pi\)
\(42\) 0 0
\(43\) 0.0374041 0.00570408 0.00285204 0.999996i \(-0.499092\pi\)
0.00285204 + 0.999996i \(0.499092\pi\)
\(44\) 0 0
\(45\) 2.95712 0.505418i 0.440821 0.0753433i
\(46\) 0 0
\(47\) −5.62139 −0.819963 −0.409982 0.912094i \(-0.634465\pi\)
−0.409982 + 0.912094i \(0.634465\pi\)
\(48\) 0 0
\(49\) 4.89257 0.698938
\(50\) 0 0
\(51\) 0.696312 + 8.20709i 0.0975032 + 1.14922i
\(52\) 0 0
\(53\) 4.31770 0.593081 0.296541 0.955020i \(-0.404167\pi\)
0.296541 + 0.955020i \(0.404167\pi\)
\(54\) 0 0
\(55\) 1.01084i 0.136301i
\(56\) 0 0
\(57\) 3.74455 0.317698i 0.495978 0.0420801i
\(58\) 0 0
\(59\) 11.9142i 1.55110i −0.631285 0.775551i \(-0.717472\pi\)
0.631285 0.775551i \(-0.282528\pi\)
\(60\) 0 0
\(61\) 5.30686i 0.679474i 0.940520 + 0.339737i \(0.110338\pi\)
−0.940520 + 0.339737i \(0.889662\pi\)
\(62\) 0 0
\(63\) 0.733716 + 4.29285i 0.0924395 + 0.540848i
\(64\) 0 0
\(65\) 3.74455i 0.464455i
\(66\) 0 0
\(67\) −8.03740 −0.981925 −0.490963 0.871181i \(-0.663355\pi\)
−0.490963 + 0.871181i \(0.663355\pi\)
\(68\) 0 0
\(69\) −5.70167 + 0.483745i −0.686401 + 0.0582361i
\(70\) 0 0
\(71\) 12.4142 1.47329 0.736646 0.676279i \(-0.236408\pi\)
0.736646 + 0.676279i \(0.236408\pi\)
\(72\) 0 0
\(73\) 10.3394 1.21013 0.605066 0.796175i \(-0.293147\pi\)
0.605066 + 0.796175i \(0.293147\pi\)
\(74\) 0 0
\(75\) 1.72585 0.146426i 0.199284 0.0169078i
\(76\) 0 0
\(77\) −1.46743 −0.167229
\(78\) 0 0
\(79\) 11.3411i 1.27597i −0.770048 0.637986i \(-0.779768\pi\)
0.770048 0.637986i \(-0.220232\pi\)
\(80\) 0 0
\(81\) 8.48910 2.98916i 0.943234 0.332129i
\(82\) 0 0
\(83\) 11.1963i 1.22895i 0.788937 + 0.614474i \(0.210632\pi\)
−0.788937 + 0.614474i \(0.789368\pi\)
\(84\) 0 0
\(85\) 4.75539i 0.515794i
\(86\) 0 0
\(87\) −6.20709 + 0.526626i −0.665470 + 0.0564603i
\(88\) 0 0
\(89\) 6.31770i 0.669675i −0.942276 0.334837i \(-0.891319\pi\)
0.942276 0.334837i \(-0.108681\pi\)
\(90\) 0 0
\(91\) −5.43597 −0.569844
\(92\) 0 0
\(93\) 0.403460 + 4.75539i 0.0418369 + 0.493111i
\(94\) 0 0
\(95\) 2.16969 0.222605
\(96\) 0 0
\(97\) 9.48910 0.963473 0.481736 0.876316i \(-0.340006\pi\)
0.481736 + 0.876316i \(0.340006\pi\)
\(98\) 0 0
\(99\) 0.510895 + 2.98916i 0.0513469 + 0.300422i
\(100\) 0 0
\(101\) −13.4033 −1.33368 −0.666841 0.745200i \(-0.732354\pi\)
−0.666841 + 0.745200i \(0.732354\pi\)
\(102\) 0 0
\(103\) 11.4734i 1.13051i −0.824918 0.565253i \(-0.808779\pi\)
0.824918 0.565253i \(-0.191221\pi\)
\(104\) 0 0
\(105\) 0.212567 + 2.50542i 0.0207444 + 0.244504i
\(106\) 0 0
\(107\) 19.0247i 1.83919i −0.392868 0.919595i \(-0.628517\pi\)
0.392868 0.919595i \(-0.371483\pi\)
\(108\) 0 0
\(109\) 16.8393i 1.61291i 0.591293 + 0.806457i \(0.298618\pi\)
−0.591293 + 0.806457i \(0.701382\pi\)
\(110\) 0 0
\(111\) 0.887670 + 10.4625i 0.0842539 + 0.993060i
\(112\) 0 0
\(113\) 14.2228i 1.33797i 0.743276 + 0.668985i \(0.233271\pi\)
−0.743276 + 0.668985i \(0.766729\pi\)
\(114\) 0 0
\(115\) −3.30369 −0.308071
\(116\) 0 0
\(117\) 1.89257 + 11.0731i 0.174968 + 1.02371i
\(118\) 0 0
\(119\) −6.90340 −0.632834
\(120\) 0 0
\(121\) 9.97821 0.907110
\(122\) 0 0
\(123\) −1.07309 12.6480i −0.0967570 1.14043i
\(124\) 0 0
\(125\) 1.00000 0.0894427
\(126\) 0 0
\(127\) 13.7911i 1.22376i −0.790951 0.611880i \(-0.790414\pi\)
0.790951 0.611880i \(-0.209586\pi\)
\(128\) 0 0
\(129\) 0.0645539 0.00547693i 0.00568366 0.000482217i
\(130\) 0 0
\(131\) 17.1353i 1.49712i 0.663066 + 0.748561i \(0.269255\pi\)
−0.663066 + 0.748561i \(0.730745\pi\)
\(132\) 0 0
\(133\) 3.14973i 0.273117i
\(134\) 0 0
\(135\) 5.02954 1.30527i 0.432874 0.112340i
\(136\) 0 0
\(137\) 9.26628i 0.791672i −0.918321 0.395836i \(-0.870455\pi\)
0.918321 0.395836i \(-0.129545\pi\)
\(138\) 0 0
\(139\) −10.4657 −0.887690 −0.443845 0.896104i \(-0.646386\pi\)
−0.443845 + 0.896104i \(0.646386\pi\)
\(140\) 0 0
\(141\) −9.70167 + 0.823116i −0.817028 + 0.0693189i
\(142\) 0 0
\(143\) −3.78513 −0.316528
\(144\) 0 0
\(145\) −3.59654 −0.298676
\(146\) 0 0
\(147\) 8.44384 0.716398i 0.696436 0.0590875i
\(148\) 0 0
\(149\) 11.8501 0.970802 0.485401 0.874292i \(-0.338674\pi\)
0.485401 + 0.874292i \(0.338674\pi\)
\(150\) 0 0
\(151\) 22.5405i 1.83432i −0.398518 0.917161i \(-0.630475\pi\)
0.398518 0.917161i \(-0.369525\pi\)
\(152\) 0 0
\(153\) 2.40346 + 14.0623i 0.194308 + 1.13687i
\(154\) 0 0
\(155\) 2.75539i 0.221318i
\(156\) 0 0
