Properties

Label 1920.2.bh.b.1087.1
Level $1920$
Weight $2$
Character 1920.1087
Analytic conductor $15.331$
Analytic rank $0$
Dimension $4$
Inner twists $4$

Related objects

Downloads

Learn more

Show commands: Magma / PariGP / SageMath

Newspace parameters

comment: Compute space of new eigenforms
 
[N,k,chi] = [1920,2,Mod(703,1920)]
 
mf = mfinit([N,k,chi],0)
 
lf = mfeigenbasis(mf)
 
from sage.modular.dirichlet import DirichletCharacter
 
H = DirichletGroup(1920, base_ring=CyclotomicField(4))
 
chi = DirichletCharacter(H, H._module([2, 2, 0, 3]))
 
N = Newforms(chi, 2, names="a")
 
//Please install CHIMP (https://github.com/edgarcosta/CHIMP) if you want to run this code
 
chi := DirichletCharacter("1920.703");
 
S:= CuspForms(chi, 2);
 
N := Newforms(S);
 
Level: \( N \) \(=\) \( 1920 = 2^{7} \cdot 3 \cdot 5 \)
Weight: \( k \) \(=\) \( 2 \)
Character orbit: \([\chi]\) \(=\) 1920.bh (of order \(4\), degree \(2\), minimal)

Newform invariants

comment: select newform
 
sage: f = N[0] # Warning: the index may be different
 
gp: f = lf[1] \\ Warning: the index may be different
 
Self dual: no
Analytic conductor: \(15.3312771881\)
Analytic rank: \(0\)
Dimension: \(4\)
Relative dimension: \(2\) over \(\Q(i)\)
Coefficient field: \(\Q(\zeta_{8})\)
comment: defining polynomial
 
gp: f.mod \\ as an extension of the character field
 
Defining polynomial: \( x^{4} + 1 \) Copy content Toggle raw display
Coefficient ring: \(\Z[a_1, a_2, a_3]\)
Coefficient ring index: \( 1 \)
Twist minimal: yes
Sato-Tate group: $\mathrm{SU}(2)[C_{4}]$

Embedding invariants

Embedding label 1087.1
Root \(-0.707107 + 0.707107i\) of defining polynomial
Character \(\chi\) \(=\) 1920.1087
Dual form 1920.2.bh.b.703.1

$q$-expansion

comment: q-expansion
 
sage: f.q_expansion() # note that sage often uses an isomorphic number field
 
gp: mfcoefs(f, 20)
 
\(f(q)\) \(=\) \(q+(-0.707107 + 0.707107i) q^{3} +(-2.00000 + 1.00000i) q^{5} +(-2.82843 + 2.82843i) q^{7} -1.00000i q^{9} +5.65685 q^{11} +(3.00000 + 3.00000i) q^{13} +(0.707107 - 2.12132i) q^{15} +(5.00000 + 5.00000i) q^{17} -4.00000i q^{21} +(-2.82843 - 2.82843i) q^{23} +(3.00000 - 4.00000i) q^{25} +(0.707107 + 0.707107i) q^{27} +6.00000 q^{29} +5.65685i q^{31} +(-4.00000 + 4.00000i) q^{33} +(2.82843 - 8.48528i) q^{35} +(3.00000 - 3.00000i) q^{37} -4.24264 q^{39} -8.00000 q^{41} +(-2.82843 + 2.82843i) q^{43} +(1.00000 + 2.00000i) q^{45} +(-8.48528 + 8.48528i) q^{47} -9.00000i q^{49} -7.07107 q^{51} +(5.00000 + 5.00000i) q^{53} +(-11.3137 + 5.65685i) q^{55} -10.0000i q^{61} +(2.82843 + 2.82843i) q^{63} +(-9.00000 - 3.00000i) q^{65} +(2.82843 + 2.82843i) q^{67} +4.00000 q^{69} +5.65685i q^{71} +(-5.00000 + 5.00000i) q^{73} +(0.707107 + 4.94975i) q^{75} +(-16.0000 + 16.0000i) q^{77} -1.00000 q^{81} +(-8.48528 + 8.48528i) q^{83} +(-15.0000 - 5.00000i) q^{85} +(-4.24264 + 4.24264i) q^{87} -16.9706 q^{91} +(-4.00000 - 4.00000i) q^{93} +(3.00000 + 3.00000i) q^{97} -5.65685i q^{99} +O(q^{100})\)
\(\operatorname{Tr}(f)(q)\) \(=\) \( 4 q - 8 q^{5} + 12 q^{13} + 20 q^{17} + 12 q^{25} + 24 q^{29} - 16 q^{33} + 12 q^{37} - 32 q^{41} + 4 q^{45} + 20 q^{53} - 36 q^{65} + 16 q^{69} - 20 q^{73} - 64 q^{77} - 4 q^{81} - 60 q^{85} - 16 q^{93}+ \cdots + 12 q^{97}+O(q^{100}) \) Copy content Toggle raw display

Character values

We give the values of \(\chi\) on generators for \(\left(\mathbb{Z}/1920\mathbb{Z}\right)^\times\).

\(n\) \(511\) \(641\) \(901\) \(1537\)
\(\chi(n)\) \(-1\) \(1\) \(-1\) \(e\left(\frac{1}{4}\right)\)

Coefficient data

For each \(n\) we display the coefficients of the \(q\)-expansion \(a_n\), the Satake parameters \(\alpha_p\), and the Satake angles \(\theta_p = \textrm{Arg}(\alpha_p)\).



Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))
Significant digits:
\(n\) \(a_n\) \(a_n / n^{(k-1)/2}\) \( \alpha_n \) \( \theta_n \)
\(p\) \(a_p\) \(a_p / p^{(k-1)/2}\) \( \alpha_p\) \( \theta_p \)
\(2\) 0 0
\(3\) −0.707107 + 0.707107i −0.408248 + 0.408248i
\(4\) 0 0
\(5\) −2.00000 + 1.00000i −0.894427 + 0.447214i
\(6\) 0 0
\(7\) −2.82843 + 2.82843i −1.06904 + 1.06904i −0.0716124 + 0.997433i \(0.522814\pi\)
−0.997433 + 0.0716124i \(0.977186\pi\)
\(8\) 0 0
\(9\) 1.00000i 0.333333i
\(10\) 0 0
\(11\) 5.65685 1.70561 0.852803 0.522233i \(-0.174901\pi\)
0.852803 + 0.522233i \(0.174901\pi\)
\(12\) 0 0
\(13\) 3.00000 + 3.00000i 0.832050 + 0.832050i 0.987797 0.155747i \(-0.0497784\pi\)
−0.155747 + 0.987797i \(0.549778\pi\)
\(14\) 0 0
\(15\) 0.707107 2.12132i 0.182574 0.547723i
\(16\) 0 0
\(17\) 5.00000 + 5.00000i 1.21268 + 1.21268i 0.970143 + 0.242536i \(0.0779791\pi\)
0.242536 + 0.970143i \(0.422021\pi\)
\(18\) 0 0
\(19\) 0 0 1.00000 \(0\)
−1.00000 \(\pi\)
\(20\) 0 0
\(21\) 4.00000i 0.872872i
\(22\) 0 0
\(23\) −2.82843 2.82843i −0.589768 0.589768i 0.347801 0.937568i \(-0.386929\pi\)
−0.937568 + 0.347801i \(0.886929\pi\)
\(24\) 0 0
\(25\) 3.00000 4.00000i 0.600000 0.800000i
\(26\) 0 0
\(27\) 0.707107 + 0.707107i 0.136083 + 0.136083i
\(28\) 0 0
\(29\) 6.00000 1.11417 0.557086 0.830455i \(-0.311919\pi\)
0.557086 + 0.830455i \(0.311919\pi\)
\(30\) 0 0
\(31\) 5.65685i 1.01600i 0.861357 + 0.508001i \(0.169615\pi\)
−0.861357 + 0.508001i \(0.830385\pi\)
\(32\) 0 0
\(33\) −4.00000 + 4.00000i −0.696311 + 0.696311i
\(34\) 0 0
\(35\) 2.82843 8.48528i 0.478091 1.43427i
\(36\) 0 0
\(37\) 3.00000 3.00000i 0.493197 0.493197i −0.416115 0.909312i \(-0.636609\pi\)
0.909312 + 0.416115i \(0.136609\pi\)
\(38\) 0 0
\(39\) −4.24264 −0.679366
\(40\) 0 0
\(41\) −8.00000 −1.24939 −0.624695 0.780869i \(-0.714777\pi\)
−0.624695 + 0.780869i \(0.714777\pi\)
\(42\) 0 0
\(43\) −2.82843 + 2.82843i −0.431331 + 0.431331i −0.889081 0.457750i \(-0.848656\pi\)
0.457750 + 0.889081i \(0.348656\pi\)
\(44\) 0 0
\(45\) 1.00000 + 2.00000i 0.149071 + 0.298142i
\(46\) 0 0
\(47\) −8.48528 + 8.48528i −1.23771 + 1.23771i −0.276769 + 0.960936i \(0.589264\pi\)
−0.960936 + 0.276769i \(0.910736\pi\)
\(48\) 0 0
\(49\) 9.00000i 1.28571i
\(50\) 0 0
\(51\) −7.07107 −0.990148
\(52\) 0 0
\(53\) 5.00000 + 5.00000i 0.686803 + 0.686803i 0.961524 0.274721i \(-0.0885855\pi\)
−0.274721 + 0.961524i \(0.588586\pi\)
\(54\) 0 0
\(55\) −11.3137 + 5.65685i −1.52554 + 0.762770i
\(56\) 0 0
\(57\) 0 0
\(58\) 0 0
\(59\) 0 0 1.00000 \(0\)
−1.00000 \(\pi\)
\(60\) 0 0
\(61\) 10.0000i 1.28037i −0.768221 0.640184i \(-0.778858\pi\)
0.768221 0.640184i \(-0.221142\pi\)
\(62\) 0 0
\(63\) 2.82843 + 2.82843i 0.356348 + 0.356348i
\(64\) 0 0
\(65\) −9.00000 3.00000i −1.11631 0.372104i
\(66\) 0 0
\(67\) 2.82843 + 2.82843i 0.345547 + 0.345547i 0.858448 0.512901i \(-0.171429\pi\)
−0.512901 + 0.858448i \(0.671429\pi\)
\(68\) 0 0
\(69\) 4.00000 0.481543
\(70\) 0 0
\(71\) 5.65685i 0.671345i 0.941979 + 0.335673i \(0.108964\pi\)
−0.941979 + 0.335673i \(0.891036\pi\)
\(72\) 0 0
\(73\) −5.00000 + 5.00000i −0.585206 + 0.585206i −0.936329 0.351123i \(-0.885800\pi\)
0.351123 + 0.936329i \(0.385800\pi\)
\(74\) 0 0
\(75\) 0.707107 + 4.94975i 0.0816497 + 0.571548i
\(76\) 0 0
\(77\) −16.0000 + 16.0000i −1.82337 + 1.82337i
\(78\) 0 0
\(79\) 0 0 1.00000i \(-0.5\pi\)
1.00000i \(0.5\pi\)
\(80\) 0 0
\(81\) −1.00000 −0.111111
\(82\) 0 0
\(83\) −8.48528 + 8.48528i −0.931381 + 0.931381i −0.997792 0.0664117i \(-0.978845\pi\)
0.0664117 + 0.997792i \(0.478845\pi\)
\(84\) 0 0
\(85\) −15.0000 5.00000i −1.62698 0.542326i
\(86\) 0 0
\(87\) −4.24264 + 4.24264i −0.454859 + 0.454859i
\(88\) 0 0
\(89\) 0 0 1.00000 \(0\)
−1.00000 \(\pi\)
\(90\) 0 0
\(91\) −16.9706 −1.77900
\(92\) 0 0
\(93\) −4.00000 4.00000i −0.414781 0.414781i
\(94\) 0 0
\(95\) 0 0
\(96\) 0 0
\(97\) 3.00000 + 3.00000i 0.304604 + 0.304604i 0.842812 0.538208i \(-0.180899\pi\)
−0.538208 + 0.842812i \(0.680899\pi\)
\(98\) 0 0
\(99\) 5.65685i 0.568535i
\(100\) 0 0
\(101\) 4.00000i 0.398015i 0.979998 + 0.199007i \(0.0637718\pi\)
−0.979998 + 0.199007i \(0.936228\pi\)
\(102\) 0 0
\(103\) −14.1421 14.1421i −1.39347 1.39347i −0.817411 0.576055i \(-0.804591\pi\)
−0.576055 0.817411i \(-0.695409\pi\)
\(104\) 0 0
\(105\) 4.00000 + 8.00000i 0.390360 + 0.780720i
\(106\) 0 0
\(107\) 2.82843 + 2.82843i 0.273434 + 0.273434i 0.830481 0.557047i \(-0.188066\pi\)
−0.557047 + 0.830481i \(0.688066\pi\)
\(108\) 0 0
\(109\) 4.00000 0.383131 0.191565 0.981480i \(-0.438644\pi\)
0.191565 + 0.981480i \(0.438644\pi\)
\(110\) 0 0
\(111\) 4.24264i 0.402694i
\(112\) 0 0
\(113\) 7.00000 7.00000i 0.658505 0.658505i −0.296522 0.955026i \(-0.595827\pi\)
0.955026 + 0.296522i \(0.0958267\pi\)
\(114\) 0 0
\(115\) 8.48528 + 2.82843i 0.791257 + 0.263752i
\(116\) 0 0
\(117\) 3.00000 3.00000i 0.277350 0.277350i
\(118\) 0 0
\(119\) −28.2843 −2.59281
\(120\) 0 0
\(121\) 21.0000 1.90909
\(122\) 0 0
\(123\) 5.65685 5.65685i 0.510061 0.510061i
\(124\) 0 0
\(125\) −2.00000 + 11.0000i −0.178885 + 0.983870i
\(126\) 0 0
\(127\) 8.48528 8.48528i 0.752947 0.752947i −0.222081 0.975028i \(-0.571285\pi\)
0.975028 + 0.222081i \(0.0712850\pi\)
\(128\) 0 0
\(129\) 4.00000i 0.352180i
\(130\) 0 0
\(131\) −5.65685 −0.494242 −0.247121 0.968985i \(-0.579484\pi\)
−0.247121 + 0.968985i \(0.579484\pi\)
\(132\) 0 0
\(133\) 0 0
\(134\) 0 0
\(135\) −2.12132 0.707107i −0.182574 0.0608581i
\(136\) 0 0
\(137\) 1.00000 + 1.00000i 0.0854358 + 0.0854358i 0.748533 0.663097i \(-0.230758\pi\)
−0.663097 + 0.748533i \(0.730758\pi\)
\(138\) 0 0
\(139\) 22.6274i 1.91923i −0.281312 0.959616i \(-0.590770\pi\)
0.281312 0.959616i \(-0.409230\pi\)
\(140\) 0 0
\(141\) 12.0000i 1.01058i
\(142\) 0 0
\(143\) 16.9706 + 16.9706i 1.41915 + 1.41915i
\(144\) 0 0
\(145\) −12.0000 + 6.00000i −0.996546 + 0.498273i
\(146\) 0 0
\(147\) 6.36396 + 6.36396i 0.524891 + 0.524891i
\(148\) 0 0
\(149\) −12.0000 −0.983078 −0.491539 0.870855i \(-0.663566\pi\)
−0.491539 + 0.870855i \(0.663566\pi\)
\(150\) 0 0
\(151\) 5.65685i 0.460348i 0.973149 + 0.230174i \(0.0739296\pi\)
