Properties

Label 1920.2.d.c
Level $1920$
Weight $2$
Character orbit 1920.d
Analytic conductor $15.331$
Analytic rank $0$
Dimension $6$
Inner twists $2$

Related objects

Downloads

Learn more

Show commands: Magma / PariGP / SageMath

Newspace parameters

comment: Compute space of new eigenforms
 
[N,k,chi] = [1920,2,Mod(1729,1920)]
 
mf = mfinit([N,k,chi],0)
 
lf = mfeigenbasis(mf)
 
from sage.modular.dirichlet import DirichletCharacter
 
H = DirichletGroup(1920, base_ring=CyclotomicField(2))
 
chi = DirichletCharacter(H, H._module([0, 1, 0, 1]))
 
N = Newforms(chi, 2, names="a")
 
//Please install CHIMP (https://github.com/edgarcosta/CHIMP) if you want to run this code
 
chi := DirichletCharacter("1920.1729");
 
S:= CuspForms(chi, 2);
 
N := Newforms(S);
 
Level: \( N \) \(=\) \( 1920 = 2^{7} \cdot 3 \cdot 5 \)
Weight: \( k \) \(=\) \( 2 \)
Character orbit: \([\chi]\) \(=\) 1920.d (of order \(2\), degree \(1\), minimal)

Newform invariants

comment: select newform
 
sage: f = N[0] # Warning: the index may be different
 
gp: f = lf[1] \\ Warning: the index may be different
 
Self dual: no
Analytic conductor: \(15.3312771881\)
Analytic rank: \(0\)
Dimension: \(6\)
Coefficient field: 6.0.350464.1
comment: defining polynomial
 
gp: f.mod \\ as an extension of the character field
 
Defining polynomial: \( x^{6} - 2x^{5} + 2x^{4} + 2x^{3} + 4x^{2} - 4x + 2 \) Copy content Toggle raw display
Coefficient ring: \(\Z[a_1, \ldots, a_{7}]\)
Coefficient ring index: \( 2^{6} \)
Twist minimal: yes
Sato-Tate group: $\mathrm{SU}(2)[C_{2}]$

$q$-expansion

comment: q-expansion
 
sage: f.q_expansion() # note that sage often uses an isomorphic number field
 
gp: mfcoefs(f, 20)
 

Coefficients of the \(q\)-expansion are expressed in terms of a basis \(1,\beta_1,\ldots,\beta_{5}\) for the coefficient ring described below. We also show the integral \(q\)-expansion of the trace form.

\(f(q)\) \(=\) \( q - q^{3} + \beta_{3} q^{5} - \beta_{5} q^{7} + q^{9} + (\beta_{4} - \beta_{3}) q^{11} + (\beta_1 + 2) q^{13} - \beta_{3} q^{15} - \beta_{5} q^{17} + (\beta_{5} + \beta_{4} - \beta_{3}) q^{19} + \beta_{5} q^{21}+ \cdots + (\beta_{4} - \beta_{3}) q^{99}+O(q^{100}) \) Copy content Toggle raw display
\(\operatorname{Tr}(f)(q)\) \(=\) \( 6 q - 6 q^{3} - 2 q^{5} + 6 q^{9} + 12 q^{13} + 2 q^{15} - 2 q^{25} - 6 q^{27} - 8 q^{31} + 8 q^{35} - 28 q^{37} - 12 q^{39} - 12 q^{41} - 8 q^{43} - 2 q^{45} - 22 q^{49} + 20 q^{53} + 32 q^{55} + 4 q^{65}+ \cdots + 24 q^{95}+O(q^{100}) \) Copy content Toggle raw display

Basis of coefficient ring in terms of a root \(\nu\) of \( x^{6} - 2x^{5} + 2x^{4} + 2x^{3} + 4x^{2} - 4x + 2 \) : Copy content Toggle raw display