\(157\) 7.57303i 0.604393i −0.953246 0.302197i \(-0.902280\pi\)
0.953246 0.302197i \(-0.0977200\pi\)
\(158\) 0 0
\(159\) 7.45170 0.632223i 0.590958 0.0501385i
\(160\) 0 0
\(161\) 4.79597i 0.377975i
\(162\) 0 0
\(163\) −11.5265 −0.902826 −0.451413 0.892315i \(-0.649080\pi\)
−0.451413 + 0.892315i \(0.649080\pi\)
\(164\) 0 0
\(165\) 0.148013 + 1.74455i 0.0115228 + 0.135813i
\(166\) 0 0
\(167\) −6.79279 −0.525642 −0.262821 0.964845i \(-0.584653\pi\)
−0.262821 + 0.964845i \(0.584653\pi\)
\(168\) 0 0
\(169\) −1.02167 −0.0785902
\(170\) 0 0
\(171\) 6.41602 1.09660i 0.490645 0.0838590i
\(172\) 0 0
\(173\) 25.6136 1.94737 0.973683 0.227906i \(-0.0731878\pi\)
0.973683 + 0.227906i \(0.0731878\pi\)
\(174\) 0 0
\(175\) 1.45170i 0.109738i
\(176\) 0 0
\(177\) −1.74455 20.5622i −0.131129 1.54555i
\(178\) 0 0
\(179\) 1.89257i 0.141457i 0.997496 + 0.0707285i \(0.0225324\pi\)
−0.997496 + 0.0707285i \(0.977468\pi\)
\(180\) 0 0
\(181\) 5.17141i 0.384388i −0.981357 0.192194i \(-0.938440\pi\)
0.981357 0.192194i \(-0.0615602\pi\)
\(182\) 0 0
\(183\) 0.777062 + 9.15885i 0.0574421 + 0.677042i
\(184\) 0 0
\(185\) 6.06225i 0.445706i
\(186\) 0 0
\(187\) −4.80692 −0.351517
\(188\) 0 0
\(189\) 1.89487 + 7.30138i 0.137831 + 0.531098i
\(190\) 0 0
\(191\) 19.5388 1.41378 0.706889 0.707325i \(-0.250098\pi\)
0.706889 + 0.707325i \(0.250098\pi\)
\(192\) 0 0
\(193\) −0.853709 −0.0614513 −0.0307257 0.999528i \(-0.509782\pi\)
−0.0307257 + 0.999528i \(0.509782\pi\)
\(194\) 0 0
\(195\) 0.548299 + 6.46254i 0.0392645 + 0.462792i
\(196\) 0 0
\(197\) −19.3393 −1.37786 −0.688932 0.724826i \(-0.741920\pi\)
−0.688932 + 0.724826i \(0.741920\pi\)
\(198\) 0 0
\(199\) 1.31942i 0.0935312i 0.998906 + 0.0467656i \(0.0148914\pi\)
−0.998906 + 0.0467656i \(0.985109\pi\)
\(200\) 0 0
\(201\) −13.8714 + 1.17688i −0.978410 + 0.0830110i
\(202\) 0 0
\(203\) 5.22110i 0.366449i
\(204\) 0 0
\(205\) 7.32853i 0.511847i
\(206\) 0 0
\(207\) −9.76940 + 1.66974i −0.679020 + 0.116055i
\(208\) 0 0
\(209\) 2.19320i 0.151707i
\(210\) 0 0
\(211\) −17.9485 −1.23562 −0.617812 0.786326i \(-0.711981\pi\)
−0.617812 + 0.786326i \(0.711981\pi\)
\(212\) 0 0
\(213\) 21.4250 1.81776i 1.46802 0.124551i
\(214\) 0 0
\(215\) 0.0374041 0.00255094
\(216\) 0 0
\(217\) −4.00000 −0.271538
\(218\) 0 0
\(219\) 17.8442 1.51395i 1.20580 0.102303i
\(220\) 0 0
\(221\) −17.8068 −1.19782
\(222\) 0 0
\(223\) 3.94092i 0.263904i −0.991256 0.131952i \(-0.957876\pi\)
0.991256 0.131952i \(-0.0421244\pi\)
\(224\) 0 0
\(225\) 2.95712 0.505418i 0.197141 0.0336945i
\(226\) 0 0
\(227\) 6.27118i 0.416233i 0.978104 + 0.208116i \(0.0667333\pi\)
−0.978104 + 0.208116i \(0.933267\pi\)
\(228\) 0 0
\(229\) 19.3176i 1.27654i −0.769812 0.638271i \(-0.779650\pi\)
0.769812 0.638271i \(-0.220350\pi\)
\(230\) 0 0
\(231\) −2.53257 + 0.214870i −0.166631 + 0.0141374i
\(232\) 0 0
\(233\) 18.9016i 1.23828i 0.785280 + 0.619141i \(0.212519\pi\)
−0.785280 + 0.619141i \(0.787481\pi\)
\(234\) 0 0
\(235\) −5.62139 −0.366699
\(236\) 0 0
\(237\) −1.66063 19.5730i −0.107869 1.27140i
\(238\) 0 0
\(239\) −20.3394 −1.31564 −0.657822 0.753173i \(-0.728522\pi\)
−0.657822 + 0.753173i \(0.728522\pi\)
\(240\) 0 0
\(241\) −0.699485 −0.0450578 −0.0225289 0.999746i \(-0.507172\pi\)
−0.0225289 + 0.999746i \(0.507172\pi\)
\(242\) 0 0
\(243\) 14.2132 6.40187i 0.911779 0.410680i
\(244\) 0 0
\(245\) 4.89257 0.312575
\(246\) 0 0
\(247\) 8.12450i 0.516950i
\(248\) 0 0
\(249\) 1.63942 + 19.3231i 0.103894 + 1.22455i
\(250\) 0 0
\(251\) 1.01084i 0.0638034i 0.999491 + 0.0319017i \(0.0101564\pi\)
−0.999491 + 0.0319017i \(0.989844\pi\)
\(252\) 0 0
\(253\) 3.33949i 0.209952i
\(254\) 0 0
\(255\) 0.696312 + 8.20709i 0.0436047 + 0.513948i
\(256\) 0 0
\(257\) 10.2662i 0.640386i −0.947352 0.320193i \(-0.896252\pi\)
0.947352 0.320193i \(-0.103748\pi\)
\(258\) 0 0
\(259\) −8.80057 −0.546841
\(260\) 0 0
\(261\) −10.6354 + 1.81776i −0.658314 + 0.112516i
\(262\) 0 0
\(263\) 17.2820 1.06565 0.532827 0.846224i \(-0.321130\pi\)
0.532827 + 0.846224i \(0.321130\pi\)
\(264\) 0 0
\(265\) 4.31770 0.265234
\(266\) 0 0
\(267\) −0.925074 10.9034i −0.0566136 0.667277i
\(268\) 0 0
\(269\) −0.871939 −0.0531631 −0.0265815 0.999647i \(-0.508462\pi\)
−0.0265815 + 0.999647i \(0.508462\pi\)
\(270\) 0 0
\(271\) 17.7085i 1.07571i 0.843036 + 0.537857i \(0.180766\pi\)
−0.843036 + 0.537857i \(0.819234\pi\)
