Properties

Label 1920.2.h.d.1151.3
Level $1920$
Weight $2$
Character 1920.1151
Analytic conductor $15.331$
Analytic rank $0$
Dimension $4$
Inner twists $2$

Related objects

Downloads

Learn more

Show commands: Magma / PariGP / SageMath

Newspace parameters

comment: Compute space of new eigenforms
 
[N,k,chi] = [1920,2,Mod(1151,1920)]
 
mf = mfinit([N,k,chi],0)
 
lf = mfeigenbasis(mf)
 
from sage.modular.dirichlet import DirichletCharacter
 
H = DirichletGroup(1920, base_ring=CyclotomicField(2))
 
chi = DirichletCharacter(H, H._module([1, 0, 1, 0]))
 
N = Newforms(chi, 2, names="a")
 
//Please install CHIMP (https://github.com/edgarcosta/CHIMP) if you want to run this code
 
chi := DirichletCharacter("1920.1151");
 
S:= CuspForms(chi, 2);
 
N := Newforms(S);
 
Level: \( N \) \(=\) \( 1920 = 2^{7} \cdot 3 \cdot 5 \)
Weight: \( k \) \(=\) \( 2 \)
Character orbit: \([\chi]\) \(=\) 1920.h (of order \(2\), degree \(1\), minimal)

Newform invariants

comment: select newform
 
sage: f = N[0] # Warning: the index may be different
 
gp: f = lf[1] \\ Warning: the index may be different
 
Self dual: no
Analytic conductor: \(15.3312771881\)
Analytic rank: \(0\)
Dimension: \(4\)
Coefficient field: \(\Q(i, \sqrt{5})\)
comment: defining polynomial
 
gp: f.mod \\ as an extension of the character field
 
Defining polynomial: \( x^{4} + 3x^{2} + 1 \) Copy content Toggle raw display
Coefficient ring: \(\Z[a_1, \ldots, a_{5}]\)
Coefficient ring index: \( 2 \)
Twist minimal: yes
Sato-Tate group: $\mathrm{SU}(2)[C_{2}]$

Embedding invariants

Embedding label 1151.3
Root \(1.61803i\) of defining polynomial
Character \(\chi\) \(=\) 1920.1151
Dual form 1920.2.h.d.1151.4

$q$-expansion

comment: q-expansion
 
sage: f.q_expansion() # note that sage often uses an isomorphic number field
 
gp: mfcoefs(f, 20)
 
\(f(q)\) \(=\) \(q+(0.618034 - 1.61803i) q^{3} -1.00000i q^{5} +4.47214i q^{7} +(-2.23607 - 2.00000i) q^{9} -4.00000 q^{11} -1.23607 q^{13} +(-1.61803 - 0.618034i) q^{15} +3.23607i q^{17} -2.76393i q^{19} +(7.23607 + 2.76393i) q^{21} +6.00000 q^{23} -1.00000 q^{25} +(-4.61803 + 2.38197i) q^{27} -4.47214i q^{29} +9.70820i q^{31} +(-2.47214 + 6.47214i) q^{33} +4.47214 q^{35} -2.76393 q^{37} +(-0.763932 + 2.00000i) q^{39} +6.47214i q^{41} +11.2361i q^{43} +(-2.00000 + 2.23607i) q^{45} +6.94427 q^{47} -13.0000 q^{49} +(5.23607 + 2.00000i) q^{51} +12.4721i q^{53} +4.00000i q^{55} +(-4.47214 - 1.70820i) q^{57} +8.00000 q^{59} -0.472136 q^{61} +(8.94427 - 10.0000i) q^{63} +1.23607i q^{65} +9.70820i q^{67} +(3.70820 - 9.70820i) q^{69} -4.00000 q^{71} -13.4164 q^{73} +(-0.618034 + 1.61803i) q^{75} -17.8885i q^{77} +3.23607i q^{79} +(1.00000 + 8.94427i) q^{81} -4.29180 q^{83} +3.23607 q^{85} +(-7.23607 - 2.76393i) q^{87} -14.4721i q^{89} -5.52786i q^{91} +(15.7082 + 6.00000i) q^{93} -2.76393 q^{95} +0.472136 q^{97} +(8.94427 + 8.00000i) q^{99} +O(q^{100})\)
\(\operatorname{Tr}(f)(q)\) \(=\) \( 4 q - 2 q^{3} - 16 q^{11} + 4 q^{13} - 2 q^{15} + 20 q^{21} + 24 q^{23} - 4 q^{25} - 14 q^{27} + 8 q^{33} - 20 q^{37} - 12 q^{39} - 8 q^{45} - 8 q^{47} - 52 q^{49} + 12 q^{51} + 32 q^{59} + 16 q^{61} - 12 q^{69}+ \cdots - 16 q^{97}+O(q^{100}) \) Copy content Toggle raw display

Character values

We give the values of \(\chi\) on generators for \(\left(\mathbb{Z}/1920\mathbb{Z}\right)^\times\).

\(n\) \(511\) \(641\) \(901\) \(1537\)
\(\chi(n)\) \(-1\) \(-1\) \(1\) \(1\)

Coefficient data

For each \(n\) we display the coefficients of the \(q\)-expansion \(a_n\), the Satake parameters \(\alpha_p\), and the Satake angles \(\theta_p = \textrm{Arg}(\alpha_p)\).



Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))
Significant digits:
\(n\) \(a_n\) \(a_n / n^{(k-1)/2}\) \( \alpha_n \) \( \theta_n \)
\(p\) \(a_p\) \(a_p / p^{(k-1)/2}\) \( \alpha_p\) \( \theta_p \)
\(2\) 0 0
\(3\) 0.618034 1.61803i 0.356822 0.934172i
\(4\) 0 0
\(5\) 1.00000i 0.447214i
\(6\) 0 0
\(7\) 4.47214i 1.69031i 0.534522 + 0.845154i \(0.320491\pi\)
−0.534522 + 0.845154i \(0.679509\pi\)
\(8\) 0 0
\(9\) −2.23607 2.00000i −0.745356 0.666667i
\(10\) 0 0
\(11\) −4.00000 −1.20605 −0.603023 0.797724i \(-0.706037\pi\)
−0.603023 + 0.797724i \(0.706037\pi\)
\(12\) 0 0
\(13\) −1.23607 −0.342824 −0.171412 0.985199i \(-0.554833\pi\)
−0.171412 + 0.985199i \(0.554833\pi\)
\(14\) 0 0
\(15\) −1.61803 0.618034i −0.417775 0.159576i
\(16\) 0 0
\(17\) 3.23607i 0.784862i 0.919781 + 0.392431i \(0.128366\pi\)
−0.919781 + 0.392431i \(0.871634\pi\)
\(18\) 0 0
\(19\) 2.76393i 0.634089i −0.948411 0.317045i \(-0.897309\pi\)
0.948411 0.317045i \(-0.102691\pi\)
\(20\) 0 0
\(21\) 7.23607 + 2.76393i 1.57904 + 0.603139i
\(22\) 0 0
\(23\) 6.00000 1.25109 0.625543 0.780189i \(-0.284877\pi\)
0.625543 + 0.780189i \(0.284877\pi\)
\(24\) 0 0
\(25\) −1.00000 −0.200000
\(26\) 0 0
\(27\) −4.61803 + 2.38197i −0.888741 + 0.458410i
\(28\) 0 0
\(29\) 4.47214i 0.830455i −0.909718 0.415227i \(-0.863702\pi\)
0.909718 0.415227i \(-0.136298\pi\)
\(30\) 0 0
\(31\) 9.70820i 1.74364i 0.489822 + 0.871822i \(0.337062\pi\)
−0.489822 + 0.871822i \(0.662938\pi\)
\(32\) 0 0
\(33\) −2.47214 + 6.47214i −0.430344 + 1.12665i
\(34\) 0 0
\(35\) 4.47214 0.755929
\(36\) 0 0
\(37\) −2.76393 −0.454388 −0.227194 0.973850i \(-0.572955\pi\)
−0.227194 + 0.973850i \(0.572955\pi\)
\(38\) 0 0
\(39\) −0.763932 + 2.00000i −0.122327 + 0.320256i
\(40\) 0 0
\(41\) 6.47214i 1.01078i 0.862892 + 0.505389i \(0.168651\pi\)
−0.862892 + 0.505389i \(0.831349\pi\)
\(42\) 0 0
\(43\) 11.2361i 1.71348i 0.515745 + 0.856742i \(0.327515\pi\)
−0.515745 + 0.856742i \(0.672485\pi\)
\(44\) 0 0
\(45\) −2.00000 + 2.23607i −0.298142 + 0.333333i
\(46\) 0 0
\(47\) 6.94427 1.01293 0.506463 0.862262i \(-0.330953\pi\)
0.506463 + 0.862262i \(0.330953\pi\)
\(48\) 0 0
\(49\) −13.0000 −1.85714
\(50\) 0 0
\(51\) 5.23607 + 2.00000i 0.733196 + 0.280056i
\(52\) 0 0
\(53\) 12.4721i 1.71318i 0.515998 + 0.856590i \(0.327421\pi\)
−0.515998 + 0.856590i \(0.672579\pi\)
\(54\) 0 0
\(55\) 4.00000i 0.539360i
\(56\) 0 0
\(57\) −4.47214 1.70820i −0.592349 0.226257i
\(58\) 0 0
\(59\) 8.00000 1.04151 0.520756 0.853706i \(-0.325650\pi\)
0.520756 + 0.853706i \(0.325650\pi\)
\(60\) 0 0
\(61\) −0.472136 −0.0604508 −0.0302254 0.999543i \(-0.509623\pi\)
−0.0302254 + 0.999543i \(0.509623\pi\)
\(62\) 0 0
\(63\) 8.94427 10.0000i 1.12687 1.25988i
\(64\) 0 0
\(65\) 1.23607i 0.153315i
\(66\) 0 0
\(67\) 9.70820i 1.18605i 0.805186 + 0.593023i \(0.202066\pi\)
−0.805186 + 0.593023i \(0.797934\pi\)
\(68\) 0 0
\(69\) 3.70820 9.70820i 0.446415 1.16873i
\(70\) 0 0
\(71\) −4.00000 −0.474713 −0.237356 0.971423i \(-0.576281\pi\)
−0.237356 + 0.971423i \(0.576281\pi\)
\(72\) 0 0
\(73\) −13.4164 −1.57027 −0.785136 0.619324i \(-0.787407\pi\)
−0.785136 + 0.619324i \(0.787407\pi\)
\(74\) 0 0
\(75\) −0.618034 + 1.61803i −0.0713644 + 0.186834i
\(76\) 0 0
\(77\) 17.8885i 2.03859i
\(78\) 0 0
\(79\) 3.23607i 0.364086i 0.983291 + 0.182043i \(0.0582710\pi\)
−0.983291 + 0.182043i \(0.941729\pi\)
\(80\) 0 0
\(81\) 1.00000 + 8.94427i 0.111111 + 0.993808i
\(82\) 0 0
\(83\) −4.29180 −0.471086 −0.235543 0.971864i \(-0.575687\pi\)
−0.235543 + 0.971864i \(0.575687\pi\)
\(84\) 0 0
\(85\) 3.23607 0.351001
\(86\) 0 0
\(87\) −7.23607 2.76393i −0.775788 0.296325i
\(88\) 0 0
\(89\) 14.4721i 1.53404i −0.641621 0.767022i \(-0.721738\pi\)
0.641621 0.767022i \(-0.278262\pi\)
\(90\) 0 0
\(91\) 5.52786i 0.579478i
\(92\) 0 0
\(93\) 15.7082 + 6.00000i 1.62886 + 0.622171i
\(94\) 0 0
\(95\) −2.76393 −0.283573
\(96\) 0 0
\(97\) 0.472136 0.0479381 0.0239691 0.999713i \(-0.492370\pi\)
0.0239691 + 0.999713i \(0.492370\pi\)
\(98\) 0 0
\(99\) 8.94427 + 8.00000i 0.898933 + 0.804030i
\(100\) 0 0
\(101\) 0.472136i 0.0469793i 0.999724 + 0.0234896i \(0.00747767\pi\)
−0.999724 + 0.0234896i \(0.992522\pi\)
\(102\) 0 0
\(103\) 10.0000i 0.985329i 0.870219 + 0.492665i \(0.163977\pi\)
−0.870219 + 0.492665i \(0.836023\pi\)
\(104\) 0 0
\(105\) 2.76393 7.23607i 0.269732 0.706168i
\(106\) 0 0
\(107\) −2.76393 −0.267199 −0.133600 0.991035i \(-0.542654\pi\)
−0.133600 + 0.991035i \(0.542654\pi\)
\(108\) 0 0
\(109\) 2.94427 0.282010 0.141005 0.990009i \(-0.454967\pi\)
0.141005 + 0.990009i \(0.454967\pi\)
\(110\) 0 0
\(111\) −1.70820 + 4.47214i −0.162136 + 0.424476i
\(112\) 0 0
\(113\) 13.7082i 1.28956i −0.764368 0.644780i \(-0.776949\pi\)
0.764368 0.644780i \(-0.223051\pi\)
\(114\) 0 0
\(115\) 6.00000i 0.559503i
\(116\) 0 0
\(117\) 2.76393 + 2.47214i 0.255526 + 0.228549i
\(118\) 0 0
\(119\) −14.4721 −1.32666
\(120\) 0 0
\(121\) 5.00000 0.454545
\(122\) 0 0
\(123\) 10.4721 + 4.00000i 0.944241 + 0.360668i
\(124\) 0 0
\(125\) 1.00000i 0.0894427i
\(126\) 0 0
\(127\) 0.472136i 0.0418953i −0.999781 0.0209476i \(-0.993332\pi\)
0.999781 0.0209476i \(-0.00666833\pi\)
\(128\) 0 0
\(129\) 18.1803 + 6.94427i 1.60069 + 0.611409i
