Properties

Label 1920.2.bh.f
Level $1920$
Weight $2$
Character orbit 1920.bh
Analytic conductor $15.331$
Analytic rank $0$
Dimension $4$
Inner twists $4$

Related objects

Downloads

Learn more

Show commands: Magma / PariGP / SageMath

Newspace parameters

comment: Compute space of new eigenforms
 
[N,k,chi] = [1920,2,Mod(703,1920)]
 
mf = mfinit([N,k,chi],0)
 
lf = mfeigenbasis(mf)
 
from sage.modular.dirichlet import DirichletCharacter
 
H = DirichletGroup(1920, base_ring=CyclotomicField(4))
 
chi = DirichletCharacter(H, H._module([2, 2, 0, 3]))
 
N = Newforms(chi, 2, names="a")
 
//Please install CHIMP (https://github.com/edgarcosta/CHIMP) if you want to run this code
 
chi := DirichletCharacter("1920.703");
 
S:= CuspForms(chi, 2);
 
N := Newforms(S);
 
Level: \( N \) \(=\) \( 1920 = 2^{7} \cdot 3 \cdot 5 \)
Weight: \( k \) \(=\) \( 2 \)
Character orbit: \([\chi]\) \(=\) 1920.bh (of order \(4\), degree \(2\), minimal)

Newform invariants

comment: select newform
 
sage: f = N[0] # Warning: the index may be different
 
gp: f = lf[1] \\ Warning: the index may be different
 
Self dual: no
Analytic conductor: \(15.3312771881\)
Analytic rank: \(0\)
Dimension: \(4\)
Relative dimension: \(2\) over \(\Q(i)\)
Coefficient field: \(\Q(\zeta_{8})\)
comment: defining polynomial
 
gp: f.mod \\ as an extension of the character field
 
Defining polynomial: \( x^{4} + 1 \) Copy content Toggle raw display
Coefficient ring: \(\Z[a_1, a_2, a_3]\)
Coefficient ring index: \( 1 \)
Twist minimal: yes
Sato-Tate group: $\mathrm{SU}(2)[C_{4}]$

$q$-expansion

comment: q-expansion
 
sage: f.q_expansion() # note that sage often uses an isomorphic number field
 
gp: mfcoefs(f, 20)
 

Coefficients of the \(q\)-expansion are expressed in terms of a primitive root of unity \(\zeta_{8}\). We also show the integral \(q\)-expansion of the trace form.

\(f(q)\) \(=\) \( q + \zeta_{8}^{3} q^{3} + (\zeta_{8}^{3} - 2 \zeta_{8}) q^{5} + ( - \zeta_{8}^{2} + 1) q^{7} - \zeta_{8}^{2} q^{9} + ( - \zeta_{8}^{3} + \zeta_{8}) q^{11} + 2 \zeta_{8} q^{13} + ( - \zeta_{8}^{2} + 2) q^{15} + \cdots + ( - \zeta_{8}^{3} - \zeta_{8}) q^{99} +O(q^{100}) \) Copy content Toggle raw display
\(\operatorname{Tr}(f)(q)\) \(=\) \( 4 q + 4 q^{7} + 8 q^{15} - 8 q^{17} - 8 q^{23} + 16 q^{25} - 4 q^{33} - 8 q^{39} - 8 q^{41} + 32 q^{47} - 12 q^{55} - 16 q^{57} - 4 q^{63} - 8 q^{65} + 12 q^{73} + 40 q^{79} - 4 q^{81} + 4 q^{87} + 16 q^{95}+ \cdots + 12 q^{97}+O(q^{100}) \) Copy content Toggle raw display

Character values

We give the values of \(\chi\) on generators for \(\left(\mathbb{Z}/1920\mathbb{Z}\right)^\times\).

\(n\) \(511\) \(641\) \(901\) \(1537\)
\(\chi(n)\) \(-1\) \(1\) \(-1\) \(\zeta_{8}^{2}\)

Embeddings

For each embedding \(\iota_m\) of the coefficient field, the values \(\iota_m(a_n)\) are shown below.