\(272\) 0 0
\(273\) −9.38167 + 0.795966i −0.567804 + 0.0481741i
\(274\) 0 0
\(275\) 1.01084i 0.0609557i
\(276\) 0 0
\(277\) 12.1273i 0.728657i 0.931271 + 0.364328i \(0.118701\pi\)
−0.931271 + 0.364328i \(0.881299\pi\)
\(278\) 0 0
\(279\) 1.39262 + 8.14801i 0.0833742 + 0.487809i
\(280\) 0 0
\(281\) 20.4566i 1.22034i −0.792271 0.610169i \(-0.791101\pi\)
0.792271 0.610169i \(-0.208899\pi\)
\(282\) 0 0
\(283\) −3.62322 −0.215378 −0.107689 0.994185i \(-0.534345\pi\)
−0.107689 + 0.994185i \(0.534345\pi\)
\(284\) 0 0
\(285\) 3.74455 0.317698i 0.221808 0.0188188i
\(286\) 0 0
\(287\) 10.6388 0.627991
\(288\) 0 0
\(289\) −5.61372 −0.330219
\(290\) 0 0
\(291\) 16.3768 1.38945i 0.960024 0.0814510i
\(292\) 0 0
\(293\) 20.9782 1.22556 0.612780 0.790254i \(-0.290051\pi\)
0.612780 + 0.790254i \(0.290051\pi\)
\(294\) 0 0
\(295\) 11.9142i 0.693674i
\(296\) 0 0
\(297\) 1.31942 + 5.08404i 0.0765605 + 0.295006i
\(298\) 0 0
\(299\) 12.3708i 0.715424i
\(300\) 0 0
\(301\) 0.0542996i 0.00312978i
\(302\) 0 0
\(303\) −23.1322 + 1.96260i −1.32891 + 0.112748i
\(304\) 0 0
\(305\) 5.30686i 0.303870i
\(306\) 0 0
\(307\) 14.3984 0.821763 0.410881 0.911689i \(-0.365221\pi\)
0.410881 + 0.911689i \(0.365221\pi\)
\(308\) 0 0
\(309\) −1.68000 19.8013i −0.0955718 1.12646i
\(310\) 0 0
\(311\) 1.97198 0.111821 0.0559104 0.998436i \(-0.482194\pi\)
0.0559104 + 0.998436i \(0.482194\pi\)
\(312\) 0 0
\(313\) −31.9998 −1.80873 −0.904367 0.426756i \(-0.859656\pi\)
−0.904367 + 0.426756i \(0.859656\pi\)
\(314\) 0 0
\(315\) 0.733716 + 4.29285i 0.0413402 + 0.241875i
\(316\) 0 0
\(317\) −20.9531 −1.17684 −0.588422 0.808554i \(-0.700250\pi\)
−0.588422 + 0.808554i \(0.700250\pi\)
\(318\) 0 0
\(319\) 3.63551i 0.203550i
\(320\) 0 0
\(321\) −2.78571 32.8338i −0.155483 1.83261i
\(322\) 0 0
\(323\) 10.3177i 0.574092i
\(324\) 0 0
\(325\) 3.74455i 0.207710i
\(326\) 0 0
\(327\) 2.46571 + 29.0621i 0.136354 + 1.60714i
\(328\) 0 0
\(329\) 8.16057i 0.449907i
\(330\) 0 0
\(331\) 6.58386 0.361882 0.180941 0.983494i \(-0.442086\pi\)
0.180941 + 0.983494i \(0.442086\pi\)
\(332\) 0 0
\(333\) 3.06397 + 17.9268i 0.167905 + 0.982382i
\(334\) 0 0
\(335\) −8.03740 −0.439130
\(336\) 0 0
\(337\) −2.80692 −0.152903 −0.0764513 0.997073i \(-0.524359\pi\)
−0.0764513 + 0.997073i \(0.524359\pi\)
\(338\) 0 0
\(339\) 2.08259 + 24.5465i 0.113111 + 1.33318i
\(340\) 0 0
\(341\) −2.78525 −0.150830
\(342\) 0 0
\(343\) 17.2644i 0.932192i
\(344\) 0 0
\(345\) −5.70167 + 0.483745i −0.306968 + 0.0260440i
\(346\) 0 0
\(347\) 8.12133i 0.435976i 0.975951 + 0.217988i \(0.0699493\pi\)
−0.975951 + 0.217988i \(0.930051\pi\)
\(348\) 0 0
\(349\) 5.68230i 0.304167i −0.988368 0.152083i \(-0.951402\pi\)
0.988368 0.152083i \(-0.0485982\pi\)
\(350\) 0 0
\(351\) 4.88767 + 18.8334i 0.260885 + 1.00525i
\(352\) 0 0
\(353\) 29.9017i 1.59151i 0.605621 + 0.795753i \(0.292925\pi\)
−0.605621 + 0.795753i \(0.707075\pi\)
\(354\) 0 0
\(355\) 12.4142 0.658876
\(356\) 0 0
\(357\) −11.9142 + 1.01084i −0.630568 + 0.0534991i
\(358\) 0 0
\(359\) −16.8754 −0.890649 −0.445324 0.895369i \(-0.646912\pi\)
−0.445324 + 0.895369i \(0.646912\pi\)
\(360\) 0 0
\(361\) −14.2925 −0.752235
\(362\) 0 0
\(363\) 17.2209 1.46107i 0.903863 0.0766862i
\(364\) 0 0
\(365\) 10.3394 0.541187
\(366\) 0 0
\(367\) 35.3333i 1.84438i −0.386733 0.922192i \(-0.626396\pi\)
0.386733 0.922192i \(-0.373604\pi\)
\(368\) 0 0
\(369\) −3.70397 21.6713i −0.192821 1.12817i
\(370\) 0 0
\(371\) 6.26801i 0.325419i
\(372\) 0 0
\(373\) 10.6976i 0.553903i −0.960884 0.276952i \(-0.910676\pi\)
0.960884 0.276952i \(-0.0893242\pi\)
\(374\) 0 0
\(375\) 1.72585 0.146426i 0.0891225 0.00756140i
\(376\) 0 0
\(377\) 13.4674i 0.693608i
\(378\) 0 0
\(379\) 5.83031 0.299483 0.149742 0.988725i \(-0.452156\pi\)
0.149742 + 0.988725i \(0.452156\pi\)
\(380\) 0 0
\(381\) −2.01937 23.8013i −0.103455 1.21938i
\(382\) 0 0
\(383\) 37.8207 1.93255 0.966274 0.257518i \(-0.0829045\pi\)
0.966274 + 0.257518i \(0.0829045\pi\)
\(384\) 0 0
\(385\) −1.46743 −0.0747873
\(386\) 0 0
\(387\) 0.110608 0.0189047i 0.00562254 0.000960981i
\(388\) 0 0
\(389\) −6.63540 −0.336428 −0.168214 0.985751i \(-0.553800\pi\)
−0.168214 + 0.985751i \(0.553800\pi\)
\(390\) 0 0
\(391\) 15.7103i 0.794505i
\(392\) 0 0
\(393\) 2.50906 + 29.5730i 0.126565 + 1.49176i
\(394\) 0 0
\(395\) 11.3411i 0.570632i
\(396\) 0 0