\(130\) 0 0
\(131\) 2.47214 0.215992 0.107996 0.994151i \(-0.465557\pi\)
0.107996 + 0.994151i \(0.465557\pi\)
\(132\) 0 0
\(133\) 12.3607 1.07181
\(134\) 0 0
\(135\) 2.38197 + 4.61803i 0.205007 + 0.397457i
\(136\) 0 0
\(137\) 0.180340i 0.0154075i 0.999970 + 0.00770374i \(0.00245220\pi\)
−0.999970 + 0.00770374i \(0.997548\pi\)
\(138\) 0 0
\(139\) 6.18034i 0.524210i 0.965039 + 0.262105i \(0.0844166\pi\)
−0.965039 + 0.262105i \(0.915583\pi\)
\(140\) 0 0
\(141\) 4.29180 11.2361i 0.361434 0.946248i
\(142\) 0 0
\(143\) 4.94427 0.413461
\(144\) 0 0
\(145\) −4.47214 −0.371391
\(146\) 0 0
\(147\) −8.03444 + 21.0344i −0.662670 + 1.73489i
\(148\) 0 0
\(149\) 10.9443i 0.896590i 0.893886 + 0.448295i \(0.147969\pi\)
−0.893886 + 0.448295i \(0.852031\pi\)
\(150\) 0 0
\(151\) 4.76393i 0.387683i 0.981033 + 0.193842i \(0.0620948\pi\)
−0.981033 + 0.193842i \(0.937905\pi\)
\(152\) 0 0
\(153\) 6.47214 7.23607i 0.523241 0.585001i
\(154\) 0 0
\(155\) 9.70820 0.779782
\(156\) 0 0
\(157\) −1.23607 −0.0986490 −0.0493245 0.998783i \(-0.515707\pi\)
−0.0493245 + 0.998783i \(0.515707\pi\)
\(158\) 0 0
\(159\) 20.1803 + 7.70820i 1.60041 + 0.611300i
\(160\) 0 0
\(161\) 26.8328i 2.11472i
\(162\) 0 0
\(163\) 22.6525i 1.77428i −0.461502 0.887139i \(-0.652689\pi\)
0.461502 0.887139i \(-0.347311\pi\)
\(164\) 0 0
\(165\) 6.47214 + 2.47214i 0.503855 + 0.192456i
\(166\) 0 0
\(167\) 21.4164 1.65725 0.828626 0.559803i \(-0.189123\pi\)
0.828626 + 0.559803i \(0.189123\pi\)
\(168\) 0 0
\(169\) −11.4721 −0.882472
\(170\) 0 0
\(171\) −5.52786 + 6.18034i −0.422726 + 0.472622i
\(172\) 0 0
\(173\) 16.4721i 1.25235i −0.779681 0.626177i \(-0.784619\pi\)
0.779681 0.626177i \(-0.215381\pi\)
\(174\) 0 0
\(175\) 4.47214i 0.338062i
\(176\) 0 0
\(177\) 4.94427 12.9443i 0.371634 0.972951i
\(178\) 0 0
\(179\) −25.8885 −1.93500 −0.967500 0.252870i \(-0.918626\pi\)
−0.967500 + 0.252870i \(0.918626\pi\)
\(180\) 0 0
\(181\) 13.4164 0.997234 0.498617 0.866822i \(-0.333841\pi\)
0.498617 + 0.866822i \(0.333841\pi\)
\(182\) 0 0
\(183\) −0.291796 + 0.763932i −0.0215702 + 0.0564715i
\(184\) 0 0
\(185\) 2.76393i 0.203208i
\(186\) 0 0
\(187\) 12.9443i 0.946579i
\(188\) 0 0
\(189\) −10.6525 20.6525i −0.774854 1.50225i
\(190\) 0 0
\(191\) −24.3607 −1.76268 −0.881338 0.472485i \(-0.843357\pi\)
−0.881338 + 0.472485i \(0.843357\pi\)
\(192\) 0 0
\(193\) 10.9443 0.787786 0.393893 0.919156i \(-0.371128\pi\)
0.393893 + 0.919156i \(0.371128\pi\)
\(194\) 0 0
\(195\) 2.00000 + 0.763932i 0.143223 + 0.0547063i
\(196\) 0 0
\(197\) 6.94427i 0.494759i −0.968919 0.247379i \(-0.920431\pi\)
0.968919 0.247379i \(-0.0795694\pi\)
\(198\) 0 0
\(199\) 9.70820i 0.688196i −0.938934 0.344098i \(-0.888185\pi\)
0.938934 0.344098i \(-0.111815\pi\)
\(200\) 0 0
\(201\) 15.7082 + 6.00000i 1.10797 + 0.423207i
\(202\) 0 0
\(203\) 20.0000 1.40372
\(204\) 0 0
\(205\) 6.47214 0.452034
\(206\) 0 0
\(207\) −13.4164 12.0000i −0.932505 0.834058i
\(208\) 0 0
\(209\) 11.0557i 0.764741i
\(210\) 0 0
\(211\) 15.1246i 1.04122i 0.853794 + 0.520611i \(0.174296\pi\)
−0.853794 + 0.520611i \(0.825704\pi\)
\(212\) 0 0
\(213\) −2.47214 + 6.47214i −0.169388 + 0.443463i
\(214\) 0 0
\(215\) 11.2361 0.766293
\(216\) 0 0
\(217\) −43.4164 −2.94730
\(218\) 0 0
\(219\) −8.29180 + 21.7082i −0.560308 + 1.46690i
\(220\) 0 0
\(221\) 4.00000i 0.269069i
\(222\) 0 0
\(223\) 2.58359i 0.173010i 0.996251 + 0.0865051i \(0.0275699\pi\)
−0.996251 + 0.0865051i \(0.972430\pi\)
\(224\) 0 0
\(225\) 2.23607 + 2.00000i 0.149071 + 0.133333i
\(226\) 0 0
\(227\) 9.23607 0.613019 0.306510 0.951868i \(-0.400839\pi\)
0.306510 + 0.951868i \(0.400839\pi\)
\(228\) 0 0
\(229\) −15.8885 −1.04994 −0.524972 0.851119i \(-0.675924\pi\)
−0.524972 + 0.851119i \(0.675924\pi\)
\(230\) 0 0
\(231\) −28.9443 11.0557i −1.90439 0.727414i
\(232\) 0 0
\(233\) 23.5967i 1.54587i −0.634483 0.772937i \(-0.718787\pi\)
0.634483 0.772937i \(-0.281213\pi\)
\(234\) 0 0
\(235\) 6.94427i 0.452994i
\(236\) 0 0
\(237\) 5.23607 + 2.00000i 0.340119 + 0.129914i
\(238\) 0 0
\(239\) −10.4721 −0.677386 −0.338693 0.940897i \(-0.609985\pi\)
−0.338693 + 0.940897i \(0.609985\pi\)
\(240\) 0 0
\(241\) −9.05573 −0.583331 −0.291665 0.956520i \(-0.594209\pi\)
−0.291665 + 0.956520i \(0.594209\pi\)
\(242\) 0 0
\(243\) 15.0902 + 3.90983i 0.968035 + 0.250816i
\(244\) 0 0
\(245\) 13.0000i 0.830540i
\(246\) 0 0
\(247\) 3.41641i 0.217381i
\(248\) 0 0
\(249\) −2.65248 + 6.94427i −0.168094 + 0.440075i
\(250\) 0 0
\(251\) 4.00000 0.252478 0.126239 0.992000i \(-0.459709\pi\)
0.126239 + 0.992000i \(0.459709\pi\)
\(252\) 0 0
\(253\) −24.0000 −1.50887
\(254\) 0 0
\(255\) 2.00000 5.23607i 0.125245 0.327895i
\(256\) 0 0
\(257\) 21.7082i 1.35412i 0.735928 + 0.677060i \(0.236746\pi\)
−0.735928 + 0.677060i \(0.763254\pi\)
\(258\) 0 0
\(259\) 12.3607i 0.768055i
\(260\) 0 0
\(261\) −8.94427 + 10.0000i −0.553637 + 0.618984i
\(262\) 0 0
\(263\) 25.4164 1.56724 0.783621 0.621239i \(-0.213370\pi\)
0.783621 + 0.621239i \(0.213370\pi\)
\(264\) 0 0
\(265\) 12.4721 0.766157
\(266\) 0 0
\(267\) −23.4164 8.94427i −1.43306 0.547381i
\(268\) 0 0
\(269\) 22.9443i 1.39894i 0.714663 + 0.699468i \(0.246580\pi\)
−0.714663 + 0.699468i \(0.753420\pi\)
