Properties

Label 1920.2.bh.f
Level 19201920
Weight 22
Character orbit 1920.bh
Analytic conductor 15.33115.331
Analytic rank 00
Dimension 44
Inner twists 44

Related objects

Downloads

Learn more

Show commands: Magma / PariGP / SageMath

Newspace parameters

comment: Compute space of new eigenforms
 
[N,k,chi] = [1920,2,Mod(703,1920)]
 
mf = mfinit([N,k,chi],0)
 
lf = mfeigenbasis(mf)
 
from sage.modular.dirichlet import DirichletCharacter
 
H = DirichletGroup(1920, base_ring=CyclotomicField(4))
 
chi = DirichletCharacter(H, H._module([2, 2, 0, 3]))
 
N = Newforms(chi, 2, names="a")
 
//Please install CHIMP (https://github.com/edgarcosta/CHIMP) if you want to run this code
 
chi := DirichletCharacter("1920.703");
 
S:= CuspForms(chi, 2);
 
N := Newforms(S);
 
Level: N N == 1920=2735 1920 = 2^{7} \cdot 3 \cdot 5
Weight: k k == 2 2
Character orbit: [χ][\chi] == 1920.bh (of order 44, degree 22, minimal)

Newform invariants

comment: select newform
 
sage: f = N[0] # Warning: the index may be different
 
gp: f = lf[1] \\ Warning: the index may be different
 
Self dual: no
Analytic conductor: 15.331277188115.3312771881
Analytic rank: 00
Dimension: 44
Relative dimension: 22 over Q(i)\Q(i)
Coefficient field: Q(ζ8)\Q(\zeta_{8})
comment: defining polynomial
 
gp: f.mod \\ as an extension of the character field
 
Defining polynomial: x4+1 x^{4} + 1 Copy content Toggle raw display
Coefficient ring: Z[a1,a2,a3]\Z[a_1, a_2, a_3]
Coefficient ring index: 1 1
Twist minimal: yes
Sato-Tate group: SU(2)[C4]\mathrm{SU}(2)[C_{4}]

qq-expansion

comment: q-expansion
 
sage: f.q_expansion() # note that sage often uses an isomorphic number field
 
gp: mfcoefs(f, 20)
 

Coefficients of the qq-expansion are expressed in terms of a primitive root of unity ζ8\zeta_{8}. We also show the integral qq-expansion of the trace form.

f(q)f(q) == q+ζ83q3+(ζ832ζ8)q5+(ζ82+1)q7ζ82q9+(ζ83+ζ8)q11+2ζ8q13+(ζ82+2)q15++(ζ83ζ8)q99+O(q100) q + \zeta_{8}^{3} q^{3} + (\zeta_{8}^{3} - 2 \zeta_{8}) q^{5} + ( - \zeta_{8}^{2} + 1) q^{7} - \zeta_{8}^{2} q^{9} + ( - \zeta_{8}^{3} + \zeta_{8}) q^{11} + 2 \zeta_{8} q^{13} + ( - \zeta_{8}^{2} + 2) q^{15} + \cdots + ( - \zeta_{8}^{3} - \zeta_{8}) q^{99} +O(q^{100}) Copy content Toggle raw display
Tr(f)(q)\operatorname{Tr}(f)(q) == 4q+4q7+8q158q178q23+16q254q338q398q41+32q4712q5516q574q638q65+12q73+40q794q81+4q87+16q95++12q97+O(q100) 4 q + 4 q^{7} + 8 q^{15} - 8 q^{17} - 8 q^{23} + 16 q^{25} - 4 q^{33} - 8 q^{39} - 8 q^{41} + 32 q^{47} - 12 q^{55} - 16 q^{57} - 4 q^{63} - 8 q^{65} + 12 q^{73} + 40 q^{79} - 4 q^{81} + 4 q^{87} + 16 q^{95}+ \cdots + 12 q^{97}+O(q^{100}) Copy content Toggle raw display

Character values

We give the values of χ\chi on generators for (Z/1920Z)×\left(\mathbb{Z}/1920\mathbb{Z}\right)^\times.

nn 511511 641641 901901 15371537
χ(n)\chi(n) 1-1 11 1-1 ζ82\zeta_{8}^{2}

Embeddings

For each embedding ιm\iota_m of the coefficient field, the values ιm(an)\iota_m(a_n) are shown below.