\(397\) 32.7878i 1.64557i −0.568352 0.822786i \(-0.692419\pi\)
0.568352 0.822786i \(-0.307581\pi\)
\(398\) 0 0
\(399\) 0.461202 + 5.43597i 0.0230890 + 0.272139i
\(400\) 0 0
\(401\) 22.8067i 1.13891i −0.822022 0.569456i \(-0.807154\pi\)
0.822022 0.569456i \(-0.192846\pi\)
\(402\) 0 0
\(403\) −10.3177 −0.513961
\(404\) 0 0
\(405\) 8.48910 2.98916i 0.421827 0.148533i
\(406\) 0 0
\(407\) −6.12794 −0.303751
\(408\) 0 0
\(409\) −9.87089 −0.488084 −0.244042 0.969765i \(-0.578474\pi\)
−0.244042 + 0.969765i \(0.578474\pi\)
\(410\) 0 0
\(411\) −1.35682 15.9922i −0.0669272 0.788838i
\(412\) 0 0
\(413\) 17.2959 0.851076
\(414\) 0 0
\(415\) 11.1963i 0.549602i
\(416\) 0 0
\(417\) −18.0623 + 1.53245i −0.884512 + 0.0750444i
\(418\) 0 0
\(419\) 12.3818i 0.604890i −0.953167 0.302445i \(-0.902197\pi\)
0.953167 0.302445i \(-0.0978028\pi\)
\(420\) 0 0
\(421\) 19.6930i 0.959779i −0.877329 0.479890i \(-0.840677\pi\)
0.877329 0.479890i \(-0.159323\pi\)
\(422\) 0 0
\(423\) −16.6231 + 2.84115i −0.808243 + 0.138141i
\(424\) 0 0
\(425\) 4.75539i 0.230670i
\(426\) 0 0
\(427\) −7.70397 −0.372821
\(428\) 0 0
\(429\) −6.53257 + 0.554241i −0.315395 + 0.0267590i
\(430\) 0 0
\(431\) −28.5638 −1.37587 −0.687935 0.725772i \(-0.741483\pi\)
−0.687935 + 0.725772i \(0.741483\pi\)
\(432\) 0 0
\(433\) −12.4673 −0.599141 −0.299570 0.954074i \(-0.596843\pi\)
−0.299570 + 0.954074i \(0.596843\pi\)
\(434\) 0 0
\(435\) −6.20709 + 0.526626i −0.297607 + 0.0252498i
\(436\) 0 0
\(437\) −7.16796 −0.342890
\(438\) 0 0
\(439\) 3.21659i 0.153520i −0.997050 0.0767598i \(-0.975543\pi\)
0.997050 0.0767598i \(-0.0244574\pi\)
\(440\) 0 0
\(441\) 14.4679 2.47279i 0.688947 0.117752i
\(442\) 0 0
\(443\) 3.92837i 0.186642i 0.995636 + 0.0933211i \(0.0297483\pi\)
−0.995636 + 0.0933211i \(0.970252\pi\)
\(444\) 0 0
\(445\) 6.31770i 0.299488i
\(446\) 0 0
\(447\) 20.4516 1.73517i 0.967327 0.0820706i
\(448\) 0 0
\(449\) 6.98916i 0.329839i 0.986307 + 0.164920i \(0.0527364\pi\)
−0.986307 + 0.164920i \(0.947264\pi\)
\(450\) 0 0
\(451\) 7.40795 0.348827
\(452\) 0 0
\(453\) −3.30051 38.9016i −0.155072 1.82775i
\(454\) 0 0
\(455\) −5.43597 −0.254842
\(456\) 0 0
\(457\) −18.4639 −0.863703 −0.431852 0.901945i \(-0.642140\pi\)
−0.431852 + 0.901945i \(0.642140\pi\)
\(458\) 0 0
\(459\) 6.20709 + 23.9174i 0.289722 + 1.11637i
\(460\) 0 0
\(461\) −12.0171 −0.559691 −0.279845 0.960045i \(-0.590283\pi\)
−0.279845 + 0.960045i \(0.590283\pi\)
\(462\) 0 0
\(463\) 30.2304i 1.40492i −0.711721 0.702462i \(-0.752084\pi\)
0.711721 0.702462i \(-0.247916\pi\)
\(464\) 0 0
\(465\) 0.403460 + 4.75539i 0.0187100 + 0.220526i
\(466\) 0 0
\(467\) 6.06819i 0.280802i 0.990095 + 0.140401i \(0.0448392\pi\)
−0.990095 + 0.140401i \(0.955161\pi\)
\(468\) 0 0
\(469\) 11.6679i 0.538774i
\(470\) 0 0
\(471\) −1.10889 13.0699i −0.0510948 0.602230i
\(472\) 0 0
\(473\) 0.0378095i 0.00173848i
\(474\) 0 0
\(475\) 2.16969 0.0995520
\(476\) 0 0
\(477\) 12.7679 2.18224i 0.584604 0.0999181i
\(478\) 0 0
\(479\) 12.4890 0.570636 0.285318 0.958433i \(-0.407901\pi\)
0.285318 + 0.958433i \(0.407901\pi\)
\(480\) 0 0
\(481\) −22.7004 −1.03505
\(482\) 0 0
\(483\) −0.702253 8.27712i −0.0319536 0.376622i
\(484\) 0 0
\(485\) 9.48910 0.430878
\(486\) 0 0
\(487\) 16.0157i 0.725742i 0.931839 + 0.362871i \(0.118203\pi\)
−0.931839 + 0.362871i \(0.881797\pi\)
\(488\) 0 0
\(489\) −19.8930 + 1.68778i −0.899594 + 0.0763240i
\(490\) 0 0
\(491\) 2.64979i 0.119583i 0.998211 + 0.0597917i \(0.0190437\pi\)
−0.998211 + 0.0597917i \(0.980956\pi\)
\(492\) 0 0
\(493\) 17.1029i 0.770278i
\(494\) 0 0
\(495\) 0.510895 + 2.98916i 0.0229630 + 0.134353i
\(496\) 0 0
\(497\) 18.0217i 0.808383i
\(498\) 0 0
\(499\) −10.1697 −0.455258 −0.227629 0.973748i \(-0.573097\pi\)
−0.227629 + 0.973748i \(0.573097\pi\)
\(500\) 0 0
\(501\) −11.7233 + 0.994640i −0.523760 + 0.0444373i
\(502\) 0 0
\(503\) −4.22876 −0.188551 −0.0942756 0.995546i \(-0.530053\pi\)
−0.0942756 + 0.995546i \(0.530053\pi\)
\(504\) 0 0
\(505\) −13.4033 −0.596441
\(506\) 0 0
\(507\) −1.76325 + 0.149599i −0.0783089 + 0.00664394i
\(508\) 0 0
\(509\) −13.5749 −0.601695 −0.300848 0.953672i \(-0.597270\pi\)
−0.300848 + 0.953672i \(0.597270\pi\)
\(510\) 0 0
\(511\) 15.0097i 0.663989i
\(512\) 0 0
\(513\) 10.9125 2.83204i 0.481799 0.125037i
\(514\) 0 0
\(515\) 11.4734i 0.505577i
\(516\) 0 0