\(270\) 0 0
\(271\) 21.7082i 1.31868i 0.751845 + 0.659340i \(0.229164\pi\)
−0.751845 + 0.659340i \(0.770836\pi\)
\(272\) 0 0
\(273\) −8.94427 3.41641i −0.541332 0.206770i
\(274\) 0 0
\(275\) 4.00000 0.241209
\(276\) 0 0
\(277\) −23.7082 −1.42449 −0.712244 0.701932i \(-0.752321\pi\)
−0.712244 + 0.701932i \(0.752321\pi\)
\(278\) 0 0
\(279\) 19.4164 21.7082i 1.16243 1.29964i
\(280\) 0 0
\(281\) 23.4164i 1.39691i −0.715656 0.698453i \(-0.753872\pi\)
0.715656 0.698453i \(-0.246128\pi\)
\(282\) 0 0
\(283\) 16.1803i 0.961821i −0.876770 0.480911i \(-0.840306\pi\)
0.876770 0.480911i \(-0.159694\pi\)
\(284\) 0 0
\(285\) −1.70820 + 4.47214i −0.101185 + 0.264906i
\(286\) 0 0
\(287\) −28.9443 −1.70853
\(288\) 0 0
\(289\) 6.52786 0.383992
\(290\) 0 0
\(291\) 0.291796 0.763932i 0.0171054 0.0447825i
\(292\) 0 0
\(293\) 18.3607i 1.07264i 0.844014 + 0.536321i \(0.180186\pi\)
−0.844014 + 0.536321i \(0.819814\pi\)
\(294\) 0 0
\(295\) 8.00000i 0.465778i
\(296\) 0 0
\(297\) 18.4721 9.52786i 1.07186 0.552863i
\(298\) 0 0
\(299\) −7.41641 −0.428902
\(300\) 0 0
\(301\) −50.2492 −2.89632
\(302\) 0 0
\(303\) 0.763932 + 0.291796i 0.0438867 + 0.0167632i
\(304\) 0 0
\(305\) 0.472136i 0.0270344i
\(306\) 0 0
\(307\) 2.29180i 0.130800i −0.997859 0.0653999i \(-0.979168\pi\)
0.997859 0.0653999i \(-0.0208323\pi\)
\(308\) 0 0
\(309\) 16.1803 + 6.18034i 0.920467 + 0.351587i
\(310\) 0 0
\(311\) −5.88854 −0.333909 −0.166954 0.985965i \(-0.553393\pi\)
−0.166954 + 0.985965i \(0.553393\pi\)
\(312\) 0 0
\(313\) −11.8885 −0.671980 −0.335990 0.941866i \(-0.609071\pi\)
−0.335990 + 0.941866i \(0.609071\pi\)
\(314\) 0 0
\(315\) −10.0000 8.94427i −0.563436 0.503953i
\(316\) 0 0
\(317\) 10.9443i 0.614692i −0.951598 0.307346i \(-0.900559\pi\)
0.951598 0.307346i \(-0.0994408\pi\)
\(318\) 0 0
\(319\) 17.8885i 1.00157i
\(320\) 0 0
\(321\) −1.70820 + 4.47214i −0.0953426 + 0.249610i
\(322\) 0 0
\(323\) 8.94427 0.497673
\(324\) 0 0
\(325\) 1.23607 0.0685647
\(326\) 0 0
\(327\) 1.81966 4.76393i 0.100627 0.263446i
\(328\) 0 0
\(329\) 31.0557i 1.71216i
\(330\) 0 0
\(331\) 23.7082i 1.30312i −0.758597 0.651560i \(-0.774115\pi\)
0.758597 0.651560i \(-0.225885\pi\)
\(332\) 0 0
\(333\) 6.18034 + 5.52786i 0.338681 + 0.302925i
\(334\) 0 0
\(335\) 9.70820 0.530416
\(336\) 0 0
\(337\) 22.3607 1.21806 0.609032 0.793146i \(-0.291558\pi\)
0.609032 + 0.793146i \(0.291558\pi\)
\(338\) 0 0
\(339\) −22.1803 8.47214i −1.20467 0.460143i
\(340\) 0 0
\(341\) 38.8328i 2.10291i
\(342\) 0 0
\(343\) 26.8328i 1.44884i
\(344\) 0 0
\(345\) −9.70820 3.70820i −0.522672 0.199643i
\(346\) 0 0
\(347\) −5.23607 −0.281087 −0.140543 0.990075i \(-0.544885\pi\)
−0.140543 + 0.990075i \(0.544885\pi\)
\(348\) 0 0
\(349\) 10.0000 0.535288 0.267644 0.963518i \(-0.413755\pi\)
0.267644 + 0.963518i \(0.413755\pi\)
\(350\) 0 0
\(351\) 5.70820 2.94427i 0.304681 0.157154i
\(352\) 0 0
\(353\) 29.7082i 1.58121i −0.612328 0.790604i \(-0.709767\pi\)
0.612328 0.790604i \(-0.290233\pi\)
\(354\) 0 0
\(355\) 4.00000i 0.212298i
\(356\) 0 0
\(357\) −8.94427 + 23.4164i −0.473381 + 1.23933i
\(358\) 0 0
\(359\) 5.52786 0.291750 0.145875 0.989303i \(-0.453400\pi\)
0.145875 + 0.989303i \(0.453400\pi\)
\(360\) 0 0
\(361\) 11.3607 0.597931
\(362\) 0 0
\(363\) 3.09017 8.09017i 0.162192 0.424624i
\(364\) 0 0
\(365\) 13.4164i 0.702247i
\(366\) 0 0
\(367\) 10.9443i 0.571286i −0.958336 0.285643i \(-0.907793\pi\)
0.958336 0.285643i \(-0.0922072\pi\)
\(368\) 0 0
\(369\) 12.9443 14.4721i 0.673852 0.753389i
\(370\) 0 0
\(371\) −55.7771 −2.89580
\(372\) 0 0
\(373\) −17.2361 −0.892450 −0.446225 0.894921i \(-0.647232\pi\)
−0.446225 + 0.894921i \(0.647232\pi\)
\(374\) 0 0
\(375\) 1.61803 + 0.618034i 0.0835549 + 0.0319151i
\(376\) 0 0
\(377\) 5.52786i 0.284699i
\(378\) 0 0
\(379\) 15.7082i 0.806876i −0.915007 0.403438i \(-0.867815\pi\)
0.915007 0.403438i \(-0.132185\pi\)
\(380\) 0 0
\(381\) −0.763932 0.291796i −0.0391374 0.0149492i
\(382\) 0 0
\(383\) 2.58359 0.132015 0.0660077 0.997819i \(-0.478974\pi\)
0.0660077 + 0.997819i \(0.478974\pi\)
\(384\) 0 0
\(385\) −17.8885 −0.911685
\(386\) 0 0
\(387\) 22.4721 25.1246i 1.14232 1.27716i
\(388\) 0 0
\(389\) 22.9443i 1.16332i 0.813432 + 0.581660i \(0.197597\pi\)
−0.813432 + 0.581660i \(0.802403\pi\)
\(390\) 0 0
\(391\) 19.4164i 0.981930i
\(392\) 0 0
\(393\) 1.52786 4.00000i 0.0770705 0.201773i
\(394\) 0 0
\(395\) 3.23607 0.162824
\(396\) 0 0
\(397\) 0.291796 0.0146448 0.00732241 0.999973i \(-0.497669\pi\)
0.00732241 + 0.999973i \(0.497669\pi\)
\(398\) 0 0
\(399\) 7.63932 20.0000i 0.382444 1.00125i
\(400\) 0 0
\(401\) 16.9443i 0.846157i 0.906093 + 0.423078i \(0.139050\pi\)
−0.906093 + 0.423078i \(0.860950\pi\)
\(402\) 0 0
\(403\) 12.0000i 0.597763i
\(404\) 0 0
\(405\) 8.94427 1.00000i 0.444444 0.0496904i
\(406\) 0 0
\(407\) 11.0557 0.548012
\(408\) 0 0
\(409\) 39.3050 1.94350 0.971752 0.236003i \(-0.0758374\pi\)
0.971752 + 0.236003i \(0.0758374\pi\)
\(410\) 0 0
\(411\) 0.291796 + 0.111456i 0.0143932 + 0.00549773i
\(412\) 0 0
\(413\) 35.7771i 1.76048i
\(414\) 0 0
\(415\) 4.29180i 0.210676i
\(416\) 0 0
\(417\) 10.0000 + 3.81966i 0.489702 + 0.187050i
\(418\) 0 0
\(419\) 3.41641 0.166902 0.0834512 0.996512i \(-0.473406\pi\)