−0.973149 + 0.230174i \(0.926070\pi\)
\(152\) 0 0
\(153\) 5.00000 5.00000i 0.404226 0.404226i
\(154\) 0 0
\(155\) −5.65685 11.3137i −0.454369 0.908739i
\(156\) 0 0
\(157\) 13.0000 13.0000i 1.03751 1.03751i 0.0382445 0.999268i \(-0.487823\pi\)
0.999268 0.0382445i \(-0.0121766\pi\)
\(158\) 0 0
\(159\) −7.07107 −0.560772
\(160\) 0 0
\(161\) 16.0000 1.26098
\(162\) 0 0
\(163\) 8.48528 8.48528i 0.664619 0.664619i −0.291847 0.956465i \(-0.594270\pi\)
0.956465 + 0.291847i \(0.0942697\pi\)
\(164\) 0 0
\(165\) 4.00000 12.0000i 0.311400 0.934199i
\(166\) 0 0
\(167\) −8.48528 + 8.48528i −0.656611 + 0.656611i −0.954577 0.297966i \(-0.903692\pi\)
0.297966 + 0.954577i \(0.403692\pi\)
\(168\) 0 0
\(169\) 5.00000i 0.384615i
\(170\) 0 0
\(171\) 0 0
\(172\) 0 0
\(173\) −1.00000 1.00000i −0.0760286 0.0760286i 0.668070 0.744099i \(-0.267121\pi\)
−0.744099 + 0.668070i \(0.767121\pi\)
\(174\) 0 0
\(175\) 2.82843 + 19.7990i 0.213809 + 1.49666i
\(176\) 0 0
\(177\) 0 0
\(178\) 0 0
\(179\) 11.3137i 0.845626i 0.906217 + 0.422813i \(0.138957\pi\)
−0.906217 + 0.422813i \(0.861043\pi\)
\(180\) 0 0
\(181\) 12.0000i 0.891953i 0.895045 + 0.445976i \(0.147144\pi\)
−0.895045 + 0.445976i \(0.852856\pi\)
\(182\) 0 0
\(183\) 7.07107 + 7.07107i 0.522708 + 0.522708i
\(184\) 0 0
\(185\) −3.00000 + 9.00000i −0.220564 + 0.661693i
\(186\) 0 0
\(187\) 28.2843 + 28.2843i 2.06835 + 2.06835i
\(188\) 0 0
\(189\) −4.00000 −0.290957
\(190\) 0 0
\(191\) 16.9706i 1.22795i −0.789327 0.613973i \(-0.789570\pi\)
0.789327 0.613973i \(-0.210430\pi\)
\(192\) 0 0
\(193\) −3.00000 + 3.00000i −0.215945 + 0.215945i −0.806787 0.590842i \(-0.798796\pi\)
0.590842 + 0.806787i \(0.298796\pi\)
\(194\) 0 0
\(195\) 8.48528 4.24264i 0.607644 0.303822i
\(196\) 0 0
\(197\) 1.00000 1.00000i 0.0712470 0.0712470i −0.670585 0.741832i \(-0.733957\pi\)
0.741832 + 0.670585i \(0.233957\pi\)
\(198\) 0 0
\(199\) 0 0 1.00000i \(-0.5\pi\)
1.00000i \(0.5\pi\)
\(200\) 0 0
\(201\) −4.00000 −0.282138
\(202\) 0 0
\(203\) −16.9706 + 16.9706i −1.19110 + 1.19110i
\(204\) 0 0
\(205\) 16.0000 8.00000i 1.11749 0.558744i
\(206\) 0 0
\(207\) −2.82843 + 2.82843i −0.196589 + 0.196589i
\(208\) 0 0
\(209\) 0 0
\(210\) 0 0
\(211\) −5.65685 −0.389434 −0.194717 0.980859i \(-0.562379\pi\)
−0.194717 + 0.980859i \(0.562379\pi\)
\(212\) 0 0
\(213\) −4.00000 4.00000i −0.274075 0.274075i
\(214\) 0 0
\(215\) 2.82843 8.48528i 0.192897 0.578691i
\(216\) 0 0
\(217\) −16.0000 16.0000i −1.08615 1.08615i
\(218\) 0 0
\(219\) 7.07107i 0.477818i
\(220\) 0 0
\(221\) 30.0000i 2.01802i
\(222\) 0 0
\(223\) −8.48528 8.48528i −0.568216 0.568216i 0.363412 0.931629i \(-0.381612\pi\)
−0.931629 + 0.363412i \(0.881612\pi\)
\(224\) 0 0
\(225\) −4.00000 3.00000i −0.266667 0.200000i
\(226\) 0 0
\(227\) 8.48528 + 8.48528i 0.563188 + 0.563188i 0.930212 0.367024i \(-0.119623\pi\)
−0.367024 + 0.930212i \(0.619623\pi\)
\(228\) 0 0
\(229\) −14.0000 −0.925146 −0.462573 0.886581i \(-0.653074\pi\)
−0.462573 + 0.886581i \(0.653074\pi\)
\(230\) 0 0
\(231\) 22.6274i 1.48877i
\(232\) 0 0
\(233\) −3.00000 + 3.00000i −0.196537 + 0.196537i −0.798513 0.601977i \(-0.794380\pi\)
0.601977 + 0.798513i \(0.294380\pi\)
\(234\) 0 0
\(235\) 8.48528 25.4558i 0.553519 1.66056i
\(236\) 0 0
\(237\) 0 0
\(238\) 0 0
\(239\) 22.6274 1.46365 0.731823 0.681495i \(-0.238670\pi\)
0.731823 + 0.681495i \(0.238670\pi\)
\(240\) 0 0
\(241\) −8.00000 −0.515325 −0.257663 0.966235i \(-0.582952\pi\)
−0.257663 + 0.966235i \(0.582952\pi\)
\(242\) 0 0
\(243\) 0.707107 0.707107i 0.0453609 0.0453609i
\(244\) 0 0
\(245\) 9.00000 + 18.0000i 0.574989 + 1.14998i
\(246\) 0 0
\(247\) 0 0
\(248\) 0 0
\(249\) 12.0000i 0.760469i
\(250\) 0 0
\(251\) −5.65685 −0.357057 −0.178529 0.983935i \(-0.557134\pi\)
−0.178529 + 0.983935i \(0.557134\pi\)
\(252\) 0 0
\(253\) −16.0000 16.0000i −1.00591 1.00591i
\(254\) 0 0
\(255\) 14.1421 7.07107i 0.885615 0.442807i
\(256\) 0 0
\(257\) −9.00000 9.00000i −0.561405 0.561405i 0.368302 0.929706i \(-0.379939\pi\)
−0.929706 + 0.368302i \(0.879939\pi\)
\(258\) 0 0
\(259\) 16.9706i 1.05450i
\(260\) 0 0
\(261\) 6.00000i 0.371391i
\(262\) 0 0
\(263\) −8.48528 8.48528i −0.523225 0.523225i 0.395319 0.918544i \(-0.370634\pi\)
−0.918544 + 0.395319i \(0.870634\pi\)
\(264\) 0 0
\(265\) −15.0000 5.00000i −0.921443 0.307148i
\(266\) 0 0
\(267\) 0 0
\(268\) 0 0
\(269\) −20.0000 −1.21942 −0.609711 0.792624i \(-0.708714\pi\)
−0.609711 + 0.792624i \(0.708714\pi\)
\(270\) 0 0
\(271\) 16.9706i 1.03089i 0.856923 + 0.515444i \(0.172373\pi\)
−0.856923 + 0.515444i \(0.827627\pi\)
\(272\) 0 0
\(273\) 12.0000 12.0000i 0.726273 0.726273i
\(274\) 0 0
\(275\) 16.9706 22.6274i 1.02336 1.36448i
\(276\) 0 0
\(277\) −3.00000 + 3.00000i −0.180253 + 0.180253i −0.791466 0.611213i \(-0.790682\pi\)
0.611213 + 0.791466i \(0.290682\pi\)
\(278\) 0 0
\(279\) 5.65685 0.338667
\(280\) 0 0
\(281\) 0 0 1.00000i \(-0.5\pi\)
1.00000i \(0.5\pi\)
\(282\) 0 0
\(283\) −19.7990 + 19.7990i −1.17693 + 1.17693i −0.196405 + 0.980523i \(0.562927\pi\)
−0.980523 + 0.196405i \(0.937073\pi\)
\(284\) 0 0
\(285\) 0 0
\(286\) 0 0
\(287\) 22.6274 22.6274i 1.33565 1.33565i
\(288\) 0 0
\(289\) 33.0000i 1.94118i
\(290\) 0 0
\(291\) −4.24264 −0.248708
\(292\) 0 0
\(293\) 17.0000 + 17.0000i 0.993151 + 0.993151i 0.999977 0.00682610i \(-0.00217283\pi\)
−0.00682610 + 0.999977i \(0.502173\pi\)
\(294\) 0 0
\(295\) 0 0
\(296\) 0 0
\(297\) 4.00000 + 4.00000i 0.232104 + 0.232104i
\(298\) 0 0
\(299\) 16.9706i 0.981433i
\(300\) 0 0
\(301\) 16.0000i 0.922225i
\(302\) 0 0
\(303\) −2.82843 2.82843i −0.162489 0.162489i
\(304\) 0 0
\(305\) 10.0000 + 20.0000i 0.572598 + 1.14520i
\(306\) 0 0
\(307\) −19.7990 19.7990i −1.12999 1.12999i −0.990178 0.139810i \(-0.955351\pi\)
−0.139810 0.990178i \(-0.544649\pi\)
\(308\) 0 0
\(309\) 20.0000 1.13776
\(310\) 0 0
\(311\) 5.65685i 0.320771i 0.987054 + 0.160385i \(0.0512737\pi\)
−0.987054 + 0.160385i \(0.948726\pi\)
\(312\) 0 0
\(313\) −17.0000 + 17.0000i −0.960897 + 0.960897i −0.999264 0.0383669i \(-0.987784\pi\)
0.0383669 + 0.999264i \(0.487784\pi\)
\(314\) 0 0
\(315\) −8.48528 2.82843i −0.478091 0.159364i