\(517\) 5.68230i 0.249907i
\(518\) 0 0
\(519\) 44.2053 3.75049i 1.94040 0.164628i
\(520\) 0 0
\(521\) 41.9998i 1.84004i −0.391868 0.920022i \(-0.628171\pi\)
0.391868 0.920022i \(-0.371829\pi\)
\(522\) 0 0
\(523\) 7.70438 0.336889 0.168445 0.985711i \(-0.446126\pi\)
0.168445 + 0.985711i \(0.446126\pi\)
\(524\) 0 0
\(525\) 0.212567 + 2.50542i 0.00927716 + 0.109345i
\(526\) 0 0
\(527\) −13.1029 −0.570773
\(528\) 0 0
\(529\) −12.0856 −0.525463
\(530\) 0 0
\(531\) −6.02167 35.2318i −0.261318 1.52893i
\(532\) 0 0
\(533\) 27.4421 1.18865
\(534\) 0 0
\(535\) 19.0247i 0.822511i
\(536\) 0 0
\(537\) 0.277120 + 3.26628i 0.0119586 + 0.140951i
\(538\) 0 0
\(539\) 4.94558i 0.213021i
\(540\) 0 0
\(541\) 4.85027i 0.208529i 0.994550 + 0.104265i \(0.0332489\pi\)
−0.994550 + 0.104265i \(0.966751\pi\)
\(542\) 0 0
\(543\) −0.757228 8.92507i −0.0324957 0.383012i
\(544\) 0 0
\(545\) 16.8393i 0.721317i
\(546\) 0 0
\(547\) −24.4201 −1.04413 −0.522064 0.852906i \(-0.674838\pi\)
−0.522064 + 0.852906i \(0.674838\pi\)
\(548\) 0 0
\(549\) 2.68218 + 15.6930i 0.114473 + 0.669762i
\(550\) 0 0
\(551\) −7.80336 −0.332434
\(552\) 0 0
\(553\) 16.4639 0.700115
\(554\) 0 0
\(555\) 0.887670 + 10.4625i 0.0376795 + 0.444110i
\(556\) 0 0
\(557\) 25.8718 1.09622 0.548112 0.836405i \(-0.315347\pi\)
0.548112 + 0.836405i \(0.315347\pi\)
\(558\) 0 0
\(559\) 0.140062i 0.00592398i
\(560\) 0 0
\(561\) −8.29603 + 0.703857i −0.350258 + 0.0297169i
\(562\) 0 0
\(563\) 11.0247i 0.464637i −0.972640 0.232318i \(-0.925369\pi\)
0.972640 0.232318i \(-0.0746312\pi\)
\(564\) 0 0
\(565\) 14.2228i 0.598359i
\(566\) 0 0
\(567\) 4.33937 + 12.3236i 0.182236 + 0.517544i
\(568\) 0 0
\(569\) 28.2039i 1.18237i −0.806536 0.591185i \(-0.798660\pi\)
0.806536 0.591185i \(-0.201340\pi\)
\(570\) 0 0
\(571\) −24.0513 −1.00652 −0.503258 0.864136i \(-0.667865\pi\)
−0.503258 + 0.864136i \(0.667865\pi\)
\(572\) 0 0
\(573\) 33.7210 2.86099i 1.40872 0.119519i
\(574\) 0 0
\(575\) −3.30369 −0.137773
\(576\) 0 0
\(577\) −21.6570 −0.901591 −0.450795 0.892627i \(-0.648860\pi\)
−0.450795 + 0.892627i \(0.648860\pi\)
\(578\) 0 0
\(579\) −1.47337 + 0.125005i −0.0612313 + 0.00519503i
\(580\) 0 0
\(581\) −16.2536 −0.674313
\(582\) 0 0
\(583\) 4.36449i 0.180759i
\(584\) 0 0
\(585\) 1.89257 + 11.0731i 0.0782479 + 0.457816i
\(586\) 0 0
\(587\) 39.0995i 1.61381i 0.590681 + 0.806905i \(0.298859\pi\)
−0.590681 + 0.806905i \(0.701141\pi\)
\(588\) 0 0
\(589\) 5.97833i 0.246333i
\(590\) 0 0
\(591\) −33.3767 + 2.83177i −1.37293 + 0.116483i
\(592\) 0 0
\(593\) 33.5153i 1.37631i 0.725565 + 0.688154i \(0.241579\pi\)
−0.725565 + 0.688154i \(0.758421\pi\)
\(594\) 0 0
\(595\) −6.90340 −0.283012
\(596\) 0 0
\(597\) 0.193197 + 2.27712i 0.00790703 + 0.0931963i
\(598\) 0 0
\(599\) −7.61728 −0.311234 −0.155617 0.987817i \(-0.549737\pi\)
−0.155617 + 0.987817i \(0.549737\pi\)
\(600\) 0 0
\(601\) 17.7861 0.725508 0.362754 0.931885i \(-0.381836\pi\)
0.362754 + 0.931885i \(0.381836\pi\)
\(602\) 0 0
\(603\) −23.7676 + 4.06225i −0.967890 + 0.165428i
\(604\) 0 0
\(605\) 9.97821 0.405672
\(606\) 0 0
\(607\) 18.6295i 0.756146i −0.925776 0.378073i \(-0.876587\pi\)
0.925776 0.378073i \(-0.123413\pi\)
\(608\) 0 0
\(609\) −0.764504 9.01084i −0.0309793 0.365138i
\(610\) 0 0
\(611\) 21.0496i 0.851575i
\(612\) 0 0
\(613\) 34.1307i 1.37853i 0.724511 + 0.689263i \(0.242066\pi\)
−0.724511 + 0.689263i \(0.757934\pi\)
\(614\) 0 0
\(615\) −1.07309 12.6480i −0.0432710 0.510015i
\(616\) 0 0
\(617\) 14.8582i 0.598169i −0.954227 0.299085i \(-0.903319\pi\)
0.954227 0.299085i \(-0.0966813\pi\)
\(618\) 0 0
\(619\) −45.6369 −1.83430 −0.917151 0.398541i \(-0.869517\pi\)
−0.917151 + 0.398541i \(0.869517\pi\)
\(620\) 0 0
\(621\) −16.6160 + 4.31222i −0.666778 + 0.173043i
\(622\) 0 0
\(623\) 9.17141 0.367445
\(624\) 0 0
\(625\) 1.00000 0.0400000
\(626\) 0 0
\(627\) 0.321141 + 3.78513i 0.0128251 + 0.151164i
\(628\) 0 0
\(629\) −28.8284 −1.14946
\(630\) 0 0
\(631\) 43.5367i 1.73317i −0.499030 0.866585i \(-0.666310\pi\)
0.499030 0.866585i \(-0.333690\pi\)
\(632\) 0 0
\(633\) −30.9764 + 2.62812i −1.23120 + 0.104458i
\(634\) 0 0
\(635\) 13.7911i 0.547282i
\(636\) 0 0
\(637\) 18.3205i 0.725883i
\(638\) 0 0
\(639\) 36.7102 6.27435i 1.45223 0.248210i
\(640\) 0 0
\(641\) 31.4782i 1.24331i 0.783290 + 0.621656i \(0.213540\pi\)
−0.783290 + 0.621656i \(0.786460\pi\)