\(\beta_{1}\)\(=\) \( ( -2\nu^{5} + 16\nu^{4} - 8\nu^{3} - 2\nu^{2} + 4\nu + 76 ) / 23 \) Copy content Toggle raw display
\(\beta_{2}\)\(=\) \( ( 8\nu^{5} - 18\nu^{4} + 32\nu^{3} - 38\nu^{2} + 76\nu - 28 ) / 23 \) Copy content Toggle raw display
\(\beta_{3}\)\(=\) \( ( 9\nu^{5} - 3\nu^{4} - 10\nu^{3} + 32\nu^{2} + 74\nu + 3 ) / 23 \) Copy content Toggle raw display
\(\beta_{4}\)\(=\) \( ( -19\nu^{5} + 37\nu^{4} - 30\nu^{3} - 42\nu^{2} - 54\nu + 55 ) / 23 \) Copy content Toggle raw display
\(\beta_{5}\)\(=\) \( ( 36\nu^{5} - 58\nu^{4} + 52\nu^{3} + 82\nu^{2} + 204\nu - 80 ) / 23 \) Copy content Toggle raw display
\(\nu\)\(=\) \( ( \beta_{5} + 2\beta_{4} - \beta _1 + 2 ) / 4 \) Copy content Toggle raw display
\(\nu^{2}\)\(=\) \( ( \beta_{5} + \beta_{4} - \beta_{3} - \beta_{2} ) / 2 \) Copy content Toggle raw display
\(\nu^{3}\)\(=\) \( ( 3\beta_{5} + 2\beta_{4} - 6\beta_{3} - \beta_{2} + 4\beta _1 - 8 ) / 4 \) Copy content Toggle raw display
\(\nu^{4}\)\(=\) \( ( -\beta_{4} - \beta_{3} + 5\beta _1 - 14 ) / 2 \) Copy content Toggle raw display
\(\nu^{5}\)\(=\) \( ( -6\beta_{5} - 11\beta_{4} + 5\beta_{3} + 3\beta_{2} + 8\beta _1 - 18 ) / 2 \) Copy content Toggle raw display

Character values

We give the values of \(\chi\) on generators for \(\left(\mathbb{Z}/1920\mathbb{Z}\right)^\times\).

\(n\) \(511\) \(641\) \(901\) \(1537\)
\(\chi(n)\) \(1\) \(1\) \(-1\) \(-1\)

Embeddings

For each embedding \(\iota_m\) of the coefficient field, the values \(\iota_m(a_n)\) are shown below.

For more information on an embedded modular form you can click on its label.

comment: embeddings in the coefficient field
 
gp: mfembed(f)
 
Label   \(\iota_m(\nu)\) \( a_{2} \) \( a_{3} \) \( a_{4} \) \( a_{5} \) \( a_{6} \) \( a_{7} \) \( a_{8} \) \( a_{9} \) \( a_{10} \)
1729.1
−0.854638 + 0.854638i
−0.854638 0.854638i
1.45161 + 1.45161i
1.45161 1.45161i
0.403032 0.403032i
0.403032 + 0.403032i
0 −1.00000 0 −2.17009 0.539189i 0 2.34017i 0 1.00000 0
1729.2 0 −1.00000 0 −2.17009 + 0.539189i 0 2.34017i 0 1.00000 0
1729.3 0 −1.00000 0 −0.311108 2.21432i 0 1.37778i 0 1.00000 0
1729.4 0 −1.00000 0 −0.311108 + 2.21432i 0 1.37778i 0 1.00000 0
1729.5 0 −1.00000 0 1.48119 1.67513i 0 4.96239i 0 1.00000 0
1729.6 0 −1.00000 0 1.48119 + 1.67513i 0 4.96239i 0 1.00000 0
\(n\): e.g. 2-40 or 990-1000
Embeddings: e.g. 1-3 or 1729.6
Significant digits:
Format:

Inner twists

Char Parity Ord Mult Type
1.a even 1 1 trivial
40.f even 2 1 inner

Twists

       By twisting character orbit
Char Parity Ord Mult Type Twist Min Dim
1.a even 1 1 trivial 1920.2.d.c 6
4.b odd 2 1 1920.2.d.e yes 6
5.b even 2 1 1920.2.d.f yes 6
8.b even 2 1 1920.2.d.f yes 6
8.d odd 2 1 1920.2.d.d yes 6
16.e even 4 1 3840.2.f.g 6
16.e even 4 1 3840.2.f.h 6
16.f odd 4 1 3840.2.f.e 6
16.f odd 4 1 3840.2.f.f 6
20.d odd 2 1 1920.2.d.d yes 6
40.e odd 2 1 1920.2.d.e yes 6
40.f even 2 1 inner 1920.2.d.c 6
80.k odd 4 1 3840.2.f.e 6
80.k odd 4 1 3840.2.f.f 6
80.q even 4 1 3840.2.f.g 6
80.q even 4 1 3840.2.f.h 6
    