\(316\) 0 0
\(317\) −9.00000 + 9.00000i −0.505490 + 0.505490i −0.913139 0.407649i \(-0.866349\pi\)
0.407649 + 0.913139i \(0.366349\pi\)
\(318\) 0 0
\(319\) 33.9411 1.90034
\(320\) 0 0
\(321\) −4.00000 −0.223258
\(322\) 0 0
\(323\) 0 0
\(324\) 0 0
\(325\) 21.0000 3.00000i 1.16487 0.166410i
\(326\) 0 0
\(327\) −2.82843 + 2.82843i −0.156412 + 0.156412i
\(328\) 0 0
\(329\) 48.0000i 2.64633i
\(330\) 0 0
\(331\) 5.65685 0.310929 0.155464 0.987841i \(-0.450313\pi\)
0.155464 + 0.987841i \(0.450313\pi\)
\(332\) 0 0
\(333\) −3.00000 3.00000i −0.164399 0.164399i
\(334\) 0 0
\(335\) −8.48528 2.82843i −0.463600 0.154533i
\(336\) 0 0
\(337\) 9.00000 + 9.00000i 0.490261 + 0.490261i 0.908388 0.418127i \(-0.137313\pi\)
−0.418127 + 0.908388i \(0.637313\pi\)
\(338\) 0 0
\(339\) 9.89949i 0.537667i
\(340\) 0 0
\(341\) 32.0000i 1.73290i
\(342\) 0 0
\(343\) 5.65685 + 5.65685i 0.305441 + 0.305441i
\(344\) 0 0
\(345\) −8.00000 + 4.00000i −0.430706 + 0.215353i
\(346\) 0 0
\(347\) 19.7990 + 19.7990i 1.06287 + 1.06287i 0.997887 + 0.0649788i \(0.0206980\pi\)
0.0649788 + 0.997887i \(0.479302\pi\)
\(348\) 0 0
\(349\) 26.0000 1.39175 0.695874 0.718164i \(-0.255017\pi\)
0.695874 + 0.718164i \(0.255017\pi\)
\(350\) 0 0
\(351\) 4.24264i 0.226455i
\(352\) 0 0
\(353\) 1.00000 1.00000i 0.0532246 0.0532246i −0.679994 0.733218i \(-0.738017\pi\)
0.733218 + 0.679994i \(0.238017\pi\)
\(354\) 0 0
\(355\) −5.65685 11.3137i −0.300235 0.600469i
\(356\) 0 0
\(357\) 20.0000 20.0000i 1.05851 1.05851i
\(358\) 0 0
\(359\) 11.3137 0.597115 0.298557 0.954392i \(-0.403495\pi\)
0.298557 + 0.954392i \(0.403495\pi\)
\(360\) 0 0
\(361\) 19.0000 1.00000
\(362\) 0 0
\(363\) −14.8492 + 14.8492i −0.779383 + 0.779383i
\(364\) 0 0
\(365\) 5.00000 15.0000i 0.261712 0.785136i
\(366\) 0 0
\(367\) 8.48528 8.48528i 0.442928 0.442928i −0.450067 0.892995i \(-0.648600\pi\)
0.892995 + 0.450067i \(0.148600\pi\)
\(368\) 0 0
\(369\) 8.00000i 0.416463i
\(370\) 0 0
\(371\) −28.2843 −1.46845
\(372\) 0 0
\(373\) −17.0000 17.0000i −0.880227 0.880227i 0.113331 0.993557i \(-0.463848\pi\)
−0.993557 + 0.113331i \(0.963848\pi\)
\(374\) 0 0
\(375\) −6.36396 9.19239i −0.328634 0.474693i
\(376\) 0 0
\(377\) 18.0000 + 18.0000i 0.927047 + 0.927047i
\(378\) 0 0
\(379\) 11.3137i 0.581146i −0.956853 0.290573i \(-0.906154\pi\)
0.956853 0.290573i \(-0.0938459\pi\)
\(380\) 0 0
\(381\) 12.0000i 0.614779i
\(382\) 0 0
\(383\) 2.82843 + 2.82843i 0.144526 + 0.144526i 0.775668 0.631142i \(-0.217413\pi\)
−0.631142 + 0.775668i \(0.717413\pi\)
\(384\) 0 0
\(385\) 16.0000 48.0000i 0.815436 2.44631i
\(386\) 0 0
\(387\) 2.82843 + 2.82843i 0.143777 + 0.143777i
\(388\) 0 0
\(389\) 12.0000 0.608424 0.304212 0.952604i \(-0.401607\pi\)
0.304212 + 0.952604i \(0.401607\pi\)
\(390\) 0 0
\(391\) 28.2843i 1.43040i
\(392\) 0 0
\(393\) 4.00000 4.00000i 0.201773 0.201773i
\(394\) 0 0
\(395\) 0 0
\(396\) 0 0
\(397\) 17.0000 17.0000i 0.853206 0.853206i −0.137321 0.990527i \(-0.543849\pi\)
0.990527 + 0.137321i \(0.0438492\pi\)
\(398\) 0 0
\(399\) 0 0
\(400\) 0 0
\(401\) −34.0000 −1.69788 −0.848939 0.528490i \(-0.822758\pi\)
−0.848939 + 0.528490i \(0.822758\pi\)
\(402\) 0 0
\(403\) −16.9706 + 16.9706i −0.845364 + 0.845364i
\(404\) 0 0
\(405\) 2.00000 1.00000i 0.0993808 0.0496904i
\(406\) 0 0
\(407\) 16.9706 16.9706i 0.841200 0.841200i
\(408\) 0 0
\(409\) 10.0000i 0.494468i 0.968956 + 0.247234i \(0.0795217\pi\)
−0.968956 + 0.247234i \(0.920478\pi\)
\(410\) 0 0
\(411\) −1.41421 −0.0697580
\(412\) 0 0
\(413\) 0 0
\(414\) 0 0
\(415\) 8.48528 25.4558i 0.416526 1.24958i
\(416\) 0 0
\(417\) 16.0000 + 16.0000i 0.783523 + 0.783523i
\(418\) 0 0
\(419\) 22.6274i 1.10542i −0.833373 0.552711i \(-0.813593\pi\)
0.833373 0.552711i \(-0.186407\pi\)
\(420\) 0 0
\(421\) 2.00000i 0.0974740i −0.998812 0.0487370i \(-0.984480\pi\)
0.998812 0.0487370i \(-0.0155196\pi\)
\(422\) 0 0
\(423\) 8.48528 + 8.48528i 0.412568 + 0.412568i
\(424\) 0 0
\(425\) 35.0000 5.00000i 1.69775 0.242536i
\(426\) 0 0
\(427\) 28.2843 + 28.2843i 1.36877 + 1.36877i
\(428\) 0 0
\(429\) −24.0000 −1.15873
\(430\) 0 0
\(431\) 5.65685i 0.272481i 0.990676 + 0.136241i \(0.0435020\pi\)
−0.990676 + 0.136241i \(0.956498\pi\)
\(432\) 0 0
\(433\) 3.00000 3.00000i 0.144171 0.144171i −0.631337 0.775508i \(-0.717494\pi\)
0.775508 + 0.631337i \(0.217494\pi\)
\(434\) 0 0
\(435\) 4.24264 12.7279i 0.203419 0.610257i
\(436\) 0 0
\(437\) 0 0
\(438\) 0 0
\(439\) 22.6274 1.07995 0.539974 0.841682i \(-0.318434\pi\)
0.539974 + 0.841682i \(0.318434\pi\)
\(440\) 0 0
\(441\) −9.00000 −0.428571
\(442\) 0 0
\(443\) 14.1421 14.1421i 0.671913 0.671913i −0.286244 0.958157i \(-0.592407\pi\)
0.958157 + 0.286244i \(0.0924067\pi\)
\(444\) 0 0
\(445\) 0 0
\(446\) 0 0
\(447\) 8.48528 8.48528i 0.401340 0.401340i
\(448\) 0 0
\(449\) 2.00000i 0.0943858i 0.998886 + 0.0471929i \(0.0150276\pi\)
−0.998886 + 0.0471929i \(0.984972\pi\)
\(450\) 0 0
\(451\) −45.2548 −2.13097
\(452\) 0 0
\(453\) −4.00000 4.00000i −0.187936 0.187936i
\(454\) 0 0
\(455\) 33.9411 16.9706i 1.59118 0.795592i
\(456\) 0 0
\(457\) 15.0000 + 15.0000i 0.701670 + 0.701670i 0.964769 0.263099i \(-0.0847444\pi\)
−0.263099 + 0.964769i \(0.584744\pi\)
\(458\) 0 0
\(459\) 7.07107i 0.330049i
\(460\) 0 0
\(461\) 28.0000i 1.30409i 0.758180 + 0.652045i \(0.226089\pi\)
−0.758180 + 0.652045i \(0.773911\pi\)
\(462\) 0 0
\(463\) −2.82843 2.82843i −0.131448 0.131448i 0.638322 0.769770i \(-0.279629\pi\)
−0.769770 + 0.638322i \(0.779629\pi\)
\(464\) 0 0
\(465\) 12.0000 + 4.00000i 0.556487 + 0.185496i
\(466\) 0 0
\(467\) 19.7990 + 19.7990i 0.916188 + 0.916188i 0.996750 0.0805616i \(-0.0256714\pi\)
−0.0805616 + 0.996750i \(0.525671\pi\)
\(468\) 0 0
\(469\) −16.0000 −0.738811
\(470\) 0 0
\(471\) 18.3848i 0.847126i
\(472\) 0 0
\(473\) −16.0000 + 16.0000i −0.735681 + 0.735681i
\(474\) 0 0
\(475\) 0 0
\(476\) 0 0
\(477\) 5.00000 5.00000i 0.228934 0.228934i
\(478\) 0 0
\(479\) 11.3137 0.516937 0.258468 0.966020i \(-0.416782\pi\)
0.258468 + 0.966020i \(0.416782\pi\)
\(480\) 0 0
\(481\) 18.0000 0.820729
\(482\) 0 0
\(483\) −11.3137 + 11.3137i −0.514792 + 0.514792i