0.0834512 + 0.996512i \(0.473406\pi\)
\(420\) 0 0
\(421\) 15.5279 0.756782 0.378391 0.925646i \(-0.376478\pi\)
0.378391 + 0.925646i \(0.376478\pi\)
\(422\) 0 0
\(423\) −15.5279 13.8885i −0.754991 0.675284i
\(424\) 0 0
\(425\) 3.23607i 0.156972i
\(426\) 0 0
\(427\) 2.11146i 0.102181i
\(428\) 0 0
\(429\) 3.05573 8.00000i 0.147532 0.386244i
\(430\) 0 0
\(431\) 0.944272 0.0454840 0.0227420 0.999741i \(-0.492760\pi\)
0.0227420 + 0.999741i \(0.492760\pi\)
\(432\) 0 0
\(433\) −20.4721 −0.983828 −0.491914 0.870644i \(-0.663703\pi\)
−0.491914 + 0.870644i \(0.663703\pi\)
\(434\) 0 0
\(435\) −2.76393 + 7.23607i −0.132520 + 0.346943i
\(436\) 0 0
\(437\) 16.5836i 0.793301i
\(438\) 0 0
\(439\) 11.2361i 0.536268i 0.963382 + 0.268134i \(0.0864070\pi\)
−0.963382 + 0.268134i \(0.913593\pi\)
\(440\) 0 0
\(441\) 29.0689 + 26.0000i 1.38423 + 1.23810i
\(442\) 0 0
\(443\) 13.5967 0.646001 0.323000 0.946399i \(-0.395308\pi\)
0.323000 + 0.946399i \(0.395308\pi\)
\(444\) 0 0
\(445\) −14.4721 −0.686045
\(446\) 0 0
\(447\) 17.7082 + 6.76393i 0.837569 + 0.319923i
\(448\) 0 0
\(449\) 4.94427i 0.233335i 0.993171 + 0.116667i \(0.0372211\pi\)
−0.993171 + 0.116667i \(0.962779\pi\)
\(450\) 0 0
\(451\) 25.8885i 1.21904i
\(452\) 0 0
\(453\) 7.70820 + 2.94427i 0.362163 + 0.138334i
\(454\) 0 0
\(455\) −5.52786 −0.259150
\(456\) 0 0
\(457\) 40.4721 1.89321 0.946603 0.322401i \(-0.104490\pi\)
0.946603 + 0.322401i \(0.104490\pi\)
\(458\) 0 0
\(459\) −7.70820 14.9443i −0.359788 0.697539i
\(460\) 0 0
\(461\) 5.41641i 0.252267i 0.992013 + 0.126134i \(0.0402568\pi\)
−0.992013 + 0.126134i \(0.959743\pi\)
\(462\) 0 0
\(463\) 14.9443i 0.694519i 0.937769 + 0.347260i \(0.112888\pi\)
−0.937769 + 0.347260i \(0.887112\pi\)
\(464\) 0 0
\(465\) 6.00000 15.7082i 0.278243 0.728451i
\(466\) 0 0
\(467\) −26.1803 −1.21148 −0.605741 0.795662i \(-0.707123\pi\)
−0.605741 + 0.795662i \(0.707123\pi\)
\(468\) 0 0
\(469\) −43.4164 −2.00478
\(470\) 0 0
\(471\) −0.763932 + 2.00000i −0.0352001 + 0.0921551i
\(472\) 0 0
\(473\) 44.9443i 2.06654i
\(474\) 0 0
\(475\) 2.76393i 0.126818i
\(476\) 0 0
\(477\) 24.9443 27.8885i 1.14212 1.27693i
\(478\) 0 0
\(479\) −10.4721 −0.478484 −0.239242 0.970960i \(-0.576899\pi\)
−0.239242 + 0.970960i \(0.576899\pi\)
\(480\) 0 0
\(481\) 3.41641 0.155775
\(482\) 0 0
\(483\) 43.4164 + 16.5836i 1.97551 + 0.754580i
\(484\) 0 0
\(485\) 0.472136i 0.0214386i
\(486\) 0 0
\(487\) 34.0000i 1.54069i 0.637629 + 0.770344i \(0.279915\pi\)
−0.637629 + 0.770344i \(0.720085\pi\)
\(488\) 0 0
\(489\) −36.6525 14.0000i −1.65748 0.633102i
\(490\) 0 0
\(491\) −4.36068 −0.196795 −0.0983974 0.995147i \(-0.531372\pi\)
−0.0983974 + 0.995147i \(0.531372\pi\)
\(492\) 0 0
\(493\) 14.4721 0.651792
\(494\) 0 0
\(495\) 8.00000 8.94427i 0.359573 0.402015i
\(496\) 0 0
\(497\) 17.8885i 0.802411i
\(498\) 0 0
\(499\) 6.18034i 0.276670i 0.990385 + 0.138335i \(0.0441751\pi\)
−0.990385 + 0.138335i \(0.955825\pi\)
\(500\) 0 0
\(501\) 13.2361 34.6525i 0.591344 1.54816i
\(502\) 0 0
\(503\) −0.472136 −0.0210515 −0.0105258 0.999945i \(-0.503351\pi\)
−0.0105258 + 0.999945i \(0.503351\pi\)
\(504\) 0 0
\(505\) 0.472136 0.0210098
\(506\) 0 0
\(507\) −7.09017 + 18.5623i −0.314886 + 0.824381i
\(508\) 0 0
\(509\) 13.4164i 0.594672i −0.954773 0.297336i \(-0.903902\pi\)
0.954773 0.297336i \(-0.0960981\pi\)
\(510\) 0 0
\(511\) 60.0000i 2.65424i
\(512\) 0 0
\(513\) 6.58359 + 12.7639i 0.290673 + 0.563541i
\(514\) 0 0
\(515\) 10.0000 0.440653
\(516\) 0 0
\(517\) −27.7771 −1.22163
\(518\) 0 0
\(519\) −26.6525 10.1803i −1.16991 0.446867i
\(520\) 0 0
\(521\) 5.88854i 0.257982i −0.991646 0.128991i \(-0.958826\pi\)
0.991646 0.128991i \(-0.0411738\pi\)
\(522\) 0 0
\(523\) 13.7082i 0.599418i −0.954031 0.299709i \(-0.903110\pi\)
0.954031 0.299709i \(-0.0968896\pi\)
\(524\) 0 0
\(525\) −7.23607 2.76393i −0.315808 0.120628i
\(526\) 0 0
\(527\) −31.4164 −1.36852
\(528\) 0 0
\(529\) 13.0000 0.565217
\(530\) 0 0
\(531\) −17.8885 16.0000i −0.776297 0.694341i
\(532\) 0 0
\(533\) 8.00000i 0.346518i
\(534\) 0 0
\(535\) 2.76393i 0.119495i
\(536\) 0 0
\(537\) −16.0000 + 41.8885i −0.690451 + 1.80762i
\(538\) 0 0
\(539\) 52.0000 2.23980
\(540\) 0 0
\(541\) −33.4164 −1.43668 −0.718342 0.695690i \(-0.755099\pi\)
−0.718342 + 0.695690i \(0.755099\pi\)
\(542\) 0 0
\(543\) 8.29180 21.7082i 0.355835 0.931588i
\(544\) 0 0
\(545\) 2.94427i 0.126119i
\(546\) 0 0
\(547\) 11.2361i 0.480420i 0.970721 + 0.240210i \(0.0772162\pi\)
−0.970721 + 0.240210i \(0.922784\pi\)
\(548\) 0 0
\(549\) 1.05573 + 0.944272i 0.0450574 + 0.0403005i
\(550\) 0 0
\(551\) −12.3607 −0.526583
\(552\) 0 0
\(553\) −14.4721 −0.615418
\(554\) 0 0
\(555\) 4.47214 + 1.70820i 0.189832 + 0.0725092i
\(556\) 0 0
\(557\) 12.4721i 0.528461i 0.964460 + 0.264231i \(0.0851180\pi\)
−0.964460 + 0.264231i \(0.914882\pi\)
\(558\) 0 0
\(559\) 13.8885i 0.587423i
\(560\) 0 0
\(561\) −20.9443 8.00000i −0.884268 0.337760i
\(562\) 0 0
\(563\) −33.5967 −1.41593 −0.707967 0.706245i \(-0.750387\pi\)
−0.707967 + 0.706245i \(0.750387\pi\)
\(564\) 0 0
\(565\) −13.7082 −0.576708
\(566\) 0 0
\(567\) −40.0000 + 4.47214i −1.67984 + 0.187812i
\(568\) 0 0
\(569\) 6.83282i 0.286447i 0.989690 + 0.143223i \(0.0457467\pi\)