        By twisted newform orbit
Twist Min Dim Char Parity Ord Mult Type
1920.2.d.c 6 1.a even 1 1 trivial
1920.2.d.c 6 40.f even 2 1 inner
1920.2.d.d yes 6 8.d odd 2 1
1920.2.d.d yes 6 20.d odd 2 1
1920.2.d.e yes 6 4.b odd 2 1
1920.2.d.e yes 6 40.e odd 2 1
1920.2.d.f yes 6 5.b even 2 1
1920.2.d.f yes 6 8.b even 2 1
3840.2.f.e 6 16.f odd 4 1
3840.2.f.e 6 80.k odd 4 1
3840.2.f.f 6 16.f odd 4 1
3840.2.f.f 6 80.k odd 4 1
3840.2.f.g 6 16.e even 4 1
3840.2.f.g 6 80.q even 4 1
3840.2.f.h 6 16.e even 4 1
3840.2.f.h 6 80.q even 4 1

Hecke kernels

This newform subspace can be constructed as the intersection of the kernels of the following linear operators acting on \(S_{2}^{\mathrm{new}}(1920, [\chi])\):

\( T_{7}^{6} + 32T_{7}^{4} + 192T_{7}^{2} + 256 \) Copy content Toggle raw display
\( T_{13}^{3} - 6T_{13}^{2} - 4T_{13} + 40 \) Copy content Toggle raw display
\( T_{31}^{3} + 4T_{31}^{2} - 32T_{31} + 32 \) Copy content Toggle raw display
\( T_{43}^{3} + 4T_{43}^{2} - 80T_{43} - 64 \) Copy content Toggle raw display

Hecke characteristic polynomials

$p$ $F_p(T)$
$2$ \( T^{6} \) Copy content Toggle raw display
$3$ \( (T + 1)^{6} \) Copy content Toggle raw display
$5$ \( T^{6} + 2 T^{5} + \cdots + 125 \) Copy content Toggle raw display
$7$ \( T^{6} + 32 T^{4} + \cdots + 256 \) Copy content Toggle raw display
$11$ \( T^{6} + 32 T^{4} + \cdots + 256 \) Copy content Toggle raw display
$13$ \( (T^{3} - 6 T^{2} - 4 T + 40)^{2} \) Copy content Toggle raw display
$17$ \( T^{6} + 32 T^{4} + \cdots + 256 \) Copy content Toggle raw display
$19$ \( T^{6} + 48 T^{4} + \cdots + 1024 \) Copy content Toggle raw display
$23$ \( T^{6} + 64 T^{4} + \cdots + 1024 \) Copy content Toggle raw display
$29$ \( T^{6} + 32 T^{4} + \cdots + 256 \) Copy content Toggle raw display
$31$ \( (T^{3} + 4 T^{2} - 32 T + 32)^{2} \) Copy content Toggle raw display
$37$ \( (T^{3} + 14 T^{2} + \cdots - 296)^{2} \) Copy content Toggle raw display
$41$ \( (T + 2)^{6} \) Copy content Toggle raw display
$43$ \( (T^{3} + 4 T^{2} - 80 T - 64)^{2} \) Copy content Toggle raw display
$47$ \( T^{6} + 96 T^{4} + \cdots + 25600 \) Copy content Toggle raw display
$53$ \( (T^{3} - 10 T^{2} - 28 T + 8)^{2} \) Copy content Toggle raw display
$59$ \( T^{6} + 256 T^{4} + \cdots + 350464 \) Copy content Toggle raw display
$61$ \( (T^{2} + 16)^{3} \) Copy content Toggle raw display
$67$ \( (T^{3} + 4 T^{2} + \cdots - 832)^{2} \) Copy content Toggle raw display
$71$ \( (T^{3} - 8 T^{2} + \cdots + 256)^{2} \) Copy content Toggle raw display
$73$ \( T^{6} + 192 T^{4} + \cdots + 16384 \) Copy content Toggle raw display
$79$ \( (T^{3} + 20 T^{2} - 1184)^{2} \) Copy content Toggle raw display
$83$ \( (T^{3} + 4 T^{2} + \cdots - 832)^{2} \) Copy content Toggle raw display
$89$ \( (T^{3} - 10 T^{2} + \cdots + 712)^{2} \) Copy content Toggle raw display
$97$ \( T^{6} + 192 T^{4} + \cdots + 16384 \) Copy content Toggle raw display
show more
show less