\(484\) 0 0
\(485\) −9.00000 3.00000i −0.408669 0.136223i
\(486\) 0 0
\(487\) 19.7990 19.7990i 0.897178 0.897178i −0.0980078 0.995186i \(-0.531247\pi\)
0.995186 + 0.0980078i \(0.0312470\pi\)
\(488\) 0 0
\(489\) 12.0000i 0.542659i
\(490\) 0 0
\(491\) −5.65685 −0.255290 −0.127645 0.991820i \(-0.540742\pi\)
−0.127645 + 0.991820i \(0.540742\pi\)
\(492\) 0 0
\(493\) 30.0000 + 30.0000i 1.35113 + 1.35113i
\(494\) 0 0
\(495\) 5.65685 + 11.3137i 0.254257 + 0.508513i
\(496\) 0 0
\(497\) −16.0000 16.0000i −0.717698 0.717698i
\(498\) 0 0
\(499\) 11.3137i 0.506471i −0.967405 0.253236i \(-0.918505\pi\)
0.967405 0.253236i \(-0.0814948\pi\)
\(500\) 0 0
\(501\) 12.0000i 0.536120i
\(502\) 0 0
\(503\) 8.48528 + 8.48528i 0.378340 + 0.378340i 0.870503 0.492163i \(-0.163794\pi\)
−0.492163 + 0.870503i \(0.663794\pi\)
\(504\) 0 0
\(505\) −4.00000 8.00000i −0.177998 0.355995i
\(506\) 0 0
\(507\) −3.53553 3.53553i −0.157019 0.157019i
\(508\) 0 0
\(509\) −6.00000 −0.265945 −0.132973 0.991120i \(-0.542452\pi\)
−0.132973 + 0.991120i \(0.542452\pi\)
\(510\) 0 0
\(511\) 28.2843i 1.25122i
\(512\) 0 0
\(513\) 0 0
\(514\) 0 0
\(515\) 42.4264 + 14.1421i 1.86953 + 0.623177i
\(516\) 0 0
\(517\) −48.0000 + 48.0000i −2.11104 + 2.11104i
\(518\) 0 0
\(519\) 1.41421 0.0620771
\(520\) 0 0
\(521\) −10.0000 −0.438108 −0.219054 0.975713i \(-0.570297\pi\)
−0.219054 + 0.975713i \(0.570297\pi\)
\(522\) 0 0
\(523\) −8.48528 + 8.48528i −0.371035 + 0.371035i −0.867854 0.496819i \(-0.834501\pi\)
0.496819 + 0.867854i \(0.334501\pi\)
\(524\) 0 0
\(525\) −16.0000 12.0000i −0.698297 0.523723i
\(526\) 0 0
\(527\) −28.2843 + 28.2843i −1.23208 + 1.23208i
\(528\) 0 0
\(529\) 7.00000i 0.304348i
\(530\) 0 0
\(531\) 0 0
\(532\) 0 0
\(533\) −24.0000 24.0000i −1.03956 1.03956i
\(534\) 0 0
\(535\) −8.48528 2.82843i −0.366851 0.122284i
\(536\) 0 0
\(537\) −8.00000 8.00000i −0.345225 0.345225i
\(538\) 0 0
\(539\) 50.9117i 2.19292i
\(540\) 0 0
\(541\) 20.0000i 0.859867i −0.902861 0.429934i \(-0.858537\pi\)
0.902861 0.429934i \(-0.141463\pi\)
\(542\) 0 0
\(543\) −8.48528 8.48528i −0.364138 0.364138i
\(544\) 0 0
\(545\) −8.00000 + 4.00000i −0.342682 + 0.171341i
\(546\) 0 0
\(547\) 19.7990 + 19.7990i 0.846544 + 0.846544i 0.989700 0.143156i \(-0.0457252\pi\)
−0.143156 + 0.989700i \(0.545725\pi\)
\(548\) 0 0
\(549\) −10.0000 −0.426790
\(550\) 0 0
\(551\) 0 0
\(552\) 0 0
\(553\) 0 0
\(554\) 0 0
\(555\) −4.24264 8.48528i −0.180090 0.360180i
\(556\) 0 0
\(557\) −5.00000 + 5.00000i −0.211857 + 0.211857i −0.805056 0.593199i \(-0.797865\pi\)
0.593199 + 0.805056i \(0.297865\pi\)
\(558\) 0 0
\(559\) −16.9706 −0.717778
\(560\) 0 0
\(561\) −40.0000 −1.68880
\(562\) 0 0
\(563\) 19.7990 19.7990i 0.834428 0.834428i −0.153691 0.988119i \(-0.549116\pi\)
0.988119 + 0.153691i \(0.0491160\pi\)
\(564\) 0 0
\(565\) −7.00000 + 21.0000i −0.294492 + 0.883477i
\(566\) 0 0
\(567\) 2.82843 2.82843i 0.118783 0.118783i
\(568\) 0 0
\(569\) 22.0000i 0.922288i 0.887325 + 0.461144i \(0.152561\pi\)
−0.887325 + 0.461144i \(0.847439\pi\)
\(570\) 0 0
\(571\) 16.9706 0.710196 0.355098 0.934829i \(-0.384448\pi\)
0.355098 + 0.934829i \(0.384448\pi\)
\(572\) 0 0
\(573\) 12.0000 + 12.0000i 0.501307 + 0.501307i
\(574\) 0 0
\(575\) −19.7990 + 2.82843i −0.825675 + 0.117954i
\(576\) 0 0
\(577\) −25.0000 25.0000i −1.04076 1.04076i −0.999133 0.0416305i \(-0.986745\pi\)
−0.0416305 0.999133i \(-0.513255\pi\)
\(578\) 0 0
\(579\) 4.24264i 0.176318i
\(580\) 0 0
\(581\) 48.0000i 1.99138i
\(582\) 0 0
\(583\) 28.2843 + 28.2843i 1.17141 + 1.17141i
\(584\) 0 0
\(585\) −3.00000 + 9.00000i −0.124035 + 0.372104i
\(586\) 0 0
\(587\) 19.7990 + 19.7990i 0.817192 + 0.817192i 0.985700 0.168508i \(-0.0538950\pi\)
−0.168508 + 0.985700i \(0.553895\pi\)
\(588\) 0 0
\(589\) 0 0
\(590\) 0 0
\(591\) 1.41421i 0.0581730i
\(592\) 0 0
\(593\) 9.00000 9.00000i 0.369586 0.369586i −0.497740 0.867326i \(-0.665837\pi\)
0.867326 + 0.497740i \(0.165837\pi\)
\(594\) 0 0
\(595\) 56.5685 28.2843i 2.31908 1.15954i
\(596\) 0 0
\(597\) 0 0
\(598\) 0 0
\(599\) 11.3137 0.462266 0.231133 0.972922i \(-0.425757\pi\)
0.231133 + 0.972922i \(0.425757\pi\)
\(600\) 0 0
\(601\) 0 0 1.00000i \(-0.5\pi\)
1.00000i \(0.5\pi\)
\(602\) 0 0
\(603\) 2.82843 2.82843i 0.115182 0.115182i
\(604\) 0 0
\(605\) −42.0000 + 21.0000i −1.70754 + 0.853771i
\(606\) 0 0
\(607\) 2.82843 2.82843i 0.114802 0.114802i −0.647372 0.762174i \(-0.724132\pi\)
0.762174 + 0.647372i \(0.224132\pi\)
\(608\) 0 0
\(609\) 24.0000i 0.972529i
\(610\) 0 0
\(611\) −50.9117 −2.05967
\(612\) 0 0
\(613\) −5.00000 5.00000i −0.201948 0.201948i 0.598886 0.800834i \(-0.295610\pi\)
−0.800834 + 0.598886i \(0.795610\pi\)
\(614\) 0 0
\(615\) −5.65685 + 16.9706i −0.228106 + 0.684319i
\(616\) 0 0
\(617\) 5.00000 + 5.00000i 0.201292 + 0.201292i 0.800554 0.599261i \(-0.204539\pi\)
−0.599261 + 0.800554i \(0.704539\pi\)
\(618\) 0 0
\(619\) 11.3137i 0.454736i −0.973809 0.227368i \(-0.926988\pi\)
0.973809 0.227368i \(-0.0730121\pi\)
\(620\) 0 0
\(621\) 4.00000i 0.160514i
\(622\) 0 0
\(623\) 0 0
\(624\) 0 0
\(625\) −7.00000 24.0000i −0.280000 0.960000i
\(626\) 0 0
\(627\) 0 0
\(628\) 0 0
\(629\) 30.0000 1.19618
\(630\) 0 0
\(631\) 5.65685i 0.225196i −0.993641 0.112598i \(-0.964083\pi\)
0.993641 0.112598i \(-0.0359172\pi\)
\(632\) 0 0
\(633\) 4.00000 4.00000i 0.158986 0.158986i
\(634\) 0 0
\(635\) −8.48528 + 25.4558i −0.336728 + 1.01018i
\(636\) 0 0
\(637\) 27.0000 27.0000i 1.06978 1.06978i
\(638\) 0 0
\(639\) 5.65685 0.223782
\(640\) 0 0
\(641\) −24.0000 −0.947943 −0.473972 0.880540i \(-0.657180\pi\)
−0.473972 + 0.880540i \(0.657180\pi\)
\(642\) 0 0
\(643\) 2.82843 2.82843i 0.111542 0.111542i −0.649133 0.760675i \(-0.724868\pi\)
0.760675 + 0.649133i \(0.224868\pi\)
\(644\) 0 0
\(645\) 4.00000 + 8.00000i 0.157500 + 0.315000i
\(646\) 0 0
\(647\) 19.7990 19.7990i 0.778379 0.778379i −0.201176 0.979555i \(-0.564476\pi\)
0.979555 + 0.201176i \(0.0644765\pi\)
\(648\) 0 0
\(649\) 0 0
\(650\) 0 0
\(651\) 22.6274 0.886838
\(652\) 0 0
\(653\) 29.0000 + 29.0000i 1.13486 + 1.13486i 0.989358 + 0.145499i \(0.0464789\pi\)