−0.989690 + 0.143223i \(0.954253\pi\)
\(570\) 0 0
\(571\) 44.0689i 1.84423i 0.386921 + 0.922113i \(0.373538\pi\)
−0.386921 + 0.922113i \(0.626462\pi\)
\(572\) 0 0
\(573\) −15.0557 + 39.4164i −0.628962 + 1.64664i
\(574\) 0 0
\(575\) −6.00000 −0.250217
\(576\) 0 0
\(577\) 14.3607 0.597843 0.298921 0.954278i \(-0.403373\pi\)
0.298921 + 0.954278i \(0.403373\pi\)
\(578\) 0 0
\(579\) 6.76393 17.7082i 0.281099 0.735928i
\(580\) 0 0
\(581\) 19.1935i 0.796280i
\(582\) 0 0
\(583\) 49.8885i 2.06617i
\(584\) 0 0
\(585\) 2.47214 2.76393i 0.102210 0.114275i
\(586\) 0 0
\(587\) −12.6525 −0.522224 −0.261112 0.965309i \(-0.584089\pi\)
−0.261112 + 0.965309i \(0.584089\pi\)
\(588\) 0 0
\(589\) 26.8328 1.10563
\(590\) 0 0
\(591\) −11.2361 4.29180i −0.462190 0.176541i
\(592\) 0 0
\(593\) 2.29180i 0.0941128i 0.998892 + 0.0470564i \(0.0149840\pi\)
−0.998892 + 0.0470564i \(0.985016\pi\)
\(594\) 0 0
\(595\) 14.4721i 0.593300i
\(596\) 0 0
\(597\) −15.7082 6.00000i −0.642894 0.245564i
\(598\) 0 0
\(599\) −21.5279 −0.879605 −0.439802 0.898095i \(-0.644952\pi\)
−0.439802 + 0.898095i \(0.644952\pi\)
\(600\) 0 0
\(601\) 22.3607 0.912111 0.456056 0.889951i \(-0.349262\pi\)
0.456056 + 0.889951i \(0.349262\pi\)
\(602\) 0 0
\(603\) 19.4164 21.7082i 0.790697 0.884026i
\(604\) 0 0
\(605\) 5.00000i 0.203279i
\(606\) 0 0
\(607\) 22.0000i 0.892952i −0.894795 0.446476i \(-0.852679\pi\)
0.894795 0.446476i \(-0.147321\pi\)
\(608\) 0 0
\(609\) 12.3607 32.3607i 0.500880 1.31132i
\(610\) 0 0
\(611\) −8.58359 −0.347255
\(612\) 0 0
\(613\) 39.1246 1.58023 0.790114 0.612960i \(-0.210021\pi\)
0.790114 + 0.612960i \(0.210021\pi\)
\(614\) 0 0
\(615\) 4.00000 10.4721i 0.161296 0.422277i
\(616\) 0 0
\(617\) 20.5410i 0.826950i 0.910515 + 0.413475i \(0.135685\pi\)
−0.910515 + 0.413475i \(0.864315\pi\)
\(618\) 0 0
\(619\) 27.1246i 1.09023i 0.838361 + 0.545115i \(0.183514\pi\)
−0.838361 + 0.545115i \(0.816486\pi\)
\(620\) 0 0
\(621\) −27.7082 + 14.2918i −1.11189 + 0.573510i
\(622\) 0 0
\(623\) 64.7214 2.59301
\(624\) 0 0
\(625\) 1.00000 0.0400000
\(626\) 0 0
\(627\) 17.8885 + 6.83282i 0.714400 + 0.272876i
\(628\) 0 0
\(629\) 8.94427i 0.356631i
\(630\) 0 0
\(631\) 18.6525i 0.742543i 0.928524 + 0.371272i \(0.121078\pi\)
−0.928524 + 0.371272i \(0.878922\pi\)
\(632\) 0 0
\(633\) 24.4721 + 9.34752i 0.972680 + 0.371531i
\(634\) 0 0
\(635\) −0.472136 −0.0187361
\(636\) 0 0
\(637\) 16.0689 0.636672
\(638\) 0 0
\(639\) 8.94427 + 8.00000i 0.353830 + 0.316475i
\(640\) 0 0
\(641\) 27.4164i 1.08288i −0.840738 0.541442i \(-0.817879\pi\)
0.840738 0.541442i \(-0.182121\pi\)
\(642\) 0 0
\(643\) 3.59675i 0.141842i −0.997482 0.0709209i \(-0.977406\pi\)
0.997482 0.0709209i \(-0.0225938\pi\)
\(644\) 0 0
\(645\) 6.94427 18.1803i 0.273430 0.715850i
\(646\) 0 0
\(647\) −27.3050 −1.07347 −0.536734 0.843751i \(-0.680342\pi\)
−0.536734 + 0.843751i \(0.680342\pi\)
\(648\) 0 0
\(649\) −32.0000 −1.25611
\(650\) 0 0
\(651\) −26.8328 + 70.2492i −1.05166 + 2.75328i
\(652\) 0 0
\(653\) 13.4164i 0.525025i 0.964929 + 0.262512i \(0.0845510\pi\)
−0.964929 + 0.262512i \(0.915449\pi\)
\(654\) 0 0
\(655\) 2.47214i 0.0965943i
\(656\) 0 0
\(657\) 30.0000 + 26.8328i 1.17041 + 1.04685i
\(658\) 0 0
\(659\) 41.8885 1.63175 0.815873 0.578231i \(-0.196257\pi\)
0.815873 + 0.578231i \(0.196257\pi\)
\(660\) 0 0
\(661\) 14.3607 0.558566 0.279283 0.960209i \(-0.409903\pi\)
0.279283 + 0.960209i \(0.409903\pi\)
\(662\) 0 0
\(663\) −6.47214 2.47214i −0.251357 0.0960098i
\(664\) 0 0
\(665\) 12.3607i 0.479327i
\(666\) 0 0
\(667\) 26.8328i 1.03897i
\(668\) 0 0
\(669\) 4.18034 + 1.59675i 0.161621 + 0.0617338i
\(670\) 0 0
\(671\) 1.88854 0.0729064
\(672\) 0 0
\(673\) 11.5279 0.444367 0.222183 0.975005i \(-0.428682\pi\)
0.222183 + 0.975005i \(0.428682\pi\)
\(674\) 0 0
\(675\) 4.61803 2.38197i 0.177748 0.0916819i
\(676\) 0 0
\(677\) 32.2492i 1.23944i 0.784824 + 0.619719i \(0.212753\pi\)
−0.784824 + 0.619719i \(0.787247\pi\)
\(678\) 0 0
\(679\) 2.11146i 0.0810303i
\(680\) 0 0
\(681\) 5.70820 14.9443i 0.218739 0.572666i
\(682\) 0 0
\(683\) −23.7082 −0.907169 −0.453585 0.891213i \(-0.649855\pi\)
−0.453585 + 0.891213i \(0.649855\pi\)
\(684\) 0 0
\(685\) 0.180340 0.00689043
\(686\) 0 0
\(687\) −9.81966 + 25.7082i −0.374643 + 0.980829i
\(688\) 0 0
\(689\) 15.4164i 0.587318i
\(690\) 0 0
\(691\) 19.1246i 0.727535i 0.931490 + 0.363767i \(0.118510\pi\)
−0.931490 + 0.363767i \(0.881490\pi\)
\(692\) 0 0
\(693\) −35.7771 + 40.0000i −1.35906 + 1.51947i
\(694\) 0 0
\(695\) 6.18034 0.234434
\(696\) 0 0
\(697\) −20.9443 −0.793321
\(698\) 0 0
\(699\) −38.1803 14.5836i −1.44411 0.551602i
\(700\) 0 0
\(701\) 42.0000i 1.58632i −0.609015 0.793159i \(-0.708435\pi\)
0.609015 0.793159i \(-0.291565\pi\)
\(702\) 0 0
\(703\) 7.63932i 0.288122i
\(704\) 0 0
\(705\) −11.2361 4.29180i −0.423175 0.161638i
\(706\) 0 0
\(707\) −2.11146 −0.0794095
\(708\) 0 0
\(709\) −10.9443 −0.411021 −0.205510 0.978655i \(-0.565885\pi\)
−0.205510 + 0.978655i \(0.565885\pi\)
\(710\) 0 0
\(711\) 6.47214 7.23607i 0.242724 0.271374i
\(712\) 0 0
\(713\) 58.2492i 2.18145i
\(714\) 0 0
\(715\) 4.94427i 0.184905i
\(716\) 0 0
\(717\) −6.47214 + 16.9443i −0.241706 + 0.632795i