For more information on an embedded modular form you can click on its label.

comment: embeddings in the coefficient field
 
gp: mfembed(f)
 
Label   ιm(ν)\iota_m(\nu) a2 a_{2} a3 a_{3} a4 a_{4} a5 a_{5} a6 a_{6} a7 a_{7} a8 a_{8} a9 a_{9} a10 a_{10}
703.1
0.707107 0.707107i
−0.707107 + 0.707107i
0.707107 + 0.707107i
−0.707107 0.707107i
0 −0.707107 0.707107i 0 −2.12132 + 0.707107i 0 1.00000 + 1.00000i 0 1.00000i 0
703.2 0 0.707107 + 0.707107i 0 2.12132 0.707107i 0 1.00000 + 1.00000i 0 1.00000i 0
1087.1 0 −0.707107 + 0.707107i 0 −2.12132 0.707107i 0 1.00000 1.00000i 0 1.00000i 0
1087.2 0 0.707107 0.707107i 0 2.12132 + 0.707107i 0 1.00000 1.00000i 0 1.00000i 0
nn: e.g. 2-40 or 990-1000
Significant digits:
Format:

Inner twists

Char Parity Ord Mult Type
1.a even 1 1 trivial
8.b even 2 1 inner
20.e even 4 1 inner
40.k even 4 1 inner

Twists

       By twisting character orbit
Char Parity Ord Mult Type Twist Min Dim
1.a even 1 1 trivial 1920.2.bh.f yes 4
4.b odd 2 1 1920.2.bh.c 4
5.c odd 4 1 1920.2.bh.c 4
8.b even 2 1 inner 1920.2.bh.f yes 4
8.d odd 2 1 1920.2.bh.c 4
20.e even 4 1 inner 1920.2.bh.f yes 4
40.i odd 4 1 1920.2.bh.c 4
40.k even 4 1 inner 1920.2.bh.f yes 4
    
        By twisted newform orbit
Twist Min Dim Char Parity Ord Mult Type
1920.2.bh.c 4 4.b odd 2 1
1920.2.bh.c 4 5.c odd 4 1
1920.2.bh.c 4 8.d odd 2 1
1920.2.bh.c 4 40.i odd 4 1
1920.2.bh.f yes 4 1.a even 1 1 trivial
1920.2.bh.f yes 4 8.b even 2 1 inner
1920.2.bh.f yes 4 20.e even 4 1 inner
1920.2.bh.f yes 4 40.k even 4 1 inner

Hecke kernels

This newform subspace can be constructed as the intersection of the kernels of the following linear operators acting on S2new(1920,[χ])S_{2}^{\mathrm{new}}(1920, [\chi]):

T722T7+2 T_{7}^{2} - 2T_{7} + 2 Copy content Toggle raw display
T1122 T_{11}^{2} - 2 Copy content Toggle raw display
T134+16 T_{13}^{4} + 16 Copy content Toggle raw display

Hecke characteristic polynomials

pp Fp(T)F_p(T)
22 T4 T^{4} Copy content Toggle raw display
33 T4+1 T^{4} + 1 Copy content Toggle raw display
55 T48T2+25 T^{4} - 8T^{2} + 25 Copy content Toggle raw display
77 (T22T+2)2 (T^{2} - 2 T + 2)^{2} Copy content Toggle raw display
1111 (T22)2 (T^{2} - 2)^{2} Copy content Toggle raw display
1313 T4+16 T^{4} + 16 Copy content Toggle raw display
1717 (T2+4T+8)2 (T^{2} + 4 T + 8)^{2} Copy content Toggle raw display
1919 (T2+32)2 (T^{2} + 32)^{2} Copy content Toggle raw display
2323 (T2+4T+8)2 (T^{2} + 4 T + 8)^{2} Copy content Toggle raw display
2929 (T22)2 (T^{2} - 2)^{2} Copy content Toggle raw display
3131 (T2+100)2 (T^{2} + 100)^{2} Copy content Toggle raw display
3737 T4+1296 T^{4} + 1296 Copy content Toggle raw display
4141 (T+2)4 (T + 2)^{4} Copy content Toggle raw display
4343 T4+256 T^{4} + 256 Copy content Toggle raw display
4747 (T216T+128)2 (T^{2} - 16 T + 128)^{2} Copy content Toggle raw display
5353 T4+1296 T^{4} + 1296 Copy content Toggle raw display
5959 (T2+18)2 (T^{2} + 18)^{2} Copy content Toggle raw display
6161 (T2+8)2 (T^{2} + 8)^{2} Copy content Toggle raw display
6767 T4+20736 T^{4} + 20736 Copy content Toggle raw display
7171 (T2+64)2 (T^{2} + 64)^{2} Copy content Toggle raw display
7373 (T26T+18)2 (T^{2} - 6 T + 18)^{2} Copy content Toggle raw display
7979 (T10)4 (T - 10)^{4} Copy content Toggle raw display
8383 T4+10000 T^{4} + 10000 Copy content Toggle raw display
8989 (T2+100)2 (T^{2} + 100)^{2} Copy content Toggle raw display
9797 (T26T+18)2 (T^{2} - 6 T + 18)^{2} Copy content Toggle raw display
show more
show less