0.145499 + 0.989358i \(0.453521\pi\)
\(654\) 0 0
\(655\) 11.3137 5.65685i 0.442063 0.221032i
\(656\) 0 0
\(657\) 5.00000 + 5.00000i 0.195069 + 0.195069i
\(658\) 0 0
\(659\) 22.6274i 0.881439i 0.897645 + 0.440720i \(0.145277\pi\)
−0.897645 + 0.440720i \(0.854723\pi\)
\(660\) 0 0
\(661\) 46.0000i 1.78919i −0.446875 0.894596i \(-0.647463\pi\)
0.446875 0.894596i \(-0.352537\pi\)
\(662\) 0 0
\(663\) −21.2132 21.2132i −0.823853 0.823853i
\(664\) 0 0
\(665\) 0 0
\(666\) 0 0
\(667\) −16.9706 16.9706i −0.657103 0.657103i
\(668\) 0 0
\(669\) 12.0000 0.463947
\(670\) 0 0
\(671\) 56.5685i 2.18380i
\(672\) 0 0
\(673\) −21.0000 + 21.0000i −0.809491 + 0.809491i −0.984557 0.175066i \(-0.943986\pi\)
0.175066 + 0.984557i \(0.443986\pi\)
\(674\) 0 0
\(675\) 4.94975 0.707107i 0.190516 0.0272166i
\(676\) 0 0
\(677\) −7.00000 + 7.00000i −0.269032 + 0.269032i −0.828710 0.559678i \(-0.810925\pi\)
0.559678 + 0.828710i \(0.310925\pi\)
\(678\) 0 0
\(679\) −16.9706 −0.651270
\(680\) 0 0
\(681\) −12.0000 −0.459841
\(682\) 0 0
\(683\) −25.4558 + 25.4558i −0.974041 + 0.974041i −0.999671 0.0256307i \(-0.991841\pi\)
0.0256307 + 0.999671i \(0.491841\pi\)
\(684\) 0 0
\(685\) −3.00000 1.00000i −0.114624 0.0382080i
\(686\) 0 0
\(687\) 9.89949 9.89949i 0.377689 0.377689i
\(688\) 0 0
\(689\) 30.0000i 1.14291i
\(690\) 0 0
\(691\) 16.9706 0.645591 0.322795 0.946469i \(-0.395377\pi\)
0.322795 + 0.946469i \(0.395377\pi\)
\(692\) 0 0
\(693\) 16.0000 + 16.0000i 0.607790 + 0.607790i
\(694\) 0 0
\(695\) 22.6274 + 45.2548i 0.858307 + 1.71661i
\(696\) 0 0
\(697\) −40.0000 40.0000i −1.51511 1.51511i
\(698\) 0 0
\(699\) 4.24264i 0.160471i
\(700\) 0 0
\(701\) 22.0000i 0.830929i −0.909610 0.415464i \(-0.863619\pi\)
0.909610 0.415464i \(-0.136381\pi\)
\(702\) 0 0
\(703\) 0 0
\(704\) 0 0
\(705\) 12.0000 + 24.0000i 0.451946 + 0.903892i
\(706\) 0 0
\(707\) −11.3137 11.3137i −0.425496 0.425496i
\(708\) 0 0
\(709\) 14.0000 0.525781 0.262891 0.964826i \(-0.415324\pi\)
0.262891 + 0.964826i \(0.415324\pi\)
\(710\) 0 0
\(711\) 0 0
\(712\) 0 0
\(713\) 16.0000 16.0000i 0.599205 0.599205i
\(714\) 0 0
\(715\) −50.9117 16.9706i −1.90399 0.634663i
\(716\) 0 0
\(717\) −16.0000 + 16.0000i −0.597531 + 0.597531i
\(718\) 0 0
\(719\) −45.2548 −1.68772 −0.843860 0.536563i \(-0.819722\pi\)
−0.843860 + 0.536563i \(0.819722\pi\)
\(720\) 0 0
\(721\) 80.0000 2.97936
\(722\) 0 0
\(723\) 5.65685 5.65685i 0.210381 0.210381i
\(724\) 0 0
\(725\) 18.0000 24.0000i 0.668503 0.891338i
\(726\) 0 0
\(727\) −25.4558 + 25.4558i −0.944105 + 0.944105i −0.998518 0.0544135i \(-0.982671\pi\)
0.0544135 + 0.998518i \(0.482671\pi\)
\(728\) 0 0
\(729\) 1.00000i 0.0370370i
\(730\) 0 0
\(731\) −28.2843 −1.04613
\(732\) 0 0
\(733\) −33.0000 33.0000i −1.21888 1.21888i −0.968024 0.250859i \(-0.919287\pi\)
−0.250859 0.968024i \(-0.580713\pi\)
\(734\) 0 0
\(735\) −19.0919 6.36396i −0.704215 0.234738i
\(736\) 0 0
\(737\) 16.0000 + 16.0000i 0.589368 + 0.589368i
\(738\) 0 0
\(739\) 45.2548i 1.66473i 0.554231 + 0.832363i \(0.313012\pi\)
−0.554231 + 0.832363i \(0.686988\pi\)
\(740\) 0 0
\(741\) 0 0
\(742\) 0 0
\(743\) −31.1127 31.1127i −1.14141 1.14141i −0.988192 0.153222i \(-0.951035\pi\)
−0.153222 0.988192i \(-0.548965\pi\)
\(744\) 0 0
\(745\) 24.0000 12.0000i 0.879292 0.439646i
\(746\) 0 0
\(747\) 8.48528 + 8.48528i 0.310460 + 0.310460i
\(748\) 0 0
\(749\) −16.0000 −0.584627
\(750\) 0 0
\(751\) 39.5980i 1.44495i 0.691397 + 0.722475i \(0.256996\pi\)
−0.691397 + 0.722475i \(0.743004\pi\)
\(752\) 0 0
\(753\) 4.00000 4.00000i 0.145768 0.145768i
\(754\) 0 0
\(755\) −5.65685 11.3137i −0.205874 0.411748i
\(756\) 0 0
\(757\) −11.0000 + 11.0000i −0.399802 + 0.399802i −0.878163 0.478361i \(-0.841231\pi\)
0.478361 + 0.878163i \(0.341231\pi\)
\(758\) 0 0
\(759\) 22.6274 0.821323
\(760\) 0 0
\(761\) −6.00000 −0.217500 −0.108750 0.994069i \(-0.534685\pi\)
−0.108750 + 0.994069i \(0.534685\pi\)
\(762\) 0 0
\(763\) −11.3137 + 11.3137i −0.409584 + 0.409584i
\(764\) 0 0
\(765\) −5.00000 + 15.0000i −0.180775 + 0.542326i
\(766\) 0 0
\(767\) 0 0
\(768\) 0 0
\(769\) 40.0000i 1.44244i 0.692708 + 0.721218i \(0.256418\pi\)
−0.692708 + 0.721218i \(0.743582\pi\)
\(770\) 0 0
\(771\) 12.7279 0.458385
\(772\) 0 0
\(773\) 11.0000 + 11.0000i 0.395643 + 0.395643i 0.876693 0.481050i \(-0.159745\pi\)
−0.481050 + 0.876693i \(0.659745\pi\)
\(774\) 0 0
\(775\) 22.6274 + 16.9706i 0.812801 + 0.609601i
\(776\) 0 0
\(777\) −12.0000 12.0000i −0.430498 0.430498i
\(778\) 0 0
\(779\) 0 0
\(780\) 0 0
\(781\) 32.0000i 1.14505i
\(782\) 0 0
\(783\) 4.24264 + 4.24264i 0.151620 + 0.151620i
\(784\) 0 0
\(785\) −13.0000 + 39.0000i −0.463990 + 1.39197i
\(786\) 0 0
\(787\) 14.1421 + 14.1421i 0.504113 + 0.504113i 0.912713 0.408601i \(-0.133983\pi\)
−0.408601 + 0.912713i \(0.633983\pi\)
\(788\) 0 0
\(789\) 12.0000 0.427211
\(790\) 0 0
\(791\) 39.5980i 1.40794i
\(792\) 0 0
\(793\) 30.0000 30.0000i 1.06533 1.06533i
\(794\) 0 0
\(795\) 14.1421 7.07107i 0.501570 0.250785i
\(796\) 0 0
\(797\) 15.0000 15.0000i 0.531327 0.531327i −0.389640 0.920967i \(-0.627401\pi\)
0.920967 + 0.389640i \(0.127401\pi\)
\(798\) 0 0
\(799\) −84.8528 −3.00188
\(800\) 0 0
\(801\) 0 0
\(802\) 0 0
\(803\) −28.2843 + 28.2843i −0.998130 + 0.998130i
\(804\) 0 0
\(805\) −32.0000 + 16.0000i −1.12785 + 0.563926i
\(806\) 0 0
\(807\) 14.1421 14.1421i 0.497827 0.497827i
\(808\) 0 0
\(809\) 24.0000i 0.843795i 0.906644 + 0.421898i \(0.138636\pi\)
−0.906644 + 0.421898i \(0.861364\pi\)
\(810\) 0 0
\(811\) 5.65685 0.198639 0.0993195 0.995056i \(-0.468333\pi\)
0.0993195 + 0.995056i \(0.468333\pi\)
\(812\) 0 0
\(813\) −12.0000 12.0000i −0.420858 0.420858i
\(814\) 0 0
\(815\) −8.48528 + 25.4558i −0.297226 + 0.891679i
\(816\) 0 0
\(817\) 0 0
\(818\) 0 0
\(819\) 16.9706i 0.592999i
\(820\) 0 0
\(821\) 18.0000i 0.628204i −0.949389 0.314102i \(-0.898297\pi\)
0.949389 0.314102i \(-0.101703\pi\)
\(822\) 0 0
\(823\) 19.7990 + 19.7990i 0.690149 + 0.690149i 0.962265 0.272115i \(-0.0877232\pi\)
−0.272115 + 0.962265i \(0.587723\pi\)
\(824\) 0 0
\(825\) 4.00000 + 28.0000i 0.139262 + 0.974835i
\(826\) 0 0