\(718\) 0 0
\(719\) −44.9443 −1.67614 −0.838069 0.545564i \(-0.816316\pi\)
−0.838069 + 0.545564i \(0.816316\pi\)
\(720\) 0 0
\(721\) −44.7214 −1.66551
\(722\) 0 0
\(723\) −5.59675 + 14.6525i −0.208145 + 0.544931i
\(724\) 0 0
\(725\) 4.47214i 0.166091i
\(726\) 0 0
\(727\) 10.0000i 0.370879i 0.982656 + 0.185440i \(0.0593710\pi\)
−0.982656 + 0.185440i \(0.940629\pi\)
\(728\) 0 0
\(729\) 15.6525 22.0000i 0.579721 0.814815i
\(730\) 0 0
\(731\) −36.3607 −1.34485
\(732\) 0 0
\(733\) 50.1803 1.85345 0.926727 0.375736i \(-0.122610\pi\)
0.926727 + 0.375736i \(0.122610\pi\)
\(734\) 0 0
\(735\) 21.0344 + 8.03444i 0.775867 + 0.296355i
\(736\) 0 0
\(737\) 38.8328i 1.43043i
\(738\) 0 0
\(739\) 30.7639i 1.13167i −0.824519 0.565835i \(-0.808554\pi\)
0.824519 0.565835i \(-0.191446\pi\)
\(740\) 0 0
\(741\) 5.52786 + 2.11146i 0.203071 + 0.0775663i
\(742\) 0 0
\(743\) 47.8885 1.75686 0.878430 0.477871i \(-0.158591\pi\)
0.878430 + 0.477871i \(0.158591\pi\)
\(744\) 0 0
\(745\) 10.9443 0.400967
\(746\) 0 0
\(747\) 9.59675 + 8.58359i 0.351127 + 0.314057i
\(748\) 0 0
\(749\) 12.3607i 0.451649i
\(750\) 0 0
\(751\) 27.2361i 0.993858i −0.867791 0.496929i \(-0.834461\pi\)
0.867791 0.496929i \(-0.165539\pi\)
\(752\) 0 0
\(753\) 2.47214 6.47214i 0.0900896 0.235858i
\(754\) 0 0
\(755\) 4.76393 0.173377
\(756\) 0 0
\(757\) 37.2361 1.35337 0.676684 0.736274i \(-0.263416\pi\)
0.676684 + 0.736274i \(0.263416\pi\)
\(758\) 0 0
\(759\) −14.8328 + 38.8328i −0.538397 + 1.40954i
\(760\) 0 0
\(761\) 21.8885i 0.793459i 0.917936 + 0.396730i \(0.129855\pi\)
−0.917936 + 0.396730i \(0.870145\pi\)
\(762\) 0 0
\(763\) 13.1672i 0.476684i
\(764\) 0 0
\(765\) −7.23607 6.47214i −0.261621 0.234001i
\(766\) 0 0
\(767\) −9.88854 −0.357055
\(768\) 0 0
\(769\) −14.3607 −0.517859 −0.258930 0.965896i \(-0.583370\pi\)
−0.258930 + 0.965896i \(0.583370\pi\)
\(770\) 0 0
\(771\) 35.1246 + 13.4164i 1.26498 + 0.483180i
\(772\) 0 0
\(773\) 46.9443i 1.68847i −0.535975 0.844234i \(-0.680056\pi\)
0.535975 0.844234i \(-0.319944\pi\)
\(774\) 0 0
\(775\) 9.70820i 0.348729i
\(776\) 0 0
\(777\) −20.0000 7.63932i −0.717496 0.274059i
\(778\) 0 0
\(779\) 17.8885 0.640924
\(780\) 0 0
\(781\) 16.0000 0.572525
\(782\) 0 0
\(783\) 10.6525 + 20.6525i 0.380688 + 0.738059i
\(784\) 0 0
\(785\) 1.23607i 0.0441172i
\(786\) 0 0
\(787\) 16.7639i 0.597570i −0.954321 0.298785i \(-0.903419\pi\)
0.954321 0.298785i \(-0.0965813\pi\)
\(788\) 0 0
\(789\) 15.7082 41.1246i 0.559227 1.46407i
\(790\) 0 0
\(791\) 61.3050 2.17975
\(792\) 0 0
\(793\) 0.583592 0.0207240
\(794\) 0 0
\(795\) 7.70820 20.1803i 0.273382 0.715723i
\(796\) 0 0
\(797\) 26.0000i 0.920967i 0.887668 + 0.460484i \(0.152324\pi\)
−0.887668 + 0.460484i \(0.847676\pi\)
\(798\) 0 0
\(799\) 22.4721i 0.795007i
\(800\) 0 0
\(801\) −28.9443 + 32.3607i −1.02270 + 1.14341i
\(802\) 0 0
\(803\) 53.6656 1.89382
\(804\) 0 0
\(805\) 26.8328 0.945732
\(806\) 0 0
\(807\) 37.1246 + 14.1803i 1.30685 + 0.499172i
\(808\) 0 0
\(809\) 49.3050i 1.73347i 0.498769 + 0.866735i \(0.333786\pi\)
−0.498769 + 0.866735i \(0.666214\pi\)
\(810\) 0 0
\(811\) 11.7082i 0.411131i −0.978643 0.205565i \(-0.934097\pi\)
0.978643 0.205565i \(-0.0659033\pi\)
\(812\) 0 0
\(813\) 35.1246 + 13.4164i 1.23187 + 0.470534i
\(814\) 0 0
\(815\) −22.6525 −0.793482
\(816\) 0 0
\(817\) 31.0557 1.08650
\(818\) 0 0
\(819\) −11.0557 + 12.3607i −0.386318 + 0.431917i
\(820\) 0 0
\(821\) 21.0557i 0.734850i −0.930053 0.367425i \(-0.880239\pi\)
0.930053 0.367425i \(-0.119761\pi\)
\(822\) 0 0
\(823\) 4.11146i 0.143316i −0.997429 0.0716582i \(-0.977171\pi\)
0.997429 0.0716582i \(-0.0228291\pi\)
\(824\) 0 0
\(825\) 2.47214 6.47214i 0.0860687 0.225331i
\(826\) 0 0
\(827\) 40.6525 1.41363 0.706813 0.707401i \(-0.250132\pi\)
0.706813 + 0.707401i \(0.250132\pi\)
\(828\) 0 0
\(829\) 15.8885 0.551832 0.275916 0.961182i \(-0.411019\pi\)
0.275916 + 0.961182i \(0.411019\pi\)
\(830\) 0 0
\(831\) −14.6525 + 38.3607i −0.508289 + 1.33072i
\(832\) 0 0
\(833\) 42.0689i 1.45760i
\(834\) 0 0
\(835\) 21.4164i 0.741145i
\(836\) 0 0
\(837\) −23.1246 44.8328i −0.799304 1.54965i
\(838\) 0 0
\(839\) 5.52786 0.190843 0.0954215 0.995437i \(-0.469580\pi\)
0.0954215 + 0.995437i \(0.469580\pi\)
\(840\) 0 0
\(841\) 9.00000 0.310345
\(842\) 0 0
\(843\) −37.8885 14.4721i −1.30495 0.498447i
\(844\) 0 0
\(845\) 11.4721i 0.394653i
\(846\) 0 0
\(847\) 22.3607i 0.768322i
\(848\) 0 0
\(849\) −26.1803 10.0000i −0.898507 0.343199i
\(850\) 0 0
\(851\) −16.5836 −0.568478
\(852\) 0 0
\(853\) 3.34752 0.114617 0.0573085 0.998357i \(-0.481748\pi\)
0.0573085 + 0.998357i \(0.481748\pi\)
\(854\) 0 0
\(855\) 6.18034 + 5.52786i 0.211363 + 0.189049i
\(856\) 0 0
\(857\) 42.0689i 1.43705i 0.695503 + 0.718523i \(0.255181\pi\)
−0.695503 + 0.718523i \(0.744819\pi\)
\(858\) 0 0
\(859\) 9.59675i 0.327437i −0.986507 0.163718i \(-0.947651\pi\)
0.986507 0.163718i \(-0.0523488\pi\)
\(860\) 0 0
\(861\) −17.8885 + 46.8328i −0.609640 + 1.59606i
\(862\) 0 0
\(863\) 22.0000 0.748889 0.374444 0.927249i \(-0.377833\pi\)
0.374444 + 0.927249i \(0.377833\pi\)
\(864\) 0 0
\(865\) −16.4721 −0.560069
\(866\) 0 0
\(867\) 4.03444 10.5623i 0.137017 0.358715i
\(868\) 0 0