\(642\) 0 0
\(643\) 4.32708 0.170643 0.0853217 0.996353i \(-0.472808\pi\)
0.0853217 + 0.996353i \(0.472808\pi\)
\(644\) 0 0
\(645\) 0.0645539 0.00547693i 0.00254181 0.000215654i
\(646\) 0 0
\(647\) 48.8171 1.91920 0.959600 0.281368i \(-0.0907883\pi\)
0.959600 + 0.281368i \(0.0907883\pi\)
\(648\) 0 0
\(649\) 12.0433 0.472743
\(650\) 0 0
\(651\) −6.90340 + 0.585703i −0.270566 + 0.0229555i
\(652\) 0 0
\(653\) −4.18952 −0.163949 −0.0819743 0.996634i \(-0.526123\pi\)
−0.0819743 + 0.996634i \(0.526123\pi\)
\(654\) 0 0
\(655\) 17.1353i 0.669533i
\(656\) 0 0
\(657\) 30.5747 5.22571i 1.19283 0.203874i
\(658\) 0 0
\(659\) 42.3004i 1.64779i −0.566743 0.823895i \(-0.691797\pi\)
0.566743 0.823895i \(-0.308203\pi\)
\(660\) 0 0
\(661\) 21.6280i 0.841232i −0.907239 0.420616i \(-0.861814\pi\)
0.907239 0.420616i \(-0.138186\pi\)
\(662\) 0 0
\(663\) −30.7319 + 2.60738i −1.19353 + 0.101262i
\(664\) 0 0
\(665\) 3.14973i 0.122141i
\(666\) 0 0
\(667\) 11.8818 0.460067
\(668\) 0 0
\(669\) −0.577053 6.80144i −0.0223102 0.262959i
\(670\) 0 0
\(671\) −5.36437 −0.207089
\(672\) 0 0
\(673\) 22.1245 0.852837 0.426418 0.904526i \(-0.359775\pi\)
0.426418 + 0.904526i \(0.359775\pi\)
\(674\) 0 0
\(675\) 5.02954 1.30527i 0.193587 0.0502401i
\(676\) 0 0
\(677\) 24.1895 0.929679 0.464839 0.885395i \(-0.346112\pi\)
0.464839 + 0.885395i \(0.346112\pi\)
\(678\) 0 0
\(679\) 13.7753i 0.528649i
\(680\) 0 0
\(681\) 0.918263 + 10.8231i 0.0351879 + 0.414743i
\(682\) 0 0
\(683\) 49.7069i 1.90198i 0.309218 + 0.950991i \(0.399933\pi\)
−0.309218 + 0.950991i \(0.600067\pi\)
\(684\) 0 0
\(685\) 9.26628i 0.354047i
\(686\) 0 0
\(687\) −2.82859 33.3393i −0.107918 1.27197i
\(688\) 0 0
\(689\) 16.1678i 0.615946i
\(690\) 0 0
\(691\) 1.94847 0.0741232 0.0370616 0.999313i \(-0.488200\pi\)
0.0370616 + 0.999313i \(0.488200\pi\)
\(692\) 0 0
\(693\) −4.33937 + 0.741667i −0.164839 + 0.0281736i
\(694\) 0 0
\(695\) −10.4657 −0.396987
\(696\) 0 0
\(697\) 34.8500 1.32004
\(698\) 0 0
\(699\) 2.76768 + 32.6213i 0.104683 + 1.23385i
\(700\) 0 0
\(701\) −37.0216 −1.39828 −0.699142 0.714982i \(-0.746435\pi\)
−0.699142 + 0.714982i \(0.746435\pi\)
\(702\) 0 0
\(703\) 13.1532i 0.496081i
\(704\) 0 0
\(705\) −9.70167 + 0.823116i −0.365386 + 0.0310004i
\(706\) 0 0
\(707\) 19.4576i 0.731780i
\(708\) 0 0
\(709\) 4.66051i 0.175029i −0.996163 0.0875146i \(-0.972108\pi\)
0.996163 0.0875146i \(-0.0278924\pi\)
\(710\) 0 0
\(711\) −5.73199 33.5370i −0.214967 1.25773i
\(712\) 0 0
\(713\) 9.10295i 0.340908i
\(714\) 0 0
\(715\) −3.78513 −0.141556
\(716\) 0 0
\(717\) −35.1027 + 2.97821i −1.31093 + 0.111223i
\(718\) 0 0
\(719\) −45.3771 −1.69228 −0.846139 0.532962i \(-0.821079\pi\)
−0.846139 + 0.532962i \(0.821079\pi\)
\(720\) 0 0
\(721\) 16.6559 0.620298
\(722\) 0 0
\(723\) −1.20721 + 0.102423i −0.0448965 + 0.00380914i
\(724\) 0 0
\(725\) −3.59654 −0.133572
\(726\) 0 0
\(727\) 37.4795i 1.39004i 0.718992 + 0.695019i \(0.244604\pi\)
−0.718992 + 0.695019i \(0.755396\pi\)
\(728\) 0 0
\(729\) 23.5925 13.1299i 0.873797 0.486291i
\(730\) 0 0
\(731\) 0.177871i 0.00657880i
\(732\) 0 0
\(733\) 7.08404i 0.261655i −0.991405 0.130828i \(-0.958237\pi\)
0.991405 0.130828i \(-0.0417634\pi\)
\(734\) 0 0
\(735\) 8.44384 0.716398i 0.311456 0.0264247i
\(736\) 0 0
\(737\) 8.12450i 0.299270i
\(738\) 0 0
\(739\) 46.6587 1.71637 0.858184 0.513343i \(-0.171593\pi\)
0.858184 + 0.513343i \(0.171593\pi\)
\(740\) 0 0
\(741\) 1.18964 + 14.0217i 0.0437024 + 0.515099i
\(742\) 0 0
\(743\) 22.2504 0.816289 0.408145 0.912917i \(-0.366176\pi\)
0.408145 + 0.912917i \(0.366176\pi\)
\(744\) 0 0
\(745\) 11.8501 0.434156
\(746\) 0 0
\(747\) 5.65879 + 33.1087i 0.207044 + 1.21138i
\(748\) 0 0
\(749\) 27.6182 1.00915
\(750\) 0 0
\(751\) 38.9610i 1.42171i 0.703339 + 0.710854i \(0.251692\pi\)
−0.703339 + 0.710854i \(0.748308\pi\)
\(752\) 0 0
\(753\) 0.148013 + 1.74455i 0.00539388 + 0.0635750i
\(754\) 0 0
\(755\) 22.5405i 0.820333i
\(756\) 0 0
\(757\) 6.98098i 0.253728i −0.991920 0.126864i \(-0.959509\pi\)
0.991920 0.126864i \(-0.0404912\pi\)
\(758\) 0 0
\(759\) −0.488987 5.76346i −0.0177491 0.209200i
\(760\) 0 0
\(761\) 3.20577i 0.116209i −0.998311 0.0581046i \(-0.981494\pi\)
0.998311 0.0581046i \(-0.0185057\pi\)
\(762\) 0 0
\(763\) −24.4456 −0.884992
\(764\) 0 0
\(765\) 2.40346 + 14.0623i 0.0868973 + 0.508422i
\(766\) 0 0