\(827\) 19.7990 + 19.7990i 0.688478 + 0.688478i 0.961896 0.273417i \(-0.0881540\pi\)
−0.273417 + 0.961896i \(0.588154\pi\)
\(828\) 0 0
\(829\) 28.0000 0.972480 0.486240 0.873825i \(-0.338368\pi\)
0.486240 + 0.873825i \(0.338368\pi\)
\(830\) 0 0
\(831\) 4.24264i 0.147176i
\(832\) 0 0
\(833\) 45.0000 45.0000i 1.55916 1.55916i
\(834\) 0 0
\(835\) 8.48528 25.4558i 0.293645 0.880936i
\(836\) 0 0
\(837\) −4.00000 + 4.00000i −0.138260 + 0.138260i
\(838\) 0 0
\(839\) 45.2548 1.56237 0.781185 0.624299i \(-0.214615\pi\)
0.781185 + 0.624299i \(0.214615\pi\)
\(840\) 0 0
\(841\) 7.00000 0.241379
\(842\) 0 0
\(843\) 0 0
\(844\) 0 0
\(845\) −5.00000 10.0000i −0.172005 0.344010i
\(846\) 0 0
\(847\) −59.3970 + 59.3970i −2.04090 + 2.04090i
\(848\) 0 0
\(849\) 28.0000i 0.960958i
\(850\) 0 0
\(851\) −16.9706 −0.581743
\(852\) 0 0
\(853\) 19.0000 + 19.0000i 0.650548 + 0.650548i 0.953125 0.302577i \(-0.0978470\pi\)
−0.302577 + 0.953125i \(0.597847\pi\)
\(854\) 0 0
\(855\) 0 0
\(856\) 0 0
\(857\) −7.00000 7.00000i −0.239115 0.239115i 0.577368 0.816484i \(-0.304080\pi\)
−0.816484 + 0.577368i \(0.804080\pi\)
\(858\) 0 0
\(859\) 56.5685i 1.93009i −0.262077 0.965047i \(-0.584408\pi\)
0.262077 0.965047i \(-0.415592\pi\)
\(860\) 0 0
\(861\) 32.0000i 1.09056i
\(862\) 0 0
\(863\) −25.4558 25.4558i −0.866527 0.866527i 0.125559 0.992086i \(-0.459928\pi\)
−0.992086 + 0.125559i \(0.959928\pi\)
\(864\) 0 0
\(865\) 3.00000 + 1.00000i 0.102003 + 0.0340010i
\(866\) 0 0
\(867\) −23.3345 23.3345i −0.792482 0.792482i
\(868\) 0 0
\(869\) 0 0
\(870\) 0 0
\(871\) 16.9706i 0.575026i
\(872\) 0 0
\(873\) 3.00000 3.00000i 0.101535 0.101535i
\(874\) 0 0
\(875\) −25.4558 36.7696i −0.860565 1.24304i
\(876\) 0 0
\(877\) −27.0000 + 27.0000i −0.911725 + 0.911725i −0.996408 0.0846827i \(-0.973012\pi\)
0.0846827 + 0.996408i \(0.473012\pi\)
\(878\) 0 0
\(879\) −24.0416 −0.810904
\(880\) 0 0
\(881\) 32.0000 1.07811 0.539054 0.842271i \(-0.318782\pi\)
0.539054 + 0.842271i \(0.318782\pi\)
\(882\) 0 0
\(883\) −2.82843 + 2.82843i −0.0951842 + 0.0951842i −0.753095 0.657911i \(-0.771440\pi\)
0.657911 + 0.753095i \(0.271440\pi\)
\(884\) 0 0
\(885\) 0 0
\(886\) 0 0
\(887\) −14.1421 + 14.1421i −0.474846 + 0.474846i −0.903479 0.428632i \(-0.858996\pi\)
0.428632 + 0.903479i \(0.358996\pi\)
\(888\) 0 0
\(889\) 48.0000i 1.60987i
\(890\) 0 0
\(891\) −5.65685 −0.189512
\(892\) 0 0
\(893\) 0 0
\(894\) 0 0
\(895\) −11.3137 22.6274i −0.378176 0.756351i
\(896\) 0 0
\(897\) 12.0000 + 12.0000i 0.400668 + 0.400668i
\(898\) 0 0
\(899\) 33.9411i 1.13200i
\(900\) 0 0
\(901\) 50.0000i 1.66574i
\(902\) 0 0
\(903\) 11.3137 + 11.3137i 0.376497 + 0.376497i
\(904\) 0 0
\(905\) −12.0000 24.0000i −0.398893 0.797787i
\(906\) 0 0
\(907\) −8.48528 8.48528i −0.281749 0.281749i 0.552057 0.833806i \(-0.313843\pi\)
−0.833806 + 0.552057i \(0.813843\pi\)
\(908\) 0 0
\(909\) 4.00000 0.132672
\(910\) 0 0
\(911\) 39.5980i 1.31194i 0.754787 + 0.655970i \(0.227740\pi\)
−0.754787 + 0.655970i \(0.772260\pi\)
\(912\) 0 0
\(913\) −48.0000 + 48.0000i −1.58857 + 1.58857i
\(914\) 0 0
\(915\) −21.2132 7.07107i −0.701287 0.233762i
\(916\) 0 0
\(917\) 16.0000 16.0000i 0.528367 0.528367i
\(918\) 0 0
\(919\) 0 0 1.00000i \(-0.5\pi\)
1.00000i \(0.5\pi\)
\(920\) 0 0
\(921\) 28.0000 0.922631
\(922\) 0 0
\(923\) −16.9706 + 16.9706i −0.558593 + 0.558593i
\(924\) 0 0
\(925\) −3.00000 21.0000i −0.0986394 0.690476i
\(926\) 0 0
\(927\) −14.1421 + 14.1421i −0.464489 + 0.464489i
\(928\) 0 0
\(929\) 34.0000i 1.11550i −0.830008 0.557752i \(-0.811664\pi\)
0.830008 0.557752i \(-0.188336\pi\)
\(930\) 0 0
\(931\) 0 0
\(932\) 0 0
\(933\) −4.00000 4.00000i −0.130954 0.130954i
\(934\) 0 0
\(935\) −84.8528 28.2843i −2.77498 0.924995i
\(936\) 0 0
\(937\) −27.0000 27.0000i −0.882052 0.882052i 0.111691 0.993743i \(-0.464373\pi\)
−0.993743 + 0.111691i \(0.964373\pi\)
\(938\) 0 0
\(939\) 24.0416i 0.784569i
\(940\) 0 0
\(941\) 60.0000i 1.95594i −0.208736 0.977972i \(-0.566935\pi\)
0.208736 0.977972i \(-0.433065\pi\)
\(942\) 0 0
\(943\) 22.6274 + 22.6274i 0.736850 + 0.736850i
\(944\) 0 0
\(945\) 8.00000 4.00000i 0.260240 0.130120i
\(946\) 0 0
\(947\) −31.1127 31.1127i −1.01103 1.01103i −0.999939 0.0110883i \(-0.996470\pi\)
−0.0110883 0.999939i \(-0.503530\pi\)
\(948\) 0 0
\(949\) −30.0000 −0.973841
\(950\) 0 0
\(951\) 12.7279i 0.412731i
\(952\) 0 0
\(953\) 31.0000 31.0000i 1.00419 1.00419i 0.00419731 0.999991i \(-0.498664\pi\)
0.999991 0.00419731i \(-0.00133605\pi\)
\(954\) 0 0
\(955\) 16.9706 + 33.9411i 0.549155 + 1.09831i
\(956\) 0 0
\(957\) −24.0000 + 24.0000i −0.775810 + 0.775810i
\(958\) 0 0
\(959\) −5.65685 −0.182669
\(960\) 0 0
\(961\) −1.00000 −0.0322581
\(962\) 0 0
\(963\) 2.82843 2.82843i 0.0911448 0.0911448i
\(964\) 0 0
\(965\) 3.00000 9.00000i 0.0965734 0.289720i
\(966\) 0 0
\(967\) 2.82843 2.82843i 0.0909561 0.0909561i −0.660165 0.751121i \(-0.729514\pi\)
0.751121 + 0.660165i \(0.229514\pi\)
\(968\) 0 0
\(969\) 0 0
\(970\) 0 0
\(971\) 50.9117 1.63383 0.816917 0.576755i \(-0.195681\pi\)
0.816917 + 0.576755i \(0.195681\pi\)
\(972\) 0 0
\(973\) 64.0000 + 64.0000i 2.05175 + 2.05175i
\(974\) 0 0
\(975\) −12.7279 + 16.9706i −0.407620 + 0.543493i
\(976\) 0 0
\(977\) −29.0000 29.0000i −0.927792 0.927792i 0.0697708 0.997563i \(-0.477773\pi\)
−0.997563 + 0.0697708i \(0.977773\pi\)
\(978\) 0 0
\(979\) 0 0
\(980\) 0 0
\(981\) 4.00000i 0.127710i
\(982\) 0 0
\(983\) 25.4558 + 25.4558i 0.811915 + 0.811915i 0.984921 0.173006i \(-0.0553478\pi\)
−0.173006 + 0.984921i \(0.555348\pi\)
\(984\) 0 0
\(985\) −1.00000 + 3.00000i −0.0318626 + 0.0955879i
\(986\) 0 0
\(987\) 33.9411 + 33.9411i 1.08036 + 1.08036i
\(988\) 0 0
\(989\) 16.0000 0.508770
\(990\) 0 0
\(991\) 39.5980i 1.25787i −0.777457 0.628936i \(-0.783491\pi\)
0.777457 0.628936i \(-0.216509\pi\)
\(992\) 0 0
\(993\) −4.00000 + 4.00000i −0.126936 + 0.126936i
\(994\) 0 0
\(995\) 0 0
\(996\) 0 0
\(997\) 31.0000 31.0000i 0.981780 0.981780i −0.0180571 0.999837i \(-0.505748\pi\)
0.999837 + 0.0180571i \(0.00574807\pi\)
\(998\) 0 0
\(999\) 4.24264 0.134231
Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))