\(869\) 12.9443i 0.439104i
\(870\) 0 0
\(871\) 12.0000i 0.406604i
\(872\) 0 0
\(873\) −1.05573 0.944272i −0.0357310 0.0319588i
\(874\) 0 0
\(875\) −4.47214 −0.151186
\(876\) 0 0
\(877\) 58.5410 1.97679 0.988395 0.151906i \(-0.0485412\pi\)
0.988395 + 0.151906i \(0.0485412\pi\)
\(878\) 0 0
\(879\) 29.7082 + 11.3475i 1.00203 + 0.382742i
\(880\) 0 0
\(881\) 17.3050i 0.583019i 0.956568 + 0.291509i \(0.0941574\pi\)
−0.956568 + 0.291509i \(0.905843\pi\)
\(882\) 0 0
\(883\) 5.12461i 0.172457i 0.996275 + 0.0862285i \(0.0274815\pi\)
−0.996275 + 0.0862285i \(0.972519\pi\)
\(884\) 0 0
\(885\) −12.9443 4.94427i −0.435117 0.166200i
\(886\) 0 0
\(887\) 1.63932 0.0550430 0.0275215 0.999621i \(-0.491239\pi\)
0.0275215 + 0.999621i \(0.491239\pi\)
\(888\) 0 0
\(889\) 2.11146 0.0708160
\(890\) 0 0
\(891\) −4.00000 35.7771i −0.134005 1.19858i
\(892\) 0 0
\(893\) 19.1935i 0.642286i
\(894\) 0 0
\(895\) 25.8885i 0.865359i
\(896\) 0 0
\(897\) −4.58359 + 12.0000i −0.153042 + 0.400668i
\(898\) 0 0
\(899\) 43.4164 1.44802
\(900\) 0 0
\(901\) −40.3607 −1.34461
\(902\) 0 0
\(903\) −31.0557 + 81.3050i −1.03347 + 2.70566i
\(904\) 0 0
\(905\) 13.4164i 0.445976i
\(906\) 0 0
\(907\) 46.0689i 1.52969i 0.644213 + 0.764846i \(0.277185\pi\)
−0.644213 + 0.764846i \(0.722815\pi\)
\(908\) 0 0
\(909\) 0.944272 1.05573i 0.0313195 0.0350163i
\(910\) 0 0
\(911\) 4.00000 0.132526 0.0662630 0.997802i \(-0.478892\pi\)
0.0662630 + 0.997802i \(0.478892\pi\)
\(912\) 0 0
\(913\) 17.1672 0.568151
\(914\) 0 0
\(915\) 0.763932 + 0.291796i 0.0252548 + 0.00964648i
\(916\) 0 0
\(917\) 11.0557i 0.365092i
\(918\) 0 0
\(919\) 25.1246i 0.828784i 0.910098 + 0.414392i \(0.136006\pi\)
−0.910098 + 0.414392i \(0.863994\pi\)
\(920\) 0 0
\(921\) −3.70820 1.41641i −0.122189 0.0466722i
\(922\) 0 0
\(923\) 4.94427 0.162743
\(924\) 0 0
\(925\) 2.76393 0.0908775
\(926\) 0 0
\(927\) 20.0000 22.3607i 0.656886 0.734421i
\(928\) 0 0
\(929\) 6.11146i 0.200510i 0.994962 + 0.100255i \(0.0319659\pi\)
−0.994962 + 0.100255i \(0.968034\pi\)
\(930\) 0 0
\(931\) 35.9311i 1.17759i
\(932\) 0 0
\(933\) −3.63932 + 9.52786i −0.119146 + 0.311928i
\(934\) 0 0
\(935\) −12.9443 −0.423323
\(936\) 0 0
\(937\) −39.8885 −1.30310 −0.651551 0.758605i \(-0.725881\pi\)
−0.651551 + 0.758605i \(0.725881\pi\)
\(938\) 0 0
\(939\) −7.34752 + 19.2361i −0.239777 + 0.627745i
\(940\) 0 0
\(941\) 0.472136i 0.0153912i −0.999970 0.00769560i \(-0.997550\pi\)
0.999970 0.00769560i \(-0.00244961\pi\)
\(942\) 0 0
\(943\) 38.8328i 1.26457i
\(944\) 0 0
\(945\) −20.6525 + 10.6525i −0.671825 + 0.346525i
\(946\) 0 0
\(947\) −51.4853 −1.67305 −0.836524 0.547931i \(-0.815416\pi\)
−0.836524 + 0.547931i \(0.815416\pi\)
\(948\) 0 0
\(949\) 16.5836 0.538326
\(950\) 0 0
\(951\) −17.7082 6.76393i −0.574228 0.219336i
\(952\) 0 0
\(953\) 25.3475i 0.821087i −0.911841 0.410543i \(-0.865339\pi\)
0.911841 0.410543i \(-0.134661\pi\)
\(954\) 0 0
\(955\) 24.3607i 0.788293i
\(956\) 0 0
\(957\) 28.9443 + 11.0557i 0.935635 + 0.357381i
\(958\) 0 0
\(959\) −0.806504 −0.0260434
\(960\) 0 0
\(961\) −63.2492 −2.04030
\(962\) 0 0
\(963\) 6.18034 + 5.52786i 0.199159 + 0.178133i
\(964\) 0 0
\(965\) 10.9443i 0.352309i
\(966\) 0 0
\(967\) 22.0000i 0.707472i −0.935345 0.353736i \(-0.884911\pi\)
0.935345 0.353736i \(-0.115089\pi\)
\(968\) 0 0
\(969\) 5.52786 14.4721i 0.177581 0.464912i
\(970\) 0 0
\(971\) −15.0557 −0.483161 −0.241581 0.970381i \(-0.577666\pi\)
−0.241581 + 0.970381i \(0.577666\pi\)
\(972\) 0 0
\(973\) −27.6393 −0.886076
\(974\) 0 0
\(975\) 0.763932 2.00000i 0.0244654 0.0640513i
\(976\) 0 0
\(977\) 17.7082i 0.566536i −0.959041 0.283268i \(-0.908581\pi\)
0.959041 0.283268i \(-0.0914185\pi\)
\(978\) 0 0
\(979\) 57.8885i 1.85013i
\(980\) 0 0
\(981\) −6.58359 5.88854i −0.210198 0.188007i
\(982\) 0 0
\(983\) 33.7771 1.07732 0.538661 0.842523i \(-0.318930\pi\)
0.538661 + 0.842523i \(0.318930\pi\)
\(984\) 0 0
\(985\) −6.94427 −0.221263
\(986\) 0 0
\(987\) 50.2492 + 19.1935i 1.59945 + 0.610936i
\(988\) 0 0
\(989\) 67.4164i 2.14372i
\(990\) 0 0
\(991\) 8.76393i 0.278395i 0.990265 + 0.139198i \(0.0444524\pi\)
−0.990265 + 0.139198i \(0.955548\pi\)
\(992\) 0 0
\(993\) −38.3607 14.6525i −1.21734 0.464982i
\(994\) 0 0
\(995\) −9.70820 −0.307771
\(996\) 0 0
\(997\) −24.0689 −0.762269 −0.381135 0.924520i \(-0.624467\pi\)
−0.381135 + 0.924520i \(0.624467\pi\)
\(998\) 0 0
\(999\) 12.7639 6.58359i 0.403833 0.208296i
Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))

Twists

       By twisting character
Char Parity Ord Type Twist Min Dim
1.1 even 1 trivial 1920.2.h.d.1151.3 yes 4
3.2 odd 2 1920.2.h.n.1151.1 yes 4
4.3 odd 2 1920.2.h.n.1151.2 yes 4
8.3 odd 2 1920.2.h.c.1151.3 4
8.5 even 2 1920.2.h.m.1151.2 yes 4
12.11 even 2 inner 1920.2.h.d.1151.4 yes 4
24.5 odd 2 1920.2.h.c.1151.4 yes 4
24.11 even 2 1920.2.h.m.1151.1 yes 4
    
        By twisted newform
Twist Min Dim Char Parity Ord Type
1920.2.h.c.1151.3 4 8.3 odd 2
1920.2.h.c.1151.4 yes 4 24.5 odd 2
1920.2.h.d.1151.3 yes 4 1.1 even 1 trivial
1920.2.h.d.1151.4 yes 4 12.11 even 2 inner
1920.2.h.m.1151.1 yes 4 24.11 even 2
1920.2.h.m.1151.2 yes 4 8.5 even 2
1920.2.h.n.1151.1 yes 4 3.2 odd 2
1920.2.h.n.1151.2 yes 4 4.3 odd 2