For more information on an embedded modular form you can click on its label.

comment: embeddings in the coefficient field
 
gp: mfembed(f)
 
Label   \(\iota_m(\nu)\) \( a_{2} \) \( a_{3} \) \( a_{4} \) \( a_{5} \) \( a_{6} \) \( a_{7} \) \( a_{8} \) \( a_{9} \) \( a_{10} \)
703.1
0.707107 0.707107i
−0.707107 + 0.707107i
0.707107 + 0.707107i
−0.707107 0.707107i
0 −0.707107 0.707107i 0 −2.12132 + 0.707107i 0 1.00000 + 1.00000i 0 1.00000i 0
703.2 0 0.707107 + 0.707107i 0 2.12132 0.707107i 0 1.00000 + 1.00000i 0 1.00000i 0
1087.1 0 −0.707107 + 0.707107i 0 −2.12132 0.707107i 0 1.00000 1.00000i 0 1.00000i 0
1087.2 0 0.707107 0.707107i 0 2.12132 + 0.707107i 0 1.00000 1.00000i 0 1.00000i 0
\(n\): e.g. 2-40 or 990-1000
Significant digits:
Format:

Inner twists

Char Parity Ord Mult Type
1.a even 1 1 trivial
8.b even 2 1 inner
20.e even 4 1 inner
40.k even 4 1 inner

Twists

       By twisting character orbit
Char Parity Ord Mult Type Twist Min Dim
1.a even 1 1 trivial 1920.2.bh.f yes 4
4.b odd 2 1 1920.2.bh.c 4
5.c odd 4 1 1920.2.bh.c 4
8.b even 2 1 inner 1920.2.bh.f yes 4
8.d odd 2 1 1920.2.bh.c 4
20.e even 4 1 inner 1920.2.bh.f yes 4
40.i odd 4 1 1920.2.bh.c 4
40.k even 4 1 inner 1920.2.bh.f yes 4
    
        By twisted newform orbit
Twist Min Dim Char Parity Ord Mult Type
1920.2.bh.c 4 4.b odd 2 1
1920.2.bh.c 4 5.c odd 4 1
1920.2.bh.c 4 8.d odd 2 1
1920.2.bh.c 4 40.i odd 4 1
1920.2.bh.f yes 4 1.a even 1 1 trivial
1920.2.bh.f yes 4 8.b even 2 1 inner
1920.2.bh.f yes 4 20.e even 4 1 inner
1920.2.bh.f yes 4 40.k even 4 1 inner

Hecke kernels

This newform subspace can be constructed as the intersection of the kernels of the following linear operators acting on \(S_{2}^{\mathrm{new}}(1920, [\chi])\):

\( T_{7}^{2} - 2T_{7} + 2 \) Copy content Toggle raw display
\( T_{11}^{2} - 2 \) Copy content Toggle raw display
\( T_{13}^{4} + 16 \) Copy content Toggle raw display

Hecke characteristic polynomials

$p$ $F_p(T)$
$2$ \( T^{4} \) Copy content Toggle raw display
$3$ \( T^{4} + 1 \) Copy content Toggle raw display
$5$ \( T^{4} - 8T^{2} + 25 \) Copy content Toggle raw display
$7$ \( (T^{2} - 2 T + 2)^{2} \) Copy content Toggle raw display
$11$ \( (T^{2} - 2)^{2} \) Copy content Toggle raw display
$13$ \( T^{4} + 16 \) Copy content Toggle raw display
$17$ \( (T^{2} + 4 T + 8)^{2} \) Copy content Toggle raw display
$19$ \( (T^{2} + 32)^{2} \) Copy content Toggle raw display
$23$ \( (T^{2} + 4 T + 8)^{2} \) Copy content Toggle raw display
$29$ \( (T^{2} - 2)^{2} \) Copy content Toggle raw display
$31$ \( (T^{2} + 100)^{2} \) Copy content Toggle raw display
$37$ \( T^{4} + 1296 \) Copy content Toggle raw display
$41$ \( (T + 2)^{4} \) Copy content Toggle raw display
$43$ \( T^{4} + 256 \) Copy content Toggle raw display
$47$ \( (T^{2} - 16 T + 128)^{2} \) Copy content Toggle raw display
$53$ \( T^{4} + 1296 \) Copy content Toggle raw display
$59$ \( (T^{2} + 18)^{2} \) Copy content Toggle raw display
$61$ \( (T^{2} + 8)^{2} \) Copy content Toggle raw display
$67$ \( T^{4} + 20736 \) Copy content Toggle raw display
$71$ \( (T^{2} + 64)^{2} \) Copy content Toggle raw display
$73$ \( (T^{2} - 6 T + 18)^{2} \) Copy content Toggle raw display
$79$ \( (T - 10)^{4} \) Copy content Toggle raw display
$83$ \( T^{4} + 10000 \) Copy content Toggle raw display
$89$ \( (T^{2} + 100)^{2} \) Copy content Toggle raw display
$97$ \( (T^{2} - 6 T + 18)^{2} \) Copy content Toggle raw display
show more
show less