\(767\) 44.6135 1.61090
\(768\) 0 0
\(769\) 15.6353 0.563823 0.281911 0.959440i \(-0.409032\pi\)
0.281911 + 0.959440i \(0.409032\pi\)
\(770\) 0 0
\(771\) −1.50323 17.7179i −0.0541376 0.638093i
\(772\) 0 0
\(773\) 24.3610 0.876206 0.438103 0.898925i \(-0.355651\pi\)
0.438103 + 0.898925i \(0.355651\pi\)
\(774\) 0 0
\(775\) 2.75539i 0.0989765i
\(776\) 0 0
\(777\) −15.1885 + 1.28863i −0.544883 + 0.0462294i
\(778\) 0 0
\(779\) 15.9006i 0.569699i
\(780\) 0 0
\(781\) 12.5487i 0.449028i
\(782\) 0 0
\(783\) −18.0889 + 4.69447i −0.646446 + 0.167767i
\(784\) 0 0
\(785\) 7.57303i 0.270293i
\(786\) 0 0
\(787\) −10.9590 −0.390647 −0.195324 0.980739i \(-0.562576\pi\)
−0.195324 + 0.980739i \(0.562576\pi\)
\(788\) 0 0
\(789\) 29.8262 2.53053i 1.06184 0.0900894i
\(790\) 0 0
\(791\) −20.6473 −0.734133
\(792\) 0 0
\(793\) −19.8718 −0.705669
\(794\) 0 0
\(795\) 7.45170 0.632223i 0.264285 0.0224226i
\(796\) 0 0
\(797\) −11.0903 −0.392837 −0.196418 0.980520i \(-0.562931\pi\)
−0.196418 + 0.980520i \(0.562931\pi\)
\(798\) 0 0
\(799\) 26.7319i 0.945706i
\(800\) 0 0
\(801\) −3.19308 18.6822i −0.112822 0.660103i
\(802\) 0 0
\(803\) 10.4514i 0.368822i
\(804\) 0 0
\(805\) 4.79597i 0.169036i
\(806\) 0 0
\(807\) −1.50484 + 0.127674i −0.0529727 + 0.00449435i
\(808\) 0 0
\(809\) 7.16796i 0.252012i −0.992029 0.126006i \(-0.959784\pi\)
0.992029 0.126006i \(-0.0402159\pi\)
\(810\) 0 0
\(811\) 55.5586 1.95093 0.975464 0.220160i \(-0.0706580\pi\)
0.975464 + 0.220160i \(0.0706580\pi\)
\(812\) 0 0
\(813\) 2.59298 + 30.5622i 0.0909398 + 1.07186i
\(814\) 0 0
\(815\) −11.5265 −0.403756
\(816\) 0 0
\(817\) 0.0811552 0.00283926
\(818\) 0 0
\(819\) −16.0748 + 2.74744i −0.561699 + 0.0960033i
\(820\) 0 0
\(821\) −42.4420 −1.48123 −0.740617 0.671927i \(-0.765467\pi\)
−0.740617 + 0.671927i \(0.765467\pi\)
\(822\) 0 0
\(823\) 16.6881i 0.581712i −0.956767 0.290856i \(-0.906060\pi\)
0.956767 0.290856i \(-0.0939400\pi\)
\(824\) 0 0
\(825\) 0.148013 + 1.74455i 0.00515314 + 0.0607375i
\(826\) 0 0
\(827\) 20.8968i 0.726652i 0.931662 + 0.363326i \(0.118359\pi\)
−0.931662 + 0.363326i \(0.881641\pi\)
\(828\) 0 0
\(829\) 8.83931i 0.307002i −0.988148 0.153501i \(-0.950945\pi\)
0.988148 0.153501i \(-0.0490548\pi\)
\(830\) 0 0
\(831\) 1.77575 + 20.9299i 0.0615999 + 0.726049i
\(832\) 0 0
\(833\) 23.2660i 0.806121i
\(834\) 0 0
\(835\) −6.79279 −0.235074
\(836\) 0 0
\(837\) 3.59654 + 13.8583i 0.124315 + 0.479014i
\(838\) 0 0
\(839\) 6.10283 0.210693 0.105347 0.994436i \(-0.466405\pi\)
0.105347 + 0.994436i \(0.466405\pi\)
\(840\) 0 0
\(841\) −16.0649 −0.553962
\(842\) 0 0
\(843\) −2.99537 35.3050i −0.103166 1.21597i
\(844\) 0 0
\(845\) −1.02167 −0.0351466
\(846\) 0 0
\(847\) 14.4854i 0.497723i
\(848\) 0 0
\(849\) −6.25314 + 0.530534i −0.214607 + 0.0182079i
\(850\) 0 0
\(851\) 20.0278i 0.686544i
\(852\) 0 0
\(853\) 32.3799i 1.10867i 0.832294 + 0.554334i \(0.187027\pi\)
−0.832294 + 0.554334i \(0.812973\pi\)
\(854\) 0 0
\(855\) 6.41602 1.09660i 0.219423 0.0375029i
\(856\) 0 0
\(857\) 32.2445i 1.10145i −0.834686 0.550725i \(-0.814351\pi\)
0.834686 0.550725i \(-0.185649\pi\)
\(858\) 0 0
\(859\) 47.9295 1.63533 0.817666 0.575693i \(-0.195268\pi\)
0.817666 + 0.575693i \(0.195268\pi\)
\(860\) 0 0
\(861\) 18.3610 1.55780i 0.625743 0.0530897i
\(862\) 0 0
\(863\) 5.96443 0.203032 0.101516 0.994834i \(-0.467631\pi\)
0.101516 + 0.994834i \(0.467631\pi\)
\(864\) 0 0
\(865\) 25.6136 0.870889
\(866\) 0 0
\(867\) −9.68845 + 0.821994i −0.329037 + 0.0279164i
\(868\) 0 0
\(869\) 11.4640 0.388889
\(870\) 0 0
\(871\) 30.0965i 1.01978i
\(872\) 0 0
\(873\) 28.0604 4.79597i 0.949701 0.162319i
\(874\) 0 0
\(875\) 1.45170i 0.0490764i
\(876\) 0 0
\(877\) 39.0621i 1.31903i 0.751689 + 0.659517i \(0.229239\pi\)
−0.751689 + 0.659517i \(0.770761\pi\)
\(878\) 0 0
\(879\) 36.2053 3.07175i 1.22117 0.103608i
\(880\) 0 0
\(881\) 11.9639i 0.403075i −0.979481 0.201538i \(-0.935406\pi\)
0.979481 0.201538i \(-0.0645938\pi\)
\(882\) 0 0
\(883\) 32.5798 1.09640 0.548198 0.836348i \(-0.315314\pi\)
0.548198 + 0.836348i \(0.315314\pi\)
\(884\) 0 0
\(885\) −1.74455 20.5622i −0.0586425 0.691191i
\(886\) 0 0
\(887\) −27.7115 −0.930462 −0.465231 0.885189i \(-0.654029\pi\)
−0.465231 + 0.885189i \(0.654029\pi\)
\(888\) 0 0
\(889\) 20.0205 0.671466
\(890\) 0 0
\(891\) 3.02156 + 8.58110i 0.101226 + 0.287478i