Twists

       By twisting character
Char Parity Ord Type Twist Min Dim
1.1 even 1 trivial 1920.2.bh.b.1087.1 yes 4
4.3 odd 2 inner 1920.2.bh.b.1087.2 yes 4
5.3 odd 4 1920.2.bh.g.703.1 yes 4
8.3 odd 2 1920.2.bh.g.1087.1 yes 4
8.5 even 2 1920.2.bh.g.1087.2 yes 4
20.3 even 4 1920.2.bh.g.703.2 yes 4
40.3 even 4 inner 1920.2.bh.b.703.1 4
40.13 odd 4 inner 1920.2.bh.b.703.2 yes 4
    
        By twisted newform
Twist Min Dim Char Parity Ord Type
1920.2.bh.b.703.1 4 40.3 even 4 inner
1920.2.bh.b.703.2 yes 4 40.13 odd 4 inner
1920.2.bh.b.1087.1 yes 4 1.1 even 1 trivial
1920.2.bh.b.1087.2 yes 4 4.3 odd 2 inner
1920.2.bh.g.703.1 yes 4 5.3 odd 4
1920.2.bh.g.703.2 yes 4 20.3 even 4
1920.2.bh.g.1087.1 yes 4 8.3 odd 2
1920.2.bh.g.1087.2 yes 4 8.5 even 2