\(892\) 0 0
\(893\) −12.1966 −0.408145
\(894\) 0 0
\(895\) 1.89257i 0.0632615i
\(896\) 0 0
\(897\) −1.81141 21.3502i −0.0604812 0.712863i
\(898\) 0 0
\(899\) 9.90987i 0.330513i
\(900\) 0 0
\(901\) 20.5323i 0.684031i
\(902\) 0 0
\(903\) 0.00795087 + 0.0937130i 0.000264588 + 0.00311857i
\(904\) 0 0
\(905\) 5.17141i 0.171903i
\(906\) 0 0
\(907\) 8.64134 0.286931 0.143465 0.989655i \(-0.454175\pi\)
0.143465 + 0.989655i \(0.454175\pi\)
\(908\) 0 0
\(909\) −39.6353 + 6.77429i −1.31462 + 0.224689i
\(910\) 0 0
\(911\) −15.3490 −0.508536 −0.254268 0.967134i \(-0.581835\pi\)
−0.254268 + 0.967134i \(0.581835\pi\)
\(912\) 0 0
\(913\) −11.3176 −0.374557
\(914\) 0 0
\(915\) 0.777062 + 9.15885i 0.0256889 + 0.302782i
\(916\) 0 0
\(917\) −24.8754 −0.821457
\(918\) 0 0
\(919\) 53.4873i 1.76438i 0.470892 + 0.882191i \(0.343932\pi\)
−0.470892 + 0.882191i \(0.656068\pi\)
\(920\) 0 0
\(921\) 24.8496 2.10830i 0.818821 0.0694710i
\(922\) 0 0
\(923\) 46.4855i 1.53009i
\(924\) 0 0
\(925\) 6.06225i 0.199326i
\(926\) 0 0
\(927\) −5.79885 33.9281i −0.190459 1.11435i
\(928\) 0 0
\(929\) 19.9457i 0.654397i 0.944956 + 0.327199i \(0.106105\pi\)
−0.944956 + 0.327199i \(0.893895\pi\)
\(930\) 0 0
\(931\) 10.6153 0.347903
\(932\) 0 0
\(933\) 3.40334 0.288749i 0.111420 0.00945321i
\(934\) 0 0
\(935\) −4.80692 −0.157203
\(936\) 0 0
\(937\) 17.9096 0.585082 0.292541 0.956253i \(-0.405499\pi\)
0.292541 + 0.956253i \(0.405499\pi\)
\(938\) 0 0
\(939\) −55.2268 + 4.68559i −1.80226 + 0.152909i
\(940\) 0 0
\(941\) 37.1885 1.21231 0.606155 0.795347i \(-0.292711\pi\)
0.606155 + 0.795347i \(0.292711\pi\)
\(942\) 0 0
\(943\) 24.2112i 0.788425i
\(944\) 0 0
\(945\) 1.89487 + 7.30138i 0.0616401 + 0.237514i
\(946\) 0 0
\(947\) 22.7720i 0.739992i 0.929033 + 0.369996i \(0.120641\pi\)
−0.929033 + 0.369996i \(0.879359\pi\)
\(948\) 0 0
\(949\) 38.7163i 1.25678i
\(950\) 0 0
\(951\) −36.1619 + 3.06807i −1.17263 + 0.0994891i
\(952\) 0 0
\(953\) 21.2010i 0.686769i 0.939195 + 0.343384i \(0.111573\pi\)
−0.939195 + 0.343384i \(0.888427\pi\)
\(954\) 0 0
\(955\) 19.5388 0.632261
\(956\) 0 0
\(957\) −0.532333 6.27435i −0.0172079 0.202821i
\(958\) 0 0
\(959\) 13.4519 0.434384
\(960\) 0 0
\(961\) 23.4078 0.755091
\(962\) 0 0
\(963\) −9.61544 56.2584i −0.309853 1.81290i
\(964\) 0 0
\(965\) −0.853709 −0.0274819
\(966\) 0 0
\(967\) 36.7629i 1.18222i 0.806592 + 0.591108i \(0.201309\pi\)
−0.806592 + 0.591108i \(0.798691\pi\)
\(968\) 0 0
\(969\) 1.51078 + 17.8068i 0.0485332 + 0.572037i
\(970\) 0 0
\(971\) 15.9890i 0.513113i 0.966529 + 0.256556i \(0.0825880\pi\)
−0.966529 + 0.256556i \(0.917412\pi\)
\(972\) 0 0
\(973\) 15.1931i 0.487068i
\(974\) 0 0
\(975\) 0.548299 + 6.46254i 0.0175596 + 0.206967i
\(976\) 0 0
\(977\) 5.85833i 0.187425i −0.995599 0.0937124i \(-0.970127\pi\)
0.995599 0.0937124i \(-0.0298734\pi\)
\(978\) 0 0
\(979\) 6.38616 0.204103
\(980\) 0 0
\(981\) 8.51090 + 49.7958i 0.271732 + 1.58986i
\(982\) 0 0
\(983\) 29.0790 0.927477 0.463738 0.885972i \(-0.346508\pi\)
0.463738 + 0.885972i \(0.346508\pi\)
\(984\) 0 0
\(985\) −19.3393 −0.616200
\(986\) 0 0
\(987\) −1.19492 14.0839i −0.0380347 0.448296i
\(988\) 0 0
\(989\) −0.123572 −0.00392935
\(990\) 0 0
\(991\) 58.8799i 1.87038i 0.354145 + 0.935191i \(0.384772\pi\)
−0.354145 + 0.935191i \(0.615228\pi\)
\(992\) 0 0
\(993\) 11.3628 0.964048i 0.360586 0.0305931i
\(994\) 0 0
\(995\) 1.31942i 0.0418284i
\(996\) 0 0
\(997\) 24.3799i 0.772121i −0.922474 0.386060i \(-0.873836\pi\)
0.922474 0.386060i \(-0.126164\pi\)
\(998\) 0 0
\(999\) 7.91290 + 30.4903i 0.250353 + 0.964671i
Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))

Twists

       By twisting character
Char Parity Ord Type Twist Min Dim
1.1 even 1 trivial 1920.2.b.h.191.7 yes 8
3.2 odd 2 1920.2.b.g.191.8 yes 8
4.3 odd 2 1920.2.b.b.191.2 yes 8
8.3 odd 2 1920.2.b.g.191.7 yes 8
8.5 even 2 1920.2.b.a.191.2 yes 8
12.11 even 2 1920.2.b.a.191.1 8
24.5 odd 2 1920.2.b.b.191.1 yes 8
24.11 even 2 inner 1920.2.b.h.191.8 yes 8
    
        By twisted newform
Twist Min Dim Char Parity Ord Type
1920.2.b.a.191.1 8 12.11 even 2
1920.2.b.a.191.2 yes 8 8.5 even 2
1920.2.b.b.191.1 yes 8 24.5 odd 2
1920.2.b.b.191.2 yes 8 4.3 odd 2
1920.2.b.g.191.7 yes 8 8.3 odd 2
1920.2.b.g.191.8 yes 8 3.2 odd 2
1920.2.b.h.191.7 yes 8 1.1 even 1 trivial
1920.2.b.h.191.8 yes 8 24.11 even